JPS61191255A - Pulse motor for electron control expansion valve - Google Patents
Pulse motor for electron control expansion valveInfo
- Publication number
- JPS61191255A JPS61191255A JP2929185A JP2929185A JPS61191255A JP S61191255 A JPS61191255 A JP S61191255A JP 2929185 A JP2929185 A JP 2929185A JP 2929185 A JP2929185 A JP 2929185A JP S61191255 A JPS61191255 A JP S61191255A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- case
- units
- cylindrical
- pulse motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/12—Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
- H02K5/128—Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K37/00—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
- H02K37/10—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
- H02K37/12—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
- H02K37/14—Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明はエアコンなどに使用される電子制御膨張弁用パ
ルスモータの気密構造などに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an airtight structure of a pulse motor for an electronically controlled expansion valve used in an air conditioner or the like.
(従来技術およびその問題点)
近時におけるエアコン(空気調和装置)の主流は、イン
バータエアコン即ちマイコンにより制御されるインバー
タ(周波数変換装置)を用い、空調負荷に応じて圧縮機
の回転数を無段階で調節するようにしたインバータエア
コンに移l)つつある。(Prior art and its problems) The mainstream of air conditioners (air conditioners) these days uses inverter air conditioners, that is, inverters (frequency converters) that are controlled by microcomputers, and uses an inverter (frequency converter) that adjusts the rotation speed of the compressor according to the air conditioning load. We are currently moving to an inverter air conditioner that can be adjusted in stages.
この、方式(=よれば、例えばエアコンの運転開始時圧
縮機を高速回転させて部屋の温度を急速に設定温度に近
付は勺のち、徐々に回転数を落して設定温度にすること
ができるなどの制御が可能となり、従来の所謂0.N7
OFF制御方式に比べて立上I)時間の短縮、室温度の
変動の低減、エネルギ損界の減少などを図るジとができ
る。従って快適性、省エネルギー性にすぐれた温度制御
を行える利点かあ、る。 、
ところで以上のようなインバータエアコンの特徴を充分
生かすためには、圧縮機の回転数の変化に迅速に対応し
て幅広い冷媒の流量制御が行われることが不可欠である
。しかし従来から用いられている流量制御弁、例えばキ
ャピラリチューブなどの自動温度膨張弁ではその要求に
充分応えることが難かしい。According to this method, for example, when an air conditioner starts operating, the compressor is rotated at high speed and the temperature in the room rapidly approaches the set temperature, and then the rotation speed is gradually lowered to reach the set temperature. It is now possible to control the conventional so-called 0.N7
Compared to the OFF control method, it is possible to shorten the start-up time, reduce fluctuations in room temperature, and reduce energy loss field. Therefore, it has the advantage of being able to control temperature with excellent comfort and energy savings. However, in order to take full advantage of the features of the inverter air conditioner as described above, it is essential that the flow rate of the refrigerant be controlled over a wide range in response to changes in the rotational speed of the compressor. However, it is difficult for conventionally used flow rate control valves, such as automatic temperature expansion valves such as capillary tubes, to fully meet this demand.
そこで例えば最近電子的に制御されるパルスモータと、
これを駆動部とする弁体を備えた弁部とからなる所謂電
子制御膨張弁と呼ばれる弁により上記の要求に応えるこ
とが行われているが、この場合エアコンは5〜lO年使
用される耐久消費財である。従って弁は長寿命であるこ
とが要求され、それを満すためには弁部を流れる冷媒が
漏出して消耗を早くシたり、パルスモータ側への漏出浸
入にもとづくモータコイルの絶縁の早期における低下に
よる故障などの確実な防止が強く要求される。For example, recently electronically controlled pulse motors,
The above requirements are met by a valve called an electronically controlled expansion valve, which consists of a valve part equipped with a valve body that uses this as a driving part. It is a consumer product. Therefore, valves are required to have a long life, and in order to meet this requirement, the refrigerant flowing through the valve part leaks and wears out quickly, and the insulation of the motor coil at an early stage due to leakage and infiltration into the pulse motor side. There is a strong demand for reliable prevention of breakdowns due to deterioration.
