[go: up one dir, main page]

JPS61188893A - Manufacture of thin film light emitting element - Google Patents

Manufacture of thin film light emitting element

Info

Publication number
JPS61188893A
JPS61188893A JP60028105A JP2810585A JPS61188893A JP S61188893 A JPS61188893 A JP S61188893A JP 60028105 A JP60028105 A JP 60028105A JP 2810585 A JP2810585 A JP 2810585A JP S61188893 A JPS61188893 A JP S61188893A
Authority
JP
Japan
Prior art keywords
film
light emitting
thin film
layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60028105A
Other languages
Japanese (ja)
Other versions
JPH0572078B2 (en
Inventor
山下 卓郎
小川 郁夫
佳弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60028105A priority Critical patent/JPS61188893A/en
Publication of JPS61188893A publication Critical patent/JPS61188893A/en
Priority to US07/023,912 priority patent/US4721631A/en
Publication of JPH0572078B2 publication Critical patent/JPH0572078B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野〉 本発明は、薄膜発光素子の製造技術に関し、特に薄膜発
光層の両主面を誘電体層で被覆した三層構造を1対の電
極間に介設し、交流電界の印加に応答してEL (El
ectro  Lum1nescence)発光を生起
する薄膜発光素子における誘電体層の製造方法に関する
ものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a technology for manufacturing a thin film light emitting device, and in particular, a method for manufacturing a thin film light emitting device in which a three-layer structure in which both main surfaces of a thin film light emitting layer are covered with dielectric layers is interposed between a pair of electrodes. and in response to the application of an AC electric field, EL (El
The present invention relates to a method for manufacturing a dielectric layer in a thin film light emitting device that generates light (electroluminescence).

〈従来技術とその問題点2 交流電界の印加に応答してEL光発光呈する薄膜発光層
を誘電体層でサンドイッチ状に挟設した三層構造薄膜発
光素子は高輝度特性を利用して穫々の表示装置や面発光
源等に利用されている。第1図はこの三層構造薄膜発光
素子の基本構造を示す構成図である。ガラス等の透光性
基板1上に透明電極、2が帯状に複数本配列され、この
上にSigh膜3とSi−N膜4から成る下部誘電体層
、ZnS発光母材にMn等の活性物質をドープした発光
層5.Si−N膜6から成る上部誘電体層が順次積層さ
れて三層構造部が構成されている。Si−N膜6上には
上記透明電極2と直交する方向に帯状のAtから成る背
面電極7が配列され、背面電極7と透明電極2は交流電
源8に接続されてこの薄膜発光素子が駆動される。
<Prior art and its problems 2 A three-layer structure thin-film light-emitting device in which a thin-film light-emitting layer that emits EL light in response to the application of an alternating current electric field is sandwiched between dielectric layers has been successfully developed by taking advantage of its high luminance characteristics. It is used in display devices, surface emitting sources, etc. FIG. 1 is a block diagram showing the basic structure of this three-layer thin film light emitting device. A plurality of transparent electrodes 2 are arranged in a band shape on a transparent substrate 1 made of glass or the like, and on top of this, a lower dielectric layer consisting of a Sigh film 3 and a Si-N film 4 is formed, and an active layer such as Mn is applied to a ZnS light-emitting base material. 5. Luminescent layer doped with substance. An upper dielectric layer made of a Si--N film 6 is sequentially laminated to form a three-layer structure. A strip-shaped back electrode 7 made of At is arranged on the Si-N film 6 in a direction perpendicular to the transparent electrode 2, and the back electrode 7 and the transparent electrode 2 are connected to an AC power source 8 to drive this thin film light emitting device. be done.

上記構造の薄膜発光素子において、上部誘電体層として
は、絶縁耐圧、誘電率、発光特性等の観点から、非晶質
の絶縁膜として知られているSi−N(窒化シリコン)
膜あるいはS i−N膜とAtzO3(アルミナ)膜の
複合膜が用いられている。このSi−N膜は、通常Si
 (シリコン)ターゲットをN2(窒素)ガスでスパッ
タリングして成膜され、SisN4を基本形として形成
される。
In the thin film light emitting device having the above structure, the upper dielectric layer is made of Si-N (silicon nitride), which is known as an amorphous insulating film from the viewpoint of dielectric strength, dielectric constant, light emission characteristics, etc.
A film or a composite film of an Si-N film and an AtzO3 (alumina) film is used. This Si-N film is usually made of Si
The film is formed by sputtering a (silicon) target with N2 (nitrogen) gas, and is formed using SisN4 as its basic shape.

