[go: up one dir, main page]

JPS61186332A - Production of cyclohexylbenzene - Google Patents

Production of cyclohexylbenzene

Info

Publication number
JPS61186332A
JPS61186332A JP60025056A JP2505685A JPS61186332A JP S61186332 A JPS61186332 A JP S61186332A JP 60025056 A JP60025056 A JP 60025056A JP 2505685 A JP2505685 A JP 2505685A JP S61186332 A JPS61186332 A JP S61186332A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
silica alumina
benzene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60025056A
Other languages
Japanese (ja)
Other versions
JPH0321527B2 (en
Inventor
Kazuo Shimizu
一男 清水
Shuichi Niwa
修一 丹羽
Fujio Mizukami
富士夫 水上
Toru Tsuchiya
徹 土屋
Juichi Imamura
今村 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60025056A priority Critical patent/JPS61186332A/en
Publication of JPS61186332A publication Critical patent/JPS61186332A/en
Publication of JPH0321527B2 publication Critical patent/JPH0321527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To improve the selectivity of the objective compound in the hydrogenative condensation of benzene, by using a catalyst obtained by supporting nickel and iron and/or manganese on a carrier composed of an HY-type zeolite diluted with silica alumina. CONSTITUTION:Nickel and a cocatalyst consisting of iron and/or manganese are supported on an inexpensive carrier obtained by diluting expensive HY-type zeolite with silica alumina, e.g. commercially available silica alumina for FCC to obtain a catalyst. The amount of the nickel is 0.5-20wt%, especially 1-10wt% of the carrier, and that of the cocatalyst is 1-50wt%, especially 3-30wt% of nickel. Cyclohexylbenzene can be produced in a remarkably improved selectivity, suppressing the production of cyclohexane, by carrying out the hydrogenative condensation of benzene in the presence of the above catalyst. The rate of reaction as well as the selectivity can be improved remarkably by adding a dehydrative dessicant to the reaction system.

Description

【発明の詳細な説明】 本発明はベンゼンを水素化縮合することによりりiぞ 一、シクロヘキシルベンゼンを製造する方法に関する。[Detailed description of the invention] The present invention can be achieved by hydrogenation condensation of benzene. 1. A method for producing cyclohexylbenzene.

)パ従来、ベンゼンの水素化縮合によるシクロヘキシル
ベンゼンの製造方法としては、第8族金属を固体酸系担
体(シリカアルミナまたはHY型ゼオライト)に担持す
る方法(J、 Catalysis 、 13 。
) Conventionally, as a method for producing cyclohexylbenzene by hydrogenation condensation of benzene, a method of supporting a Group 8 metal on a solid acid support (silica alumina or HY type zeolite) (J, Catalysis, 13).

385 (1969)、石油誌18.(IJ、25 (
1976)や特開昭53−108952)、また、担持
パラジウムと熔融塩(NaC6−AIcI3) t”用
いる方法(Chem、 Pha−rm、 Bull、 
、29 、(1)、 15 (1981) )、さらに
、水素化触媒とへテロポリ酸を担体に担持した触媒を用
いる方法(U、 S、 P、 3,153,678) 
、また、高価なHYゼオライトをシリカアルミナで希釈
した担体にコバルト、ニッケル、パラジウムを担持した
触媒を用いる方法(U、 S、 P、 3,760,0
17)等が知られている。しかし、これらはシクロヘキ
サンやジシクロヘキシルベンゼンの生成が多く、シクロ
ヘキシルベンゼンの選択率が低いとか、反応速度が小さ
いとか、さらに、触媒の調製に高価な試薬ヲ用いるなど
、工業的なシクロヘキシルベンゼンの製造方法としては
満足すべき方法とは言えない。
385 (1969), Petroleum Magazine 18. (IJ, 25 (
1976) and JP-A-53-108952), and a method using supported palladium and molten salt (NaC6-AIcI3) (Chem, Pha-rm, Bull,
, 29, (1), 15 (1981)), and a method using a catalyst in which a hydrogenation catalyst and a heteropolyacid are supported on a carrier (U, S, P, 3,153,678)
, and a method using a catalyst in which cobalt, nickel, and palladium are supported on a carrier prepared by diluting expensive HY zeolite with silica alumina (U, S, P, 3,760,0
17) etc. are known. However, these methods produce a large amount of cyclohexane and dicyclohexylbenzene, have low selectivity for cyclohexylbenzene, have a slow reaction rate, and use expensive reagents to prepare the catalyst. cannot be said to be a satisfactory method.