そこでその対策を施した第1図および第2図の如コイル
(2)からそれぞれなる第1.第2ステータ形成部f3
)(41を、内周部に磁極歯(5a)をもつ環状の中間
ヨーク板(5)を介して重ね合せて形成されたス1
テーク(6)の内部空間内に、冷媒がステータ
側に漏れたり、外気中に漏れないように軸受αυにより
支持されたロータOIと、これによって駆動される弁構
成部を気密に収容したケース(7)を固定したものであ
る。そしてロータ0αの左右回転と支持体azに螺合さ
れたねじ軸(8)により、ニードル弁体(9)を弁座0
の弁口(13a)内に下降させ、また弁口(13a)か
ら脱出させて冷媒流路(L41 asにおける冷媒の流
量調節を行うものである。Therefore, the first coil (2), which is made of the coil (2) shown in FIGS. 1 and 2, takes this countermeasure. Second stator forming part f3
) (41) are stacked on top of each other with an annular intermediate yoke plate (5) having magnetic pole teeth (5a) on the inner periphery.
In the internal space of the take (6), a case ( 7) is fixed. Then, the needle valve body (9) is moved to the valve seat 0 by the left and right rotation of the rotor 0α and the screw shaft (8) screwed into the support body az.
The refrigerant flow rate in the refrigerant flow path (L41 as) is adjusted by lowering the refrigerant into the valve port (13a) and exiting from the valve port (13a).
また第2図のものはモータAの回転軸の出力を減速歯車
機構tUaを介して軸受αυとねじ係合板aηにより支
承されたねじ軸側に伝達し、その左右回転により冷媒が
外部に漏れないようにベローズ(IIにより支持された
ニードル弁体(9)に下降と上昇を行わせて弁口(13
a)の開口度を調節することにより冷媒の流量制御を行
うものである。In addition, the one in Figure 2 transmits the output of the rotating shaft of motor A via the reduction gear mechanism tUa to the screw shaft side supported by the bearing αυ and the screw engagement plate aη, and its left and right rotation prevents the refrigerant from leaking to the outside. The needle valve body (9) supported by the bellows (II) is lowered and raised to open the valve opening (13).
The flow rate of the refrigerant is controlled by adjusting the opening degree of a).
第1図の形式のものは第2図の弁のように減速歯車機構
aQやベローズ(11などをもたず、ロータOnと弁体
(9)とが直結である。このためローコストであって部
品点数が少なく、制御の立上りが速く価額的にも制御性
にもすぐれる利点を有する。しかしその反面第1図の形
式のものは、ステータ(6)とロータa11間傾非磁性
体で作られた円筒状ケース(7)、即ち内圧に充分耐え
て冷−の漏出を招くことがないような充分な機械的強度
を得るための厚みをもたせた円筒状ケース(7)が介在
する。従ってステータ(6)の磁極歯(1a)とロータ
aυの磁極頭間のギャップが大きくなり、その結果とし
てトルクの低下にもとづく消費電力の増大を招いて省エ
ネルギ性に劣るばかりか、所要のトルクを得ようとする
と外形も大きくなることから、大きい設置スペースを必
□要とする欠点がある。The type shown in Fig. 1 does not have the reduction gear mechanism aQ or bellows (11) like the valve shown in Fig. 2, and the rotor On and the valve body (9) are directly connected.Therefore, it is low cost. It has the advantage of having a small number of parts, fast control start-up, and excellent cost and controllability.However, on the other hand, the type shown in Fig. There is a cylindrical case (7) which is thick enough to withstand internal pressure and have sufficient mechanical strength to prevent cold leakage. The gap between the magnetic pole teeth (1a) of the stator (6) and the magnetic pole head of the rotor aυ increases, resulting in an increase in power consumption due to a decrease in torque, which not only results in poor energy savings, but also reduces the required torque. If you try to achieve this, the external size will also increase, which has the disadvantage of requiring a large installation space.
一方第2図のものは上記のような欠点はないが、冷i漏
れ防止のためにばね力の撫いベローズ員を用いている。On the other hand, the one shown in Fig. 2 does not have the above-mentioned drawbacks, but uses a spring-forced bellows member to prevent cold ionic leakage.
従ってその伸縮払ためのトルク増強用歯車機構aeを用
いざるを得ないため、第1図のものに比べてコスト高に
なるのは勿論、部品点数の増大、制御の立上りの遅れに
よる制御性の低下などの欠点をもつ。Therefore, it is necessary to use a torque-enhancing gear mechanism ae to compensate for the expansion and contraction, which not only increases the cost compared to the one shown in Fig. 1, but also increases the number of parts and reduces controllability due to a delay in the start-up of the control. It has drawbacks such as lower
本発明は簡単な構造で、冷媒の−れ防止のための気密構
造と、パルスモータの効率の向上などの両立を図って、
電子制御膨張弁の長寿命化を実現したパイレスモータの
提供を目的としてなされたもので、次に図面を用いてそ
の詳細を説明する。The present invention has a simple structure and achieves both an airtight structure to prevent refrigerant leakage and an improvement in the efficiency of the pulse motor.