しかしながら、このようにして得られたSi−N膜は次
のような欠点を内包している。
However, the Si-N film obtained in this way has the following drawbacks.

(1)発光層上の微小突起や異物に対するカバレージが
悪い。
(1) Poor coverage of microprotrusions and foreign substances on the light emitting layer.

(2)成膜速度が〜200A/分と遅く、また高真空を
必要とするため、装置コストが高くなる。
(2) The film formation rate is slow at ~200 A/min, and high vacuum is required, resulting in high equipment costs.

上記(1)の欠点によって、発光層とSi−N膜との界
面に湿気が浸透し易く、層間剥離の原因となる。
Due to the drawback (1) above, moisture easily permeates the interface between the light emitting layer and the Si--N film, causing delamination.

また(2)の欠点は量産性を阻害する要因となる。Furthermore, the drawback (2) becomes a factor that hinders mass production.

Si−N膜の成膜法としては、上記スパッタリング法以
外にプラズマCVD法を用いることができる。プラズマ
CVD法を用いる場合には、通常SiHn(シラン)と
NH3(アンモニア)の混合ガスあるいは“必要に応じ
てこれに若干のN2ガスをキャリアガスとして加えた混
合ガスよpsi−Nの成膜が行なわれる。得られるS 
i−N膜はカバレージが良好で成膜速度も速いという利
点を有するが、反面SiH4とNHsの混合ガス系では
原料ガス中に含まれるH2(水素)の量が多く、Si−
N膜中に多量のS i −Hn +N−Hnの如き水素
化物が含有される結果となる。またプラズマ中で生成さ
れる水素ラジカルも多く、この水素ラジカルによって下
地の発光層がダメージを受ける。即ち、水素ラジカルと
発光層母材のZnSが反応してZnS発光層表面のS(
イオウ)がH2Sとなって奪われ、発光層表面にS−ペ
イキャンシイ(vacancy )が形成される。その
結果、SiH4とNH3の混合ガスを用いたプラズマC
VD法による5t−N膜を上部誘電体層とした薄膜発光
素子は、発光輝度が低下することとなる。
As a method for forming the Si-N film, a plasma CVD method can be used in addition to the sputtering method described above. When using the plasma CVD method, a psi-N film is usually formed using a mixed gas of SiHn (silane) and NH3 (ammonia), or a mixed gas in which a small amount of N2 gas is added as a carrier gas if necessary. carried out. Obtained S
The i-N film has the advantage of good coverage and fast film formation speed, but on the other hand, in a mixed gas system of SiH4 and NHs, the amount of H2 (hydrogen) contained in the raw material gas is large, and the Si-
This results in a large amount of hydrides such as S i -Hn +N-Hn being contained in the N film. Furthermore, many hydrogen radicals are generated in the plasma, and the underlying light-emitting layer is damaged by these hydrogen radicals. That is, hydrogen radicals react with ZnS, which is the base material of the light emitting layer, and S(
Sulfur) is converted into H2S and taken away, and an S-vacancy is formed on the surface of the light emitting layer. As a result, plasma C using a mixed gas of SiH4 and NH3
A thin film light emitting device using a 5t-N film formed by the VD method as an upper dielectric layer has a reduced luminance.

〈発明の目的及び概要〉 本発明は上述の問題点に鑑み、発光層を下地層としてこ
の上に被覆される誘電体層を5t−N膜で形成する際に
、SiH4(シラン)とN 2 (窒素)の混合ガスを
用いたプラズマCVD法を利用して5t−N膜を成膜す
ることによシ、耐湿性、量産性及び輝度特性の諸条件を
満足する薄膜発光素子を作製することのできる製造技術
を提供することを目的とする。
<Objective and Summary of the Invention> In view of the above-mentioned problems, the present invention uses SiH4 (silane) and N2 when forming a dielectric layer coated on the light-emitting layer as a base layer with a 5t-N film. By forming a 5t-N film using a plasma CVD method using a mixed gas of (nitrogen), a thin film light emitting device that satisfies various conditions of moisture resistance, mass production, and brightness characteristics is manufactured. The purpose is to provide manufacturing technology that enables

〈実施例〉 以下、再度第1図を参照しながら本発明の1実施例につ
いて詳説する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to FIG. 1 again.

