[go: up one dir, main page]

JPS61190021A - Method for manufacturing unidirectional electrical steel sheet with good magnetism - Google Patents

Method for manufacturing unidirectional electrical steel sheet with good magnetism

Info

Publication number
JPS61190021A
JPS61190021A JP60028447A JP2844785A JPS61190021A JP S61190021 A JPS61190021 A JP S61190021A JP 60028447 A JP60028447 A JP 60028447A JP 2844785 A JP2844785 A JP 2844785A JP S61190021 A JPS61190021 A JP S61190021A
Authority
JP
Japan
Prior art keywords
annealing
decarburization
steel sheet
electrical steel
unidirectional electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60028447A
Other languages
Japanese (ja)
Inventor
Hiromichi Koshiishi
興石 弘道
Kunisuke Miyoshi
三好 邦輔
Hisanobu Nakayama
中山 久信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60028447A priority Critical patent/JPS61190021A/en
Publication of JPS61190021A publication Critical patent/JPS61190021A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として変圧器鉄芯等の電気機器に広く使用さ
れている磁性の優れた一方向性電磁鋼板の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a unidirectional electrical steel sheet with excellent magnetism, which is mainly used in electrical equipment such as transformer cores.

(従来の技術〕 一方向性電磁鋼板は最近のエネルギーコストの高騰によ
り世界的にその低鉄損化が強く要求されている。かかる
低鉄損化を図る目的でその製造条件における新技術とし
て特開昭56−130454号公報、特開昭57−41
326号公報等で開示している様に、更に高St化、及
び磁区細分化、薄手化等鉄鋼各社は競って高品質化に取
組んでいる。
(Conventional technology) Due to the recent rise in energy costs, there is a strong demand worldwide for unidirectional electrical steel sheets to have low core loss.In order to achieve such low core loss, a new technology has been specially developed for the manufacturing conditions. Publication No. 56-130454, Japanese Patent Publication No. 57-41
As disclosed in Publication No. 326, etc., steel companies are competing to improve quality by further increasing St, refining magnetic domains, and thinning steel.

(発明が解決しようとする問題点) 然るに薄手化の方向は製造条件としては作業能率低下を
来し、コスト高をまねくばかりでなく、従来の一方向性
電磁鋼板では鋼板表面にグラスと呼ばれるフォルステラ
イト被膜が敷線の厚さで生成するため、板厚が薄くなる
程磁性劣化に及ぼす影響が大きくなって来ている。
(Problems to be solved by the invention) However, the trend toward thinning not only leads to a decrease in work efficiency and higher costs in terms of manufacturing conditions, but also in conventional unidirectional electrical steel sheets, a layer called glass is formed on the surface of the steel sheet. Since the stellite coating is formed at the thickness of the laying line, the thinner the plate thickness is, the greater the influence it has on magnetic deterioration.

又従来より2次再結晶を有効に行うため、S。In addition, in order to perform secondary recrystallization more effectively than conventionally, S.

Mn或はht# Ss 、Sb * Sn + Cu等
のインヒビターが用いられているが使用インヒビターに
応じた最適−次結晶粒が従来の脱炭焼鈍法では得られな
かった。即ち従来法では脱炭可能な温度が約850℃近
傍に制限されるため、微細粒の混粒組織となって居り製
品板厚を薄手化する程此の影響を受け安定した2次結晶
組織が得られ難い問題があった。
Inhibitors such as Mn, ht#Ss, Sb*Sn+Cu, etc. have been used, but the optimal secondary crystal grains depending on the inhibitor used cannot be obtained by conventional decarburization annealing methods. In other words, in the conventional method, the temperature at which decarburization is possible is limited to around 850°C, resulting in a mixed grain structure of fine grains, and as the thickness of the product plate is reduced, the stable secondary crystal structure is affected by this. There was a problem that was difficult to solve.

(問題点を解決する為の手段) 本発明者等は上記の問題点を解決するため、最適な1次
結晶粒の生成と能率、コスト面より有利な脱炭焼鈍法を
種々検討の結果、脱炭焼鈍前の冷延板にアルカリ金属塩
水溶液を塗布、乾燥後、脱炭焼鈍を行えば、脱炭温度を
850〜1000℃と高めても脱炭可能で6D、時間も
従来の捧以下の短時間で所定のC量迄脱炭可能な事を見
出した。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have investigated various decarburization annealing methods that are advantageous in terms of optimum generation of primary crystal grains, efficiency, and cost. If an aqueous alkali metal salt solution is applied to a cold-rolled sheet before decarburization annealing, and after drying, decarburization annealing is performed, decarburization is possible even if the decarburization temperature is raised to 850 to 1000℃, 6D, and the time is less than that of conventional decarburization. It was discovered that it is possible to decarburize up to a predetermined amount of C in a short period of time.