This was developed for the purpose of providing a pyres motor that achieves a longer life of an electronically controlled expansion valve, and the details thereof will be explained below with reference to the drawings.
〔発明の構成丁
(問題点を解決するための手段)
第3図は本発明の基本構造を示す断面図、第4図はモー
タ部に弁部を接続した状態を示す断面図、第5図は部分
構成斜視図であって、本発明の特徴とするところは要す
るに次の点にある。即ち第5図(a)に示すように、そ
れぞれ磁極歯群(20a) (2:La)(21b)、
(22a)を備えた有底筒状磁性体■、筒状磁性体C
2fJt22を、所要の磁極対向間隙をもたせうる厚み
をもった波形状非磁性結合体t23(例えば黄銅製)を
介して気密接着、例えば気密にロウ付けして第5図(b
)の一端開口の有底筒状ケースQ4を形成する。そして
第3図のよう(二ケース(財)の外周部にコイル(2)
とヨーク部(財)(ハ)などを固定してステータ部(6
)を形成すると同時に、ケース(財)の上面に固定した
軸受a11と磁性板(5)により、ケースc14(二支
持された軸受αυにより第4図のようにロータa〔を支
承してパルスモータAを構成する。そしてその有底筒状
ケースQ4の開口端(24a)にニードル弁体(9)、
弁口(13a)を有する弁座(13)その他の弁構成部
分を一端開ロケース(ハ)内に収容して形螺された弁部
Bをそのニードル弁体(9)がロータ0ωの回転軸(1
0a)と接続されるように結合し、かつ気密に封止翰し
て電子制御膨張弁が形成されるようにしたことを特徴と
するものである。[Configuration of the Invention (Means for Solving the Problems) Figure 3 is a sectional view showing the basic structure of the invention, Figure 4 is a sectional view showing the state in which the valve part is connected to the motor part, and Figure 5 1 is a partial configuration perspective view, and the features of the present invention are summarized in the following points. That is, as shown in FIG. 5(a), the magnetic pole tooth groups (20a) (2:La) (21b),
(22a) Bottomed cylindrical magnetic body ■, cylindrical magnetic body C
2fJt22 is hermetically bonded, for example, airtightly brazed, via a wave-shaped non-magnetic coupling member t23 (made of brass, for example) having a thickness sufficient to provide the required gap between magnetic poles, as shown in FIG. 5(b).
) is formed into a bottomed cylindrical case Q4 with an opening at one end. Then, as shown in Figure 3 (two coils (2) are placed on the outer periphery of the two cases
Fix the yoke part (c) and the stator part (6).
), and at the same time, the bearing a11 and magnetic plate (5) fixed on the upper surface of the case (goods) form the case c14 (two supported bearings αυ support the rotor a [as shown in Figure 4), and a pulse motor is formed. A and a needle valve body (9) at the open end (24a) of the bottomed cylindrical case Q4.
A valve seat (13) having a valve port (13a) and other valve components are housed in a case (c) with one end open, and the threaded valve part B is connected to the rotation axis of the rotor 0ω with its needle valve body (9). (1
0a) and hermetically sealed to form an electronically controlled expansion valve.
(作用および効果)
以上のような構成とすれば、第1図で説明した従来構造
のように弁部を収容した非磁性筒状ケース(7)を用い
ることなく冷媒に対するモータと弁部間の気密遮断構造
が実現される。またロータQlとステータ(6)間(二
冷媒圧C二耐える非磁性筒状ケース(7)がないので、
ロータの磁極頭とステータの磁極とを直接少ない空隙で
対接させることができ、対向空隙長を通常のパルスモー
タと同様の01〜0.2nにすることができる。また更
に第2図で前記したベローズa7)を用いることなく、
直接ロータ軸と弁体とを結合できる構造をと1)うるの
で、歯車機構を用いる必要がない。従って従来のものの
欠点を一掃したローコストであって、制御性、省エネル
ギ性にすぐれた小型な電子制御膨張弁用パルスモータを
提供できる。(Functions and Effects) With the above configuration, there is no need to use the non-magnetic cylindrical case (7) housing the valve part as in the conventional structure explained in FIG. An airtight isolation structure is achieved. Also, since there is no non-magnetic cylindrical case (7) between the rotor Ql and the stator (6) (which can withstand two refrigerant pressures C2),
The magnetic pole heads of the rotor and the magnetic poles of the stator can be brought into direct contact with each other with a small gap, and the length of the opposing gap can be set to 01 to 0.2 nm, which is the same as that of a normal pulse motor. Furthermore, without using the bellows a7) described above in FIG.