ガラス基板l上に透明導電膜CITO膜)を帯状成形し
た複数本の透明電極2をパターン形成する。次に、スパ
ッタリング法または真空蒸着法等fsi0z膜3を厚さ
200〜80oA程度に堆積し、この上に更にスパッタ
リング法でSi−N膜4を厚さ1000〜3000A程
度積層して下部誘電体層とする。SiOz膜3は下部誘
電体層と透明電極2間の密着力を強固にするために介層
されるものである。Si−N膜種上には発光層5を層設
する。この発光層5の形成は、発光層5の母材となるZ
nSに発光センターとなるMn + Dy l Tmあ
るいはこれらの化合物を添加した焼結ベレットを電子ビ
ーム蒸着することにより行なわれる。その膜厚は600
0〜8000A程度に設定し、成膜後真空アニールする
。次にこの発光層5を下地層としてこの上にSi−N膜
6から成る上部誘電体層を1500〜3000A程度の
厚さで重畳形成し、発光層5の両主面を上下部誘電体層
で挟設した三層構造部を作製する。
A plurality of transparent electrodes 2 formed by forming a transparent conductive film (CITO film) into a band shape are formed on a glass substrate l. Next, an fsi0z film 3 is deposited to a thickness of about 200 to 80oA using a sputtering method or a vacuum evaporation method, and an Si-N film 4 is further laminated to a thickness of about 1000 to 3000A by a sputtering method on top of this to form a lower dielectric layer. shall be. The SiOz film 3 is interposed to strengthen the adhesion between the lower dielectric layer and the transparent electrode 2. A light emitting layer 5 is provided on the Si--N film. The formation of this light-emitting layer 5 involves the use of Z, which is the base material of the light-emitting layer 5.
This is carried out by electron beam evaporation of a sintered pellet in which Mn + Dy l Tm or a compound thereof is added to nS to serve as a luminescent center. Its film thickness is 600
The voltage is set at about 0 to 8000 A, and vacuum annealing is performed after film formation. Next, an upper dielectric layer made of a Si-N film 6 is formed to have a thickness of about 1500 to 3000 Å on this light emitting layer 5 as a base layer, and both main surfaces of the light emitting layer 5 are covered with the upper and lower dielectric layers. A three-layer structure sandwiched between the two layers is prepared.

ここで、上部誘電体層となるSi−N膜6は5t)i4
(シラン)とN2(窒素)の混合ガスを用いたプラズマ
CVD法によって成膜する。SiH4とN2の混合ガス
を原料ガスとするプラズマCVD法では、原料ガス中の
水素源がSiH4のみであるため、プラズマ中で生成す
る水素ラジカルの量が少なく、従来のS i H4NH
3系原料ガスで見られた様なZnS発光層5表面のダメ
ージは抑制される。従って発光層5の発光輝度特性は高
く維持される。
Here, the Si-N film 6 serving as the upper dielectric layer is 5t)i4
The film is formed by a plasma CVD method using a mixed gas of (silane) and N2 (nitrogen). In the plasma CVD method using a mixed gas of SiH4 and N2 as a raw material gas, the hydrogen source in the raw material gas is only SiH4, so the amount of hydrogen radicals generated in the plasma is small, and compared to the conventional Si H4NH
Damage to the surface of the ZnS light emitting layer 5, which was observed with the 3-based source gas, is suppressed. Therefore, the emission brightness characteristics of the light emitting layer 5 are maintained high.

また、SiH4N2系原料ガスを用いたプラズマCVD
法による5t−N膜6もカバレージが良好で膜欠陥も少
なく耐湿保護膜として優れていることが確かめられた。
In addition, plasma CVD using SiH4N2-based raw material gas
It was confirmed that the 5t-N film 6 produced by the method also had good coverage, few film defects, and was excellent as a moisture-resistant protective film.

成膜速度も200〜300A/分程度の値を有しスパッ
タリング法の成膜速度よシも速い。この成膜速度は装置
の改良や条件の変更によって更に速くすることが可能で
ある。
The film forming rate is also about 200 to 300 A/min, which is faster than that of the sputtering method. This film formation rate can be further increased by improving the equipment or changing the conditions.