本発明者らは、これらの製造方法の欠点を克服するため
、種々検討を重ねた結果、高価なHY型ゼオライトをシ
リカアルミナで希釈した安価な市販のFCC用シリカア
ルミナに、ニッケルを担持させる際、こnに鉄またはマ
ンガンを加えると、シクロヘキサンの生成を抑え、シク
ロヘキシルベンゼンの選択率を著しく向上させ得ること
を見い出し、さらに改良を重ねて、反応系に脱水・乾燥
剤を共存させると、反応速度、シクロヘキシルベンゼン
選択率ともに著しく改善されることを見い出した。本発
明はこの知見に基づいてなされるに到ったものである。
In order to overcome the drawbacks of these manufacturing methods, the present inventors have conducted various studies and found that when nickel is supported on inexpensive commercially available silica alumina for FCC, which is made by diluting expensive HY type zeolite with silica alumina. It was discovered that adding iron or manganese to this can suppress the formation of cyclohexane and significantly improve the selectivity of cyclohexylbenzene.Further improvements were made, and when a dehydrating/drying agent was co-existed in the reaction system, the reaction It was found that both speed and cyclohexylbenzene selectivity were significantly improved. The present invention has been made based on this knowledge.

すなわち、本発明はベンゼンと水素を反応させるにあた
り、HY型ゼオライトをシリカアルミナで希釈した担体
に、ニッケルとともに鉄またはマンガンの内から選ばれ
た少なくとも一種の金属を担持した触媒の存在下に反応
させることを特徴とするシクロヘキシルベンゼンの製造
方法を提供するものである。
That is, in the present invention, when reacting benzene and hydrogen, the reaction is carried out in the presence of a catalyst in which HY type zeolite is supported on a carrier prepared by diluting HY type zeolite with silica alumina, and at least one metal selected from iron or manganese is supported along with nickel. The present invention provides a method for producing cyclohexylbenzene characterized by the following.

本発明方法の触媒は、種々の方法に従って調製出来るが
、代表的な例としては、ニッケル塩を鉄′塩またはマン
ガン塩とともに、水または酢酸等の溶媒に溶解もしくは
懸濁させた液に、上記担体物質を浸漬することにより金
属成分を担体上に付着せしめ、乾燥し、高温で水素化す
るか、あるいは、不活性ガス中で焼成することにより熱
分解するなどの手段を用いてもよい。触媒の水素化・焼
成温度としては、200〜600℃が用いられ、好しく
け、250〜500℃である。
The catalyst of the present invention can be prepared according to various methods, but as a typical example, a nickel salt is dissolved or suspended together with an iron salt or a manganese salt in a solvent such as water or acetic acid, and then the above-mentioned method is added. Means such as depositing the metal component on the carrier by immersing the carrier material, drying and hydrogenating at high temperature, or pyrolyzing by firing in an inert gas may be used. The hydrogenation/calcination temperature of the catalyst is 200 to 600°C, preferably 250 to 500°C.

るか、懸濁するものは使用出来る。ニッケルの担持量は
担体重量の0.5〜20wt%が用いられ、好ましくは
、1〜lQwt%であり、鉄またはマンガン成分はニッ
ケル量の1〜50 wt%が用いられ、好ましくは、3
〜3Qwtチである。
or suspension can be used. The amount of nickel supported is 0.5 to 20 wt% of the carrier weight, preferably 1 to 1Qwt%, and the iron or manganese component is 1 to 50 wt% of the nickel amount, preferably 3
~3Qwt Chi.

本発明の方法における触媒の担体にはHY型ゼオライト
をシリカアルミナで希釈したもの、例え本発明の方法を
実施する場合、反応系にゼオライト、シリカゲル、アル
ミナゲル等の脱水・乾燥剤を添加出来る。この場合、脱
水・乾燥剤に接触させたベンゼンを用いてもよい。触媒
と脱水・乾燥剤を共存させると、反応速度を上げたり、
シクロヘキシルベンゼンの選択率を著しく向上させ得る
(実施例2.3と比較例1の比較)。脱水・乾燥剤とし
ては、工業的に乾燥剤として用いられるものはいづれも
用いられるが、モレキュラー・シーブIOX、13X(
または、その相当品)、シリカゲル、アルミナゲル等が
特によい。使用量は0゜05〜5 fi/2017ベン
ゼンの範囲が用いられ、0,1〜2g/209ベンゼン
が好ましい。
The catalyst carrier in the method of the present invention is HY type zeolite diluted with silica alumina. For example, when carrying out the method of the present invention, a dehydrating/desiccating agent such as zeolite, silica gel, alumina gel, etc. can be added to the reaction system. In this case, benzene brought into contact with a dehydrating/desiccating agent may be used. When a catalyst and a dehydrating/desiccant agent coexist, the reaction rate can be increased,
The selectivity of cyclohexylbenzene can be significantly improved (comparison of Example 2.3 and Comparative Example 1). As a dehydrating/desiccating agent, any desiccant that is used industrially can be used, but Molecular Sieve IOX, 13X (
or its equivalent), silica gel, alumina gel, etc. are particularly good. The amount used is in the range of 0.05 to 5 fi/2017 benzene, preferably 0.1 to 2 g/209 benzene.