1) Since the rotor shaft and the valve body can be directly connected to each other, there is no need to use a gear mechanism. Therefore, it is possible to provide a small pulse motor for an electronically controlled expansion valve that is low in cost, has excellent controllability and energy saving properties, and eliminates the drawbacks of conventional ones.
実験によれば第1図で前記したように、ステータとロー
タ間に非磁性筒状ケース(7)が介在するもしかし本発
明によれば、第1図のものと同一トルクを得る場合外形
を50%以下(′−することができた。According to experiments, as described above in FIG. 1, a non-magnetic cylindrical case (7) is interposed between the stator and rotor.However, according to the present invention, in order to obtain the same torque as that in FIG. 50% or less ('-).
以上本発明を説明したが、第3因(二示したパルスモー
タのステータ部は、具体的には例えば次のように形成さ
れる。即ち有底筒状磁性ケース0荀の下端開口端の外側
に設けた段部(24b)に先づ環状のヨーク円板(ハ)
を嵌めこんで固定したのち、第1環状コイル(2)を嵌
めこみ、更にその上に環状ヨーク円板(ハ)を嵌めこん
で固定する。そして更にその上に第2環状コイル(2)
を嵌めたのち、中心に磁性ケース(241への差込み穴
を有する筒状ヨーク(イ)を嵌めて固定して形成される
。なお第4図のように、ロータa1の回転軸(10a)
とニードル弁体(9)が直結されたものでは、弁の開閉
量に対応してロータ(IQが上下するため、上部軸受O
υに移動のための余裕を設ける必要があり、それだけ中
心軸方向のパルスモータの長さが長くなる。そこで第4
図のように、ロータaυ内に上部軸受Oυが入る空胴部
(10b)を設けて長さを短かくするようにしている。Although the present invention has been explained above, the stator part of the pulse motor shown in the third factor (2) is specifically formed as follows. That is, it is formed outside the lower open end of the bottomed cylindrical magnetic case 0. An annular yoke disk (c) is placed in front of the stepped portion (24b) provided in the
After fitting and fixing, the first annular coil (2) is fitted, and the annular yoke disc (c) is further fitted and fixed thereon. And further on top of that is the second circular coil (2)
After fitting, a cylindrical yoke (A) having an insertion hole into the magnetic case (241) is fitted and fixed in the center.As shown in Fig. 4, the rotating shaft (10a) of the rotor a1
In the case where the needle valve body (9) is directly connected to the valve, the upper bearing O
It is necessary to provide a margin for movement at υ, which increases the length of the pulse motor in the direction of the central axis. Therefore, the fourth
As shown in the figure, a cavity (10b) into which the upper bearing Oυ is placed is provided in the rotor aυ to shorten the length.
(変形例)
以上本発明について説明したが、モータコイルなどに対
する冷媒の遮断を更に確実に行うため、有底筒状ケース
(財)を2重にしてもよい。第6図はその例を示す断面
図であって、対向磁極歯を有する有底筒状磁性ケース(
財)の外側に、有底筒状磁性体(2)、中間筒状磁性体
(31) 、終端筒状磁性体(32)を非磁性(例えば
黄銅)筒状結合体(33) Eより気密に接続して形成
された有底筒状ケース(34)を設け、その外周にコイ
ル(2)などを固定してもよい。(Modification) Although the present invention has been described above, the bottomed cylindrical case may be made double in order to more reliably cut off the refrigerant to the motor coil and the like. FIG. 6 is a sectional view showing an example of this, and shows a bottomed cylindrical magnetic case (
A bottomed cylindrical magnetic body (2), an intermediate cylindrical magnetic body (31), and an end cylindrical magnetic body (32) are placed on the outside of the non-magnetic (e.g. brass) cylindrical assembly (33) in an airtight manner. A bottomed cylindrical case (34) may be provided, and the coil (2) or the like may be fixed to the outer periphery of the case (34).
なお本発明によって任意相数のパルスモータを形成でき
ることはいうまでもない。It goes without saying that a pulse motor with an arbitrary number of phases can be formed according to the present invention.