上記方法によって成膜されたSi−N膜6は膜欠陥が少
ないため、この上にA /−20a等の金属酸化膜を重
畳させる必要がなく、直接At等の背面電極7をパター
ン形成することができる。背面電極7はAt等の金属膜
を成膜した後、透明電極2と直交する方向に帯状成形さ
れ、透明電極2とともにマトリックス電極構造を構成す
る。背面電極7と透明電極2は交流電源8に接続されて
発光層5に交流電界を印加し、この交流電界の印加に応
答して発光層5よシEL発光が生起される。
Since the Si-N film 6 formed by the above method has few film defects, there is no need to superimpose a metal oxide film such as A/-20a on it, and a back electrode 7 such as At can be directly patterned. I can do it. After forming a metal film such as At, the back electrode 7 is formed into a strip shape in a direction perpendicular to the transparent electrode 2, and forms a matrix electrode structure together with the transparent electrode 2. The back electrode 7 and the transparent electrode 2 are connected to an AC power source 8 to apply an AC electric field to the light emitting layer 5, and in response to the application of the AC electric field, the light emitting layer 5 generates EL light.

第2図は薄膜発光素子の印加電圧対発光輝度特性を示す
特性図である。図中の実線■はSiH4−N2系原料ガ
スを用いてプラズマCVD法でSi−N膜6を成膜した
上記実施例に対応する薄膜発光素子の特性曲線である。
FIG. 2 is a characteristic diagram showing the applied voltage versus emission brightness characteristic of the thin film light emitting device. The solid line (■) in the figure is a characteristic curve of the thin film light emitting device corresponding to the above embodiment in which the Si-N film 6 was formed by plasma CVD using SiH4-N2 based source gas.

破線■はS i H4NHs系原料ガスを用いてプラズ
マCVD法で5t−N膜6を成膜した薄膜発光素子の特
性曲線である。一点鎖線■はスパッタリング法によりS
i−N膜6を成膜した薄膜発光素子の特性曲線である。
The broken line (■) is a characteristic curve of a thin film light emitting device in which a 5t-N film 6 was formed by plasma CVD using SiH4NHs-based raw material gas. The dashed line ■ is S by the sputtering method.
It is a characteristic curve of a thin film light emitting device in which an i-N film 6 is formed.

Si−N膜6以外の素子作製条件は全て同一である。ま
た薄膜発光素子の駆動条件は交流電界100Hz、40
μの対称パルス駆動とした。上記実施例によシ作製され
た薄膜発光素子はスパッタリング法によシSi−N膜6
を成膜した素子と同程度の輝度特性を呈し、5IH4N
H3系原料ガスを用いてプラズマCVD法によりSi−
N膜6を成膜した薄膜発光素子よシはるかに優れている
All device manufacturing conditions other than the Si-N film 6 are the same. The driving conditions for the thin film light emitting device are AC electric field of 100Hz, 40Hz.
It was driven by a symmetrical pulse of μ. The thin film light emitting device manufactured according to the above embodiment was manufactured using a Si-N film 6 by a sputtering method.
5IH4N
Si-
It is far superior to the thin film light emitting device in which the N film 6 is formed.

尚、上記実施例において、プラズマCVD法による5t
−N膜6の成膜中にN20を導入して上部誘電体層をS
i−0−N(シリコンオキシナイトライド)膜に置き換
えても同様の効果を得ることができる。
In addition, in the above example, 5t by plasma CVD method
-N20 is introduced during the formation of the N film 6 to form the upper dielectric layer.
A similar effect can be obtained by replacing it with an i-0-N (silicon oxynitride) film.

〈発明の効果〉 以上詳説した如く、本発明によれば発光層に対するカバ
レージが良好な誘電体層を有し耐湿性の顕著なかつ発光
輝度特性の高い薄膜発光素子を作製することができる。
<Effects of the Invention> As explained in detail above, according to the present invention, it is possible to produce a thin film light-emitting element having a dielectric layer with good coverage of the light-emitting layer, excellent moisture resistance, and high luminance characteristics.