本発明の方法は無溶媒でも溶媒中でも行われ得る。シク
ロヘキサン等の反応に不活性な溶媒はいづれも用いられ
る。原料のベンゼンは出来る限り水分含量の少ないもの
が望ましい。
The method of the invention can be carried out without or in a solvent. Any solvent inert to the reaction, such as cyclohexane, can be used. It is desirable that the raw material benzene has as little water content as possible.

本発明の方法において、反応温度は通常50〜に9/a
n2である。反応温度が低いとシクロヘキサンの選択率
が高くなり、また反応温度が高すぎると、反応生成物の
分解が起って不利である。
In the method of the present invention, the reaction temperature is usually 50 to 9/a
It is n2. If the reaction temperature is low, the selectivity of cyclohexane will be high, and if the reaction temperature is too high, decomposition of the reaction product will occur, which is disadvantageous.

次に、本発明を実施例に基づき、さらに詳細に説明する
Next, the present invention will be explained in more detail based on examples.

実施例1゜ Ni (NO3)2 ・6H200,1486gとFe
Cl20.0113gを約20.9の水に均一に溶解し
、これに市販のFCC用シリカアルミナ(触媒化成、M
RZ−204)1gを加え、30分間攪拌し、ロータリ
ー・バキューム・エバポレーターで水分を蒸発させ、1
10℃で20分間乾燥した後、焼成管に移し、水素気流
100mA!/min 、 、325℃でl hr還元
して触媒を調製した。
Example 1゜Ni (NO3)2 6H200, 1486g and Fe
20.0113 g of Cl was uniformly dissolved in approximately 20.9 g of water, and commercially available silica alumina for FCC (Catalyst Kasei, M
Add 1 g of RZ-204), stir for 30 minutes, evaporate water using a rotary vacuum evaporator,
After drying at 10°C for 20 minutes, transfer to a firing tube and apply a hydrogen flow of 100mA! The catalyst was prepared by reduction at 325° C./min for 1 hr.

この触媒 (3%Ni−0,5%Fe−シリカアルミナ
)0.5gを、ガス導入口、圧力計、温度計挿入管を備
えた内容積80 mlの5US316製オートクレーブ
に、ベンゼン20gとテフロンコート攪拌子と共に入ト
楔、内部を窒素で置換した後、水素ガスを室温で一30
kg/cIrL2まで圧入した。マグネチック・スター
ラ・−で攪拌しながら、反応温度200℃まで加熱し、
反応温度到達時をもって反応開始とした。反応時間68
分で反応圧22kg/cIrL2まで低下した。反応液
を冷却し分析した結果、シクロヘキシルベンゼン(CH
B) 5.88.!i’、シクロヘキサン(CH) 0
.60 gを得、CHBU”)/CHU)は9.8であ
った。
0.5 g of this catalyst (3% Ni-0.5% Fe-silica alumina) was placed in a 5US316 autoclave with an internal volume of 80 ml equipped with a gas inlet, a pressure gauge, and a thermometer insertion tube, and 20 g of benzene and Teflon coated. After replacing the inside of the wedge with a stirrer with nitrogen, hydrogen gas was heated at room temperature for 30 minutes.
It was press-fitted up to kg/cIrL2. While stirring with a magnetic stirrer, heat to a reaction temperature of 200°C,
The reaction was started when the reaction temperature was reached. reaction time 68
The reaction pressure decreased to 22 kg/cIrL2 in minutes. As a result of cooling and analyzing the reaction solution, cyclohexylbenzene (CH
B) 5.88. ! i', cyclohexane (CH) 0
.. 60 g was obtained, and CHBU'')/CHU) was 9.8.