以下1本発明の詳細な説明する・ 本発明者等は一方向性電磁鋼製品厚冷延板につき脱炭焼
鈍前にK Co  、 KCl t Na2CO3a 
NaC1等のアルカリ金属塩水溶液をアルカリ金属塩が
092〜397m”の耐着量となる様に塗布し、板温1
00℃に加熱し乾燥後、脱炭焼鈍炉で850〜1000
℃に温度を変えて、従来の高湿潤水素雰囲気であるPH
10/PH20,3〜0.5から低分圧比のPH10/
PH20,2以下まで変えて脱炭焼鈍を行った結果1.
温度を925〜950℃と高めれば脱炭時間が従来の捧
以下となシ、又PH2o/PHffiを0.2以下とす
れば表面に酸化層の生成なしに炭素20 ppm以下ま
での脱炭が出来る事を見出した。尚従来法の850℃脱
炭では焼鈍後の一次結晶粒径が不均一であるのに対し9
25〜950℃と高温での焼鈍では一次結晶粒径が均一
に生長し、今まで2次再結晶が不安定であった薄手の0
.18m厚材でも安定した2次再結晶が得られ九。又脱
炭雰囲気中の水蒸気分圧比を0.2以下としたために表
面酸化層の生成のない表面性状が得られた。
The present invention will be described in detail below. The present inventors applied K Co , KCl t Na2CO3a to a thick cold-rolled sheet of unidirectional electrical steel products before decarburization annealing.
Apply an aqueous solution of an alkali metal salt such as NaC1 so that the alkali metal salt has an adhesion resistance of 092 to 397 m'', and the plate temperature is 1.
After heating to 00℃ and drying, it is heated to 850 to 1000 in a decarburization annealing furnace.
℃ to change the temperature to PH, which is a conventional high humidity hydrogen atmosphere.
10/PH20, 3-0.5 to low partial pressure ratio PH10/
Results of decarburization annealing with pH changed to 20.2 or less 1.
If the temperature is increased to 925-950℃, the decarburization time will be less than that of conventional decarburization, and if PH2o/PHffi is less than 0.2, decarburization to less than 20 ppm of carbon can be achieved without forming an oxide layer on the surface. I found out what I can do. In addition, in the conventional method of decarburization at 850°C, the primary crystal grain size after annealing is non-uniform;
By annealing at high temperatures of 25 to 950°C, the primary crystal grain size grows uniformly, and the secondary recrystallization has been unstable until now.
.. Stable secondary recrystallization was obtained even with 18m thick material9. Furthermore, since the water vapor partial pressure ratio in the decarburizing atmosphere was set to 0.2 or less, a surface quality without the formation of a surface oxidation layer was obtained.

従来の脱炭焼鈍では、温度′Ik850℃以上に高める
と鋼板表面K SiO□等の酸化層が生成するので脱炭
が阻害され従りて高分圧雰囲気での長時間焼鈍を余儀な
くされてい友ものが、本発明に従ってアルカリ金属塩水
溶液を塗布し、而も低分圧雰囲気中での酸化防止により
、Cの拡散速度を高める高温脱炭、更には1次再結晶粒
の均一生長による2次再結晶粒の安定化という2つの問
題が一挙に解決できるようになり友。
In conventional decarburization annealing, when the temperature is raised to 850℃ or higher, an oxidized layer such as KSiO□ forms on the surface of the steel sheet, which inhibits decarburization and necessitates long-term annealing in a high partial pressure atmosphere. According to the present invention, an aqueous alkali metal salt solution is applied, and by preventing oxidation in a low partial pressure atmosphere, high-temperature decarburization that increases the diffusion rate of C, and furthermore, secondary decarburization due to uniform growth of primary recrystallized grains. The two problems of stabilizing recrystallized grains can now be solved at once.

本発明で使用される素材成分は通常の一方向性電磁鋼板
の取分でよく、熱間圧延、酸洗、熱延板焼鈍、冷延圧下
高等通常の手段のものでよく、製造装置についても従来
使用されている転炉、連続鋳造、熱間圧延、冷間圧延、
焼鈍用の装置でよい。
The material components used in the present invention may be those of ordinary unidirectional electrical steel sheets, and may be those of ordinary means such as hot rolling, pickling, hot rolling plate annealing, and cold rolling. Conventionally used converters, continuous casting, hot rolling, cold rolling,
Any equipment for annealing will suffice.