また、成膜速度も向上するため量産に適し、安価な薄膜
発光素子が得られる。
Furthermore, since the film formation rate is improved, an inexpensive thin film light emitting device suitable for mass production can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜発光素子の基本的構造を示す構成図である
。第2図は薄膜発光素子の印加電圧対発光輝度特性を示
す特性説明図である。
FIG. 1 is a block diagram showing the basic structure of a thin film light emitting device. FIG. 2 is a characteristic explanatory diagram showing applied voltage versus luminance luminance characteristics of a thin film light emitting device.

Claims (1)

【特許請求の範囲】[Claims]  1.電界印加に応答してEL発光を生起する発光層と
該発光層を被覆する誘電体層とを1対の電極間に介設し
て成る薄膜発光素子の製造方法において、前記発光層を
下地層としてシランと窒素の混合ガスを原料にプラズマ
CVD法でSi−N膜を堆積し、該Si−N膜を前記誘
電体層としたことを特徴とする薄膜発光素子の製造方法
1. A method for manufacturing a thin film light emitting device comprising a light emitting layer that generates EL light emission in response to the application of an electric field and a dielectric layer covering the light emitting layer interposed between a pair of electrodes, wherein the light emitting layer is formed as a base layer. A method for manufacturing a thin film light emitting device, characterized in that an Si--N film is deposited by plasma CVD using a mixed gas of silane and nitrogen as a raw material, and the Si--N film is used as the dielectric layer.
JP60028105A 1985-02-14 1985-02-14 Manufacture of thin film light emitting element Granted JPS61188893A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60028105A JPS61188893A (en) 1985-02-14 1985-02-14 Manufacture of thin film light emitting element
US07/023,912 US4721631A (en) 1985-02-14 1987-03-09 Method of manufacturing thin-film electroluminescent display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028105A JPS61188893A (en) 1985-02-14 1985-02-14 Manufacture of thin film light emitting element

Publications (2)

Publication Number Publication Date
JPS61188893A true JPS61188893A (en) 1986-08-22
JPH0572078B2 JPH0572078B2 (en) 1993-10-08

Family

ID=12239528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028105A Granted JPS61188893A (en) 1985-02-14 1985-02-14 Manufacture of thin film light emitting element

Country Status (1)

Country Link
JP (1) JPS61188893A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771019B1 (en) 1999-05-14 2004-08-03 Ifire Technology, Inc. Electroluminescent laminate with patterned phosphor structure and thick film dielectric with improved dielectric properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202687A (en) * 1984-03-27 1985-10-14 日本電気株式会社 Thin film electroluminescent element
JPS60253193A (en) * 1984-05-29 1985-12-13 アルプス電気株式会社 Electroluminescence unit of amorphous silicon and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202687A (en) * 1984-03-27 1985-10-14 日本電気株式会社 Thin film electroluminescent element
JPS60253193A (en) * 1984-05-29 1985-12-13 アルプス電気株式会社 Electroluminescence unit of amorphous silicon and method of producing same

Also Published As

Publication number Publication date
JPH0572078B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JPS6174293A (en) Manufacture of thin film el element
JPS61188893A (en) Manufacture of thin film light emitting element
JPS61188891A (en) Manufacture of thin film light emitting element
US7811678B2 (en) Low process temperature thin film phosphor for electroluminescent displays
JPS62170190A (en) Manufacture of thin film light emitting device
JPS62170191A (en) Manufacture of thin film light emitting device
JPS61224290A (en) Thin film el element
JPS6396895A (en) Thin film el device
JPS5829880A (en) Electric field luminescent element
JPS5829881A (en) Electric field luminescent element
JPS62119896A (en) Display device
JPS60100398A (en) Thin film light emitting element
JPS60172196A (en) Electroluminescent element and method of producing same
JPS59181682A (en) Light emitting element
JPS6158194A (en) Method of producing zns:mn thin film el element
JPS5832393A (en) Thin film electric field light emitting element
JPH05182768A (en) Thin film el element
JPH03187191A (en) Thin film EL element
JPS6237352Y2 (en)
JPS59157994A (en) Semiconductor element
JPS59114791A (en) Thin film el element
JPS62115693A (en) Thin film el display device
JPS62154595A (en) Light emitting device
JPS61203592A (en) Manufacture of el element
JPS63250090A (en) Thin film el panel