比較例1゜ 実施例1でFeC6zを加えずに、Ni(NO3)2 
’ 6 H2O0,1734gだけをF’CC用シリカ
シリカアルミナし、同様に調製した触媒(3,5%N1
−シリカアルミナ)0.5gを用い、実施例1の方法で
90分間反応を行わせ、反応圧25 klil/cm2
まで低下した。反応液を分析した結果、CHB4.83
,9.CHl、21を得、CHB(g) /CH(、f
)は4.0であった。ニッケル担持量3.0%でも反応
速度及びCHBの選択率に有意の差は認められなかった
Comparative Example 1゜Ni(NO3)2 without adding FeC6z in Example 1
'6 Only 1734 g of H2O was treated with silica silica alumina for F'CC, and a similarly prepared catalyst (3.5% N1
- 0.5 g of silica alumina) was reacted for 90 minutes according to the method of Example 1, and the reaction pressure was 25 klil/cm2.
It dropped to . As a result of analyzing the reaction solution, CHB4.83
,9. CHl, 21 was obtained, CHB(g) /CH(,f
) was 4.0. Even when the amount of nickel supported was 3.0%, no significant difference was observed in the reaction rate and CHB selectivity.

実施例2゜ 実施例1で調製した触媒(3%Ni−0,5%Fe−シ
リ力アルミナ)0.5gに、脱水・乾燥剤としてモレキ
ュラー・シープ13X1.9を加え、実施例1と同様に
反応させ、反応時間35分で、反応圧22kg/cWL
2まで低下した。反応液を分析しCHB5.77、V、
CHo、69gを得、CHB Cg> /CHU’)は
8.4であった。
Example 2゜To 0.5 g of the catalyst prepared in Example 1 (3% Ni-0.5% Fe-silicate alumina), Molecular Sheep 13X1.9 was added as a dehydrating and desiccant agent, and the same procedure as in Example 1 was carried out. The reaction time was 35 minutes, and the reaction pressure was 22 kg/cWL.
It dropped to 2. The reaction solution was analyzed and CHB5.77, V,
69 g of CHo was obtained, and CHB Cg>/CHU') was 8.4.

実施例3゜ N’ (NO3)2 ・6 H2O0,1486fi、
Mn (OCOCH3) −6H,OO,0223gを
実施例1と同様に担持させて調製した触媒(3% Ni
−0,5チMn−シリカアルミナ)0.5gと450℃
で乾燥したゼオラムF9(東洋曹達製)を用い、実施例
1の方法で90分反応させ、反応圧が23kg/crn
2まで低下した。反応液を分析し、CHB4.90,9
.CHo、73gを得、CHB Cf!> /CHCl
!’)は6.7であった。
Example 3゜N' (NO3)2 ・6 H2O0,1486fi,
A catalyst (3% Ni
-0.5g of Mn-silica alumina) and 450℃
Using Zeolum F9 (manufactured by Toyo Soda) dried in
It dropped to 2. The reaction solution was analyzed and CHB4.90.9
.. CHo, obtained 73g, CHB Cf! > /CHCl
! ') was 6.7.

比較例1.2と比較して、反応速度の増加や、シクロヘ
キシルベンゼン選択率の向上に対し、鉄やマンガンの効
果、および脱水・乾燥剤の効果は明らかである。
Compared with Comparative Example 1.2, the effects of iron and manganese, and the effects of dehydration and desiccant agents on increasing the reaction rate and improving the cyclohexylbenzene selectivity are obvious.

Claims (2)

【特許請求の範囲】[Claims] (1)HY型ゼオライトをシリカアルミナで希釈した担
体に、ニッケルと、さらに、助触媒として鉄またはマン
ガンの内から選ばれた少くとも一種の金属とを担持した
触媒の存在下に、ベンゼンを水素化縮合することを特徴
とするシクロヘキシルベンゼンの製造方法。
(1) Benzene is hydrogenated in the presence of a catalyst that supports nickel and at least one metal selected from iron or manganese as a co-catalyst on a carrier prepared by diluting HY type zeolite with silica alumina. A method for producing cyclohexylbenzene, which comprises chemical condensation.
(2)HY型ゼオライトをシリカアルミナで希釈した担
体に、ニッケルと、さらに、助触媒として鉄またはマン
ガンの内から選ばれた少くとも一種の金属とを担持した
触媒の存在下に、ベンゼンを水素化縮合させるにあたり
、反応系に脱水乾燥剤を存在させることを特徴とするシ
クロヘキシルベンゼンの製造方法。
(2) Benzene is hydrogenated in the presence of a catalyst that supports nickel and at least one metal selected from iron or manganese as a promoter on a carrier prepared by diluting HY type zeolite with silica alumina. 1. A method for producing cyclohexylbenzene, which is characterized in that a dehydrating and drying agent is present in the reaction system during chemical condensation.
JP60025056A 1985-02-12 1985-02-12 Production of cyclohexylbenzene Granted JPS61186332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025056A JPS61186332A (en) 1985-02-12 1985-02-12 Production of cyclohexylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025056A JPS61186332A (en) 1985-02-12 1985-02-12 Production of cyclohexylbenzene