第1図および第2図は従来装置の概略断面図、第3図は
本発明の基本構造を示す断面図、第4図は弁部を結合し
た状態を示す本発明の一実施例の断面図、第5図(a)
(blは゛部分構成斜視図、第6図は本発明の変形例を
示す断面図である。
A・・・・パルスモータ部、 B・・・・弁部、(1)
・・・・ヨーク、 (1a)・・・・磁極歯群、(2
)・・・・コイル、 (31(41・・・・第1.第2
ステータ部、(5)・・・・中間ヨーク板、 (6)・
・・・ステータ部、(7)・・・・非磁性筒状ケーネ、
(8)・・・・ねじ軸部、(9)−−@−ニードル弁
体、 αlamaaロータ、(Iυ・・・・軸受、 α
a−・・・ねじ係合板、 0・・・・弁座、(13a)
・・・・弁口、 fi4 m!9・・・・冷媒流路、a
S・・・・歯車機構、 tiη・・・・ねじ係合板、舖
・・・・ねじ軸、 al−・・・ベローズ、(至)・・
・・有底筒状磁性体、Qυ(2)・・・・筒状磁性体、
(zoa)(zla)(zlb)(z2a) ・・・・
磁極歯群、(ハ)・・・・非磁性結合体、
(財)・・・・有底筒状磁性ケース、
@(ハ)・・・・ヨーク、 罰・・・・磁性板、(ハ)
・・・・弁体収容ケース、 翰・・・・封止部、(7)
・・・・有底筒状磁性体、
(31)・・・・中間筒状磁性体、
(32)・・・・終端筒状磁性体、
(33)・・・・非磁性(例えば黄銅)筒状結合体、(
34)・・・・有底筒状ケース。
特許出願人 日本パルスモータ−株式会社く
ψ
〜 へ
手 続 補 正 書(自発)
1.事件の表示 特願昭60− 29291号2 発
明の名称
電子制御膨張弁用パルスモータ
3、補正をする者 事件との関係 出願人日本パルス
モータ−株式会社
4、代理人
東京都新宿区西新宿1−23−1
明細書の「発明の詳細な説明」の欄
明細書の「図面の簡単な説明」の欄
6、補正の内容
月細書第3頁第15行〔コイル(1)〕を〔ヨーク(1
)〕二訂正する。
同第6頁第18行〔磁性板(27) ]を〔軸受取付板
(27))に訂正する。
(3) 同第7頁第16行〔01〕を(0,1)に訂
正する。
(4) 同第9頁第16行〔脊部筒状ケース〕を〔磁
性体有底筒状ケース〕に訂正する。
(5)同第11頁第1行〔磁性板〕を〔軸受取付板〕に
訂正する。
(6) 同第11頁第7行〔有底筒状ケース〕を〔磁
性体有底筒状ケース〕に訂正する。1 and 2 are schematic sectional views of a conventional device, FIG. 3 is a sectional view showing the basic structure of the present invention, and FIG. 4 is a sectional view of an embodiment of the present invention showing a state in which the valve portion is connected. , Figure 5(a)
(BL is a partial configuration perspective view, and FIG. 6 is a cross-sectional view showing a modification of the present invention. A: Pulse motor section, B: Valve section, (1)
... Yoke, (1a) ... Magnetic pole tooth group, (2
)... Coil, (31 (41... 1st. 2nd
Stator part, (5)... intermediate yoke plate, (6)...
... Stator part, (7) ... Non-magnetic cylindrical Koehne,
(8)...Screw shaft, (9)--@-needle valve body, αlamaa rotor, (Iυ...bearing, α
a-...Screw engagement plate, 0...Valve seat, (13a)
・・・Bengokuchi, fi4 m! 9... Refrigerant flow path, a
S...gear mechanism, tiη...screw engagement plate, or...screw shaft, al-...bellows, (to)...
・・Bottomed cylindrical magnetic material, Qυ(2) ・・・cylindrical magnetic material,
(zoa) (zla) (zlb) (z2a) ...
Magnetic pole tooth group, (c)...Nonmagnetic combination, (Foundation)...bottomed cylindrical magnetic case, @(c)...yoke, punishment...magnetic plate, (c)... )
...Valve body housing case, fence...Sealing part, (7)
...Typical magnetic body with bottom, (31)...Middle cylindrical magnetic body, (32)...Terminal cylindrical magnetic body, (33)...Nonmagnetic (e.g. brass) Cylindrical combination, (
34)...Bottomed cylindrical case. Patent applicant Nippon Pulse Motor Co., Ltd.