本発明において脱炭焼鈍温度の下限を850℃としたの
は、それ未満の温度では鋼中Cの拡散速度の低下で脱炭
速度が低下し脱炭時間が長くなり強制脱炭剤使用の効果
が十分生かせないからである。又上限温度1000℃に
ついては理論的には更に高温でも脱炭可能であるが現場
作業性の点から焼鈍炉のハースロール等の損傷が大とな
り作業性低下の問題があるために限定し友。
In the present invention, the lower limit of the decarburization annealing temperature is set to 850°C. The reason why the lower limit of the decarburization annealing temperature is 850°C is that at a temperature lower than that, the decarburization rate decreases due to a decrease in the diffusion rate of C in the steel, and the decarburization time becomes longer. This is because they cannot make full use of it. Regarding the upper limit temperature of 1000°C, decarburization is theoretically possible even at higher temperatures, but from the point of view of on-site workability, it is limited because it causes serious damage to the hearth rolls of the annealing furnace and reduces workability.

ま、た、アルカリ金属塩の鋼板表面への耐着量は0、2
1/m2未満では鋼板表面に均一に耐着しにくく、ま九
、317m”を越えてもそれ以上の効果が見られないの
で、0.2〜3V−の範囲に限定した。
Also, the amount of alkali metal salt adhering to the steel plate surface is 0.2.
If it is less than 1/m2, it will be difficult to adhere uniformly to the surface of the steel plate, and even if it exceeds 317 m'', no further effect will be seen, so it was limited to a range of 0.2 to 3 V-.

以下に実施例について述べる。Examples will be described below.

(実施例) C:  0.04811;; 、 81  :  3.
24111; 、 Mn  :  0.06 %、S 
二0.026チ金含む一方向性電磁鋼板を通常の手段で
2.2 m厚みに熱間圧延し、980℃で熱延板焼鈍を
行りたあと酸洗し0.65■厚及び0,50■厚に中間
圧延し、更に980℃で中間焼鈍し、0.65+wから
0.225vm (9m1t) 0.50 mから0.
18 m (7m1t)厚に夫々冷間圧延し製品板厚と
した。そのあと濃度2%のに2C03水溶液を薄く塗布
、乾燥し、鋼板表面にに、Co、を0.517m”耐着
せしめt後、脱炭焼鈍を行い表−1に示す様に20 p
pm以下のC迄脱炭を行った。表−1の中に従来の方法
も併せて示す。又同材料の一次再結晶顕微鏡組織を、第
1図に従来法と比較して示す。
(Example) C: 0.04811;; , 81: 3.
24111; , Mn: 0.06%, S
2. A unidirectional electrical steel sheet containing 0.026% gold was hot rolled to a thickness of 2.2m by normal means, hot rolled sheet annealed at 980°C, and then pickled to a thickness of 0.65mm and 0.02mm thick. , 50cm thick, and further intermediately annealed at 980°C, 0.65+w to 0.225vm (9m1t) 0.50m to 0.
Each sheet was cold-rolled to a thickness of 18 m (7 m1t) to obtain a product plate thickness. After that, a 2% concentration 2C03 aqueous solution was applied thinly, dried, and the steel plate surface was coated with Co to a resistance of 0.517 m, and then decarburized and annealed for 20 p as shown in Table 1.
Decarburization was performed until C was below pm. Table 1 also shows conventional methods. The primary recrystallization microscopic structure of the same material is shown in FIG. 1 in comparison with the conventional method.

表−1の結果から従来法では850℃で150秒脱炭に
対しに2CO3塗布材は、7m1t、9 mlt厚み材
共に920℃×60秒、950℃×30秒で十分脱炭が
行われておシ、従来材の焼鈍温度より70〜80t:以
上の温度で従来のA以下の時間で脱炭可能な事が判る。
From the results in Table 1, the conventional method decarburizes at 850°C for 150 seconds, but the 2CO3 coated material was sufficiently decarburized at 920°C for 60 seconds and 950°C for 30 seconds for both 7ml and 9ml thick materials. It can be seen that decarburization is possible at a temperature of 70 to 80 tons or more and in a time less than the conventional annealing temperature of A, compared to the annealing temperature of conventional materials.