Publications (2)

Publication Number Publication Date
JPS61186332A true JPS61186332A (en) 1986-08-20
JPH0321527B2 JPH0321527B2 (en) 1991-03-22

Family

ID=12155263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025056A Granted JPS61186332A (en) 1985-02-12 1985-02-12 Production of cyclohexylbenzene

Country Status (1)

Country Link
JP (1) JPS61186332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511836A (en) * 2008-02-12 2011-04-14 エクソンモービル・ケミカル・パテンツ・インク Method for producing cyclohexylbenzene
JP2013523631A (en) * 2010-03-26 2013-06-17 ビーエーエスエフ コーポレーション Fatty acid hydrogenation process using promoted supported nickel catalyst
JP2014513050A (en) * 2011-02-18 2014-05-29 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for producing cyclohexylbenzene
CN108435234A (en) * 2018-04-26 2018-08-24 郑州大学 Application of the molecular sieve carried heteropolyacid catalyst in cyclohexyl benzene synthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760017A (en) * 1971-05-17 1973-09-18 Texaco Inc Hydroalkylation catalyst and process
JPS59199641A (en) * 1983-04-26 1984-11-12 Agency Of Ind Science & Technol Production of cyclohexylbenzene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760017A (en) * 1971-05-17 1973-09-18 Texaco Inc Hydroalkylation catalyst and process
JPS59199641A (en) * 1983-04-26 1984-11-12 Agency Of Ind Science & Technol Production of cyclohexylbenzene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511836A (en) * 2008-02-12 2011-04-14 エクソンモービル・ケミカル・パテンツ・インク Method for producing cyclohexylbenzene
JP2013523631A (en) * 2010-03-26 2013-06-17 ビーエーエスエフ コーポレーション Fatty acid hydrogenation process using promoted supported nickel catalyst
JP2014513050A (en) * 2011-02-18 2014-05-29 エクソンモービル ケミカル パテンツ インコーポレイテッド Method for producing cyclohexylbenzene
CN108435234A (en) * 2018-04-26 2018-08-24 郑州大学 Application of the molecular sieve carried heteropolyacid catalyst in cyclohexyl benzene synthesis

Also Published As

Publication number Publication date
JPH0321527B2 (en) 1991-03-22

Similar Documents

Publication Publication Date Title
RU2182516C2 (en) Heterogeneous bimetallic palladium-gold catalyst for production of vinyl acetate and method of its production
US4212772A (en) Catalyst for the manufacture of ethylene oxide
JP4828680B2 (en) Method and catalyst for converting low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons
JPH04354539A (en) Catalytic activity gel
CN108579781A (en) Phenol hydrogenation catalyst and preparation method thereof
US20120083641A1 (en) Catalyst for oxidative dehydrogenation of propane to propylene
US4056563A (en) Method of producing allylacetate
CN109433252B (en) CO (carbon monoxide)2Oxide C2H6Dehydrogenation to C2H4And a process for preparing the same
JPS61186332A (en) Production of cyclohexylbenzene
FR2597098A1 (en) SILVER-BASED CATALYSTS FOR THE MANUFACTURE OF ETHYLENE OXIDE
JPH0427968B2 (en)
RU2283178C2 (en) Catalyst for steam hydrocarbon cracking to produce olefins, method for preparing the same, and olefin production process utilizing this catalyst
CN107961812B (en) A kind of preparation method of self-supporting metal modified ZSM-5 molecular sieve and its application in synthesizing isoprene
JP2003326169A (en) Oligomerization catalyst and manufacturing method for oligomer using the same
US4185022A (en) Furfuryl alcohol production process
JPS6046096B2 (en) Method for producing cyclohexylbenzene
CN115768556B (en) Method for producing catalyst for vinyl acetate production
JP3218044B2 (en) Method for producing cyclohexanol and cyclohexanone
RU2799071C1 (en) Nanostructured catalyst for oxidative dehydrogenation of propane in the presence of carbon dioxide
JPS6046097B2 (en) Method for producing cyclohexylbenzene
JPS6046098B2 (en) Method for producing cyclohexylbenzene
US3972830A (en) Silver catalysts
JP4291590B2 (en) Fischer-Tropsch synthesis catalyst and hydrocarbon production process
CN109382141A (en) A kind of catalyst and preparation method thereof for producing vinyl acetate by acetylene method
JPS5973567A (en) Method for manufacturing indoles

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term