Procedural amendment to ψ (voluntary) 1. Description of the case Japanese Patent Application No. 60-29291 2 Name of the invention Pulse motor for electronically controlled expansion valves 3 Person making the amendment Relationship to the case Applicant Nippon Pulse Motor Co., Ltd. 4 Agent Nishi-Shinjuku 1, Shinjuku-ku, Tokyo -23-1 "Detailed Description of the Invention" column of the specification, "Brief Description of Drawings" column 6 of the specification, contents of the amendment, page 3, line 15 [coil (1)] of the specification. (1
)] Two corrections. Page 6, line 18, [magnetic plate (27)] is corrected to [bearing mounting plate (27)]. (3) Correct page 7, line 16 [01] to (0,1). (4) Correct page 9, line 16 [tubular spine case] to [tubular case with magnetic bottom]. (5) On page 11, line 1, [magnetic plate] is corrected to [bearing mounting plate]. (6) Correct page 11, line 7 [tubular case with a bottom] to [tubular case with a magnetic material bottom].
Claims (1)
極歯群が対向するように非磁性体を介して気密に結合し
て、その一端開口に弁部ケースを結合できる有底筒状ケ
ースを形成し、その外周にコイル、ヨークなどを固定し
てステータ部を形成して、その内部にロータを収容した
ことを特徴とする電子制御膨張弁用パルスモータ。A bottomed cylinder in which a bottomed cylindrical magnetic body and a cylindrical magnetic body are airtightly connected via a non-magnetic substance so that the magnetic pole tooth groups provided on each side face each other, and a valve case can be connected to one end opening. 1. A pulse motor for an electronically controlled expansion valve, characterized in that a stator part is formed by forming a shaped case, a coil, a yoke, etc. are fixed to the outer periphery of the stator part, and a rotor is housed inside the stator part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2929185A JPS61191255A (en) | 1985-02-19 | 1985-02-19 | Pulse motor for electron control expansion valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2929185A JPS61191255A (en) | 1985-02-19 | 1985-02-19 | Pulse motor for electron control expansion valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61191255A true JPS61191255A (en) | 1986-08-25 |
Family
ID=12272140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2929185A Pending JPS61191255A (en) | 1985-02-19 | 1985-02-19 | Pulse motor for electron control expansion valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61191255A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014092172A (en) * | 2012-10-31 | 2014-05-19 | Nidec Sankyo Corp | Valve device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6070941A (en) * | 1983-09-28 | 1985-04-22 | Tokuzo Inariba | Pole teeth group structure for small-sized motor and manufacture thereof |
-
1985
- 1985-02-19 JP JP2929185A patent/JPS61191255A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6070941A (en) * | 1983-09-28 | 1985-04-22 | Tokuzo Inariba | Pole teeth group structure for small-sized motor and manufacture thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014092172A (en) * | 2012-10-31 | 2014-05-19 | Nidec Sankyo Corp | Valve device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0967707A2 (en) | Divisible lamination brushless pump-motor having fluid cooling system | |
KR20010007635A (en) | Linear motor | |
JP2012246819A (en) | Compressor and refrigerating cycle apparatus | |
JPS61191255A (en) | Pulse motor for electron control expansion valve | |
JP2608579B2 (en) | Pulse motor assembly for valve control | |
JPH08312821A (en) | Sealed type flow rate regulating valve | |
JPS5812971A (en) | Air conditioning equipment | |
US11824419B2 (en) | Drive device having drive transmission device | |
JP3327670B2 (en) | Fluid compressors and air conditioners | |
JP6665962B1 (en) | Turbo compressor | |
JPH0821556A (en) | Motor-driven flow control valve | |
JP7607563B2 (en) | Stator, motor, compressor, and air conditioner | |
JP2931184B2 (en) | Linear compressor | |
JPH0727814Y2 (en) | Vacuum pump drive motor | |
JPH0690543A (en) | Sealed type motor | |
JPH08152075A (en) | Directional control valve | |
JPS60260781A (en) | Electrically driven flow control valve | |
CN219549680U (en) | Reversing valve driving structure and reversing valve | |
JPH0979409A (en) | Control valve | |
JPH087116Y2 (en) | Compressor | |
JPH03175193A (en) | Refrigerant pump | |
JPH08285113A (en) | Four-way valve | |
JPH0144869Y2 (en) | ||
JP2013249754A (en) | Compressor and refrigeration cycle device | |
JP3423954B2 (en) | An electric valve for an air conditioner that has a flow passage that penetrates in the axial direction |