又第1図については1次結晶粒径が従来の850℃の温
度での脱炭材に対し本発明材は均一な整粒となっている
。脱炭焼鈍後の試料に焼鈍分離剤としてMgOを塗布し
、1200℃X20Hr、1200℃X15Hrで純H
2雰囲気中で2次再結晶焼鈍を行い、そのあと850℃
で歪取焼鈍を行い磁性を測定し友。尚2次再結晶焼鈍で
は従来行っている露点調整焼鈍は省略した。結果を表−
2に示す。
Further, as shown in FIG. 1, the primary crystal grain size of the material of the present invention is uniform and regular, compared to the conventional decarburized material at a temperature of 850°C. MgO was applied as an annealing separator to the sample after decarburization annealing, and pure H
Perform secondary recrystallization annealing in 2 atmospheres, then 850℃
We performed strain relief annealing and measured the magnetism. In the secondary recrystallization annealing, the conventional dew point adjustment annealing was omitted. Display the results -
Shown in 2.

表−2の結果から0.180m厚み材に従来法を施し几
ものについては、1200℃X15Hr及び20 Hr
の仕上焼鈍材共に線状細粒が発生、又、0.225m厚
み材についても1200℃X 15 Hrの従来脱炭材
については線状細粒が発生し、磁性不良であった。
From the results in Table 2, for the conventional method applied to 0.180m thick material, 1200℃X15Hr and 20Hr
Linear fine grains were generated in both the finish annealed materials, and linear fine grains were generated in the 0.225 m thick material as well as in the conventional decarburized material heated at 1200°C x 15 hours, resulting in poor magnetic properties.

これに対し本発明法による0、180sIs、 0.2
25m材は共に2次再結晶組織が安定して得られ、艮好
な磁性を得ることが出来た。
In contrast, 0, 180sIs, 0.2 according to the method of the present invention
For both the 25m materials, a stable secondary recrystallized structure was obtained, and excellent magnetism was obtained.

(発明の効果) 本発明に従い冷延板へのアルカリ金属塩被膜利用の脱炭
焼鈍で高速脱炭が可能となり脱炭温度は最適な1次再結
晶組織に併せ自由に選択出来るので、2次再結晶の安定
化が図られ、2次再結晶不安定の薄手材一方向性電磁鋼
板の製造にも適用出来る。
(Effects of the Invention) According to the present invention, high-speed decarburization is possible by decarburization annealing using an alkali metal salt coating on a cold-rolled sheet, and the decarburization temperature can be freely selected according to the optimal primary recrystallization structure. This method stabilizes recrystallization and can also be applied to the production of thin grain-oriented electrical steel sheets that are unstable in secondary recrystallization.

又本発明に従えば、従来の2次再結晶焼鈍において、表
面に均一で微細なグラス被膜の生成を目的とする焼鈍分
離剤中に含まれる水分量も少くてよく、比較的低温域で
の露点調整時間も不要であジ、従来の一方向性電磁鋼板
の製造では連取されなかったコスト低域、能高向上に及
ぼす効果は極めて大きい。
In addition, according to the present invention, in conventional secondary recrystallization annealing, the amount of water contained in the annealing separating agent for the purpose of forming a uniform and fine glass coating on the surface can be small, and the water content can be reduced even in a relatively low temperature range. There is no need for dew point adjustment time, and the effect of reducing costs and improving capacity, which was not possible in the conventional production of unidirectional electrical steel sheets, is extremely large.

さらに品質面でも、2次再結晶焼鈍後塗布される焼鈍分
離剤中に磁性向上を目的に添加される諸元素の母材への
滲透は、グラス被膜がないために容易となりその効果を
発揮し易い。
Furthermore, in terms of quality, the elements added to the annealing separator applied after secondary recrystallization annealing for the purpose of improving magnetism permeate into the base material easily because there is no glass coating. easy.

また、製品板についても表面酸化層の防止により従来の
一方向性電磁鋼板では達成し得なかった鏡面仕上効果、
占積高の向上による磁性向上が期待される。
In addition, by preventing the surface oxidation layer on product sheets, we have achieved a mirror finish effect that could not be achieved with conventional unidirectional electrical steel sheets.
It is expected that magnetic properties will be improved by increasing the space height.

更には従来は困難とされた製品厚み0.50m等の厚手
材の製造も脱炭焼鈍の大幅な改善によシ可能となり、一
段と安価な一方向性電磁鋼板の製造も可能である。
Furthermore, it is now possible to manufacture thick materials with a product thickness of 0.50 m, which was previously considered difficult, by greatly improving decarburization annealing, and it is also possible to manufacture unidirectional electrical steel sheets at lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明材と従来材の脱炭焼鈍後の1次再結晶顕
微鏡組織を示す金属顕微鏡写真である。
FIG. 1 is a metallurgical micrograph showing the primary recrystallization microstructure of the present invention material and the conventional material after decarburization annealing.

Claims (1)

【特許請求の範囲】[Claims] 通常の一方向性電磁鋼板成分材を熱間圧延し、そのまま
酸洗或は熱延板焼鈍後酸洗し、1回の冷間圧延又は中間
焼鈍を含む2回以上の冷間圧延にて製品板厚とし脱炭焼
鈍、2次再結晶焼鈍及びコーチングを施すことよりなる
製造工程において、脱炭焼鈍前の鋼板にアルカリ金属塩
水溶液を塗布乾燥し、850〜1000℃の温度で脱炭
焼鈍することを特徴とする磁性の良好な一方向性電磁鋼
板の製造方法。
Normal unidirectional electrical steel sheet components are hot-rolled and then pickled as is or hot-rolled plate annealed and then pickled, followed by one cold rolling or two or more cold rollings including intermediate annealing to produce a product. In the manufacturing process, which involves adjusting the plate thickness, decarburizing annealing, secondary recrystallization annealing, and coating, an aqueous alkali metal salt solution is applied to the steel sheet before decarburizing annealing, drying, and decarburizing annealing at a temperature of 850 to 1000 ° C. A method for producing a unidirectional electrical steel sheet with good magnetic properties.
JP60028447A 1985-02-18 1985-02-18 Method for manufacturing unidirectional electrical steel sheet with good magnetism Pending JPS61190021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028447A JPS61190021A (en) 1985-02-18 1985-02-18 Method for manufacturing unidirectional electrical steel sheet with good magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028447A JPS61190021A (en) 1985-02-18 1985-02-18 Method for manufacturing unidirectional electrical steel sheet with good magnetism

Publications (1)

Publication Number Publication Date
JPS61190021A true JPS61190021A (en) 1986-08-23

Family

ID=12248924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028447A Pending JPS61190021A (en) 1985-02-18 1985-02-18 Method for manufacturing unidirectional electrical steel sheet with good magnetism

Country Status (1)

Country Link
JP (1) JPS61190021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509976A (en) * 1995-07-17 1996-04-23 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having a mirror surface and improved core loss
US5778734A (en) * 1995-04-12 1998-07-14 Toyota Jidosha Kabushiki Kaisha Fastening structure
US5807441A (en) * 1993-11-02 1998-09-15 Sumitomo Metal Industries, Ltd. Method of manufacturing a silicon steel sheet having improved magnetic characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466320A (en) * 1977-11-05 1979-05-28 Nippon Steel Corp High speed decarburization annealing method for electrical sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466320A (en) * 1977-11-05 1979-05-28 Nippon Steel Corp High speed decarburization annealing method for electrical sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807441A (en) * 1993-11-02 1998-09-15 Sumitomo Metal Industries, Ltd. Method of manufacturing a silicon steel sheet having improved magnetic characteristics
US5778734A (en) * 1995-04-12 1998-07-14 Toyota Jidosha Kabushiki Kaisha Fastening structure
US5509976A (en) * 1995-07-17 1996-04-23 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having a mirror surface and improved core loss

Similar Documents

Publication Publication Date Title
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
CN113302318B (en) Method for producing grain-oriented electrical steel sheet
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH08188824A (en) Ultra high magnetic flux density grain-oriented electrical steel sheet manufacturing method
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPS6059045A (en) Manufacturing method of unidirectional silicon steel plate with low iron loss value
JPS60197883A (en) Method for forming forsterite insulation film on unidirectional silicon steel sheet
JPS61190021A (en) Method for manufacturing unidirectional electrical steel sheet with good magnetism
JPS58217630A (en) Manufacturing method of thin, high magnetic flux density unidirectional electrical steel sheet with excellent core loss
JPS6332849B2 (en)
CN104313469B (en) A kind of Ultra-low carbon directional silicon steel and its manufacture method
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JPS61119620A (en) Annealing method of silicon steel strip by vertical continuous annealing furnace
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
JPS61190017A (en) Manufacturing method of unidirectional silicon steel plate with low iron loss
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JPH04235221A (en) Manufacturing method of grain-oriented electrical steel sheet with low core loss
JPH04350124A (en) Manufacturing method of thin unidirectional silicon steel plate
JPH02259016A (en) Manufacturing method of unidirectional electrical steel sheet without surface swelling defects
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS63176427A (en) Manufacturing method of unidirectional high silicon steel sheet
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon