JPS61185872A - Fuel cell device - Google Patents
Fuel cell deviceInfo
- Publication number
- JPS61185872A JPS61185872A JP60026762A JP2676285A JPS61185872A JP S61185872 A JPS61185872 A JP S61185872A JP 60026762 A JP60026762 A JP 60026762A JP 2676285 A JP2676285 A JP 2676285A JP S61185872 A JPS61185872 A JP S61185872A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fuel gas
- fuel
- water vapor
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 37
- 239000007789 gas Substances 0.000 claims abstract description 90
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000002737 fuel gas Substances 0.000 claims abstract description 44
- 239000003792 electrolyte Substances 0.000 claims abstract description 31
- 239000007800 oxidant agent Substances 0.000 claims abstract description 16
- 230000001590 oxidative effect Effects 0.000 claims description 35
- 239000002994 raw material Substances 0.000 claims description 10
- 238000004064 recycling Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 33
- 230000001276 controlling effect Effects 0.000 abstract description 4
- 210000005056 cell body Anatomy 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 30
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 4
- -1 hydrogen ions Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野〕
本発明は燃料電池装置に係り、特に燃料電池本体を加湿
する加湿水蒸気量の制御手段を備えた燃料電池装置に関
する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell device, and more particularly to a fuel cell device including means for controlling the amount of humidifying water vapor that humidifies a fuel cell body.
[発明の技術的背Ill
従来、燃料電池は燃料の有している化学的エネルギーを
、直接電気エネルギーに変換する装置である。この燃料
電池は、通常電解質を挟んで一対の多孔質電極を配置し
、一方の電極の背面に水素等の燃料ガスを接触させると
共に、他方の電極の背面に酸素等の酸化剤を接触させ、
このときに起こる電気化学的反応により発生する電気エ
ネルギーを、上記一対の電極間から取出すようにしたも
のである。この場合、電解質としては溶融塩、アルカリ
溶液、酸性溶液等があるが、ここでは燃料電池として代
表的なリン酸を電解質とする燃料電池を例としてその原
理について説明する。[Technical Background of the Invention] Conventionally, a fuel cell is a device that directly converts chemical energy contained in fuel into electrical energy. In this fuel cell, a pair of porous electrodes are usually arranged with an electrolyte sandwiched between them, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode, and an oxidizing agent such as oxygen is brought into contact with the back surface of the other electrode.
The electrical energy generated by the electrochemical reaction that occurs at this time is extracted from between the pair of electrodes. In this case, the electrolyte may be a molten salt, an alkaline solution, an acidic solution, etc., but here, the principle will be explained using a typical fuel cell using phosphoric acid as an electrolyte.
第2図は、この種の燃料電池の原理構成を示すものであ
る。図において、電解質!11は繊維質シ−トや鉱物質
粉末に電解質であるリン酸を含浸したものである。また
、2および3はこの電解質層1を挟んで配置されたアノ
ード電極およびカソード電極の一対の多孔質(炭素質)
電極で、電解質層1と接する面には白金触媒を塗布して
いる。さらに、4は水素を含むガスの流れる部屋であり
、5は酸素(通常は空気)等の酸化剤気体の流れる部屋
である。FIG. 2 shows the basic structure of this type of fuel cell. In the diagram, electrolytes! No. 11 is a material in which a fibrous sheet or mineral powder is impregnated with phosphoric acid as an electrolyte. 2 and 3 are a pair of porous (carbonaceous) anode and cathode electrodes arranged with this electrolyte layer 1 in between.
A platinum catalyst is coated on the surface of the electrode in contact with the electrolyte layer 1. Further, 4 is a chamber through which a gas containing hydrogen flows, and 5 is a chamber through which an oxidizer gas such as oxygen (usually air) flows.
かかる燃料電池において、ガス流通部屋4に流入した水
素はアノード電極2の空所を拡散して触媒に達する。こ
こで、水素ガスは触媒の作用により水素イオンと電子と
に解離する。その反応式はH2−+ 28十+ 28
−(1)となる。そして、水素イオ
ンは電解質層1に入り、起電圧による作用と濃度拡散に
よりカソード電極3に向って泳動する。一方、水素ガス
の解離により分離した電子はアノード電極2に流れ込み
、電極2は負に課電したことになる。またカソード電極
3では、アノード電極2側がら泳動してきた水素イオン
と、酸化剤としてガス流通部屋5に供給されさらにカソ
ード電極3の空所を拡散してきた酸素と、アノード電極
2から外部の電力負荷を通って仕事をし電池のカソード
電極3に戻ってきた電子との3者が、触媒表面で次の反
応を起こす。In such a fuel cell, hydrogen that has flowed into the gas flow chamber 4 diffuses through the space in the anode electrode 2 and reaches the catalyst. Here, hydrogen gas is dissociated into hydrogen ions and electrons by the action of a catalyst. The reaction formula is H2−+ 280+ 28
−(1). Then, the hydrogen ions enter the electrolyte layer 1 and migrate toward the cathode electrode 3 due to the action of electromotive force and concentration diffusion. On the other hand, electrons separated by dissociation of hydrogen gas flow into the anode electrode 2, and the electrode 2 is negatively charged. In addition, in the cathode electrode 3, hydrogen ions that have migrated from the anode electrode 2 side, oxygen that has been supplied to the gas distribution room 5 as an oxidizer and further diffused in the space of the cathode electrode 3, and an external power load from the anode electrode 2 The following reaction occurs on the surface of the catalyst: the electrons that pass through the catalytic converter, perform work, and return to the cathode electrode 3 of the battery.
4H” +4e +02−+2H20−(2)かくして
、水素が酸化されて水になる反応と、この時の化学的エ
ネルギーが電気エネルギーとなって、外部の電力負荷の
中で電気エネルギーを与える電池としての全反応が完成
する。この場合、電気エネルギーの一部は電解質層1の
中で、電池の内部抵抗により消費される。この電池の内
部抵抗は、電極反応特にカソード電極反応の活性化分極
抵抗、水素および酸素の如き反応物質の拡散抵抗、電解
質・構成材料固有の抵抗および電解質層−電極−集電板
の接触抵抗の和である。従って、水素イオンの泳動距離
を短かくして抵抗を小さくするために、電解質層は極め
て薄く設計される。4H" +4e +02-+2H20- (2) Thus, the reaction in which hydrogen is oxidized to water and the chemical energy at this time becomes electrical energy, which is used as a battery to provide electrical energy in an external power load. The entire reaction is completed. In this case, part of the electrical energy is dissipated in the electrolyte layer 1 by the internal resistance of the cell. This internal resistance of the cell is determined by the activation polarization resistance of the electrode reaction, in particular the cathode electrode reaction, It is the sum of the diffusion resistance of reactants such as hydrogen and oxygen, the inherent resistance of the electrolyte/constituent materials, and the contact resistance of the electrolyte layer-electrode-current collector plate.Therefore, in order to shorten the migration distance of hydrogen ions and reduce the resistance. First, the electrolyte layer is designed to be extremely thin.
[背景技術の問題点]
ところで、電解質であるリン酸の濃度は運転温度、負荷
2反応ガス中の湿度条件によって変化し、その結果とし
てリン酸の容量が変化することは既に知られている。す
なわち、電解質であるリン酸は次の反応式の如く水と五
酸化リンの反応生成物であり、かつ吸湿性の強い乾燥剤
でもある。従って、下記反応式において高温で乾燥した
条件下では反応は左へ移行し、リン酸は乾燥してその容
量が減少し、逆に低温で高湿度条件下では反応は右へ移
行し、リン酸は吸湿して濃度が低下し容量は増大する。[Problems with Background Art] By the way, it is already known that the concentration of phosphoric acid, which is an electrolyte, changes depending on the operating temperature and humidity conditions in the load 2 reaction gas, and as a result, the capacity of phosphoric acid changes. That is, phosphoric acid, which is an electrolyte, is a reaction product of water and phosphorus pentoxide as shown in the following reaction formula, and is also a highly hygroscopic desiccant. Therefore, in the reaction formula below, under high temperature and dry conditions, the reaction shifts to the left, and phosphoric acid dries and its capacity decreases; conversely, under low temperature and high humidity conditions, the reaction shifts to the right, and phosphoric acid absorbs moisture, its concentration decreases and its capacity increases.
3H20+1/2P40f O4−2H3PO4”(3
なおここでは、説明をわかりゃすくするため反応を簡略
化しているが、上記反応式の中間生成物としてビロリン
酸、メタリン酸等の多数の複雑なリン酸縮合体がある。3H20+1/2P40f O4-2H3PO4” (3
Although the reaction is simplified here to make the explanation easier to understand, there are many complex phosphoric acid condensates such as birophosphoric acid and metaphosphoric acid as intermediate products of the above reaction formula.
しかし、これらの反応の移行については上記説明と同じ
傾向がある。さらに、負荷をとることによって電気化学
的反応生成物として水が生成し、原理的にはカソード側
から発生する。よって、反応ガス中の湿度は負荷の大き
さによって変化する。However, the transition of these reactions has the same tendency as explained above. Furthermore, water is produced as an electrochemical reaction product by loading, and in principle it is generated from the cathode side. Therefore, the humidity in the reaction gas changes depending on the magnitude of the load.
従って、燃料電池を安全にかつ安定した性能で運転する
ためには、薄い電解質層の電解質であるリン酸の容量を
一定に保つことが要求される。すなわち、まず運転中に
リン酸の容量が減少すると、薄い電解質層に空隙が発生
して多孔化し、反応点である触媒−電解質−反応ガスの
界面が減少し、かつ接触抵抗が増加して電池性能が低下
する。また、燃料ガスと酸化剤ガスの差圧が微小であっ
ても、上記両反応ガスの混合(クロスオーバー現象と称
する)が起こり、上記両反応ガスの無効消費による発電
効率の低下をもたらし、さらには異常発熱による燃料電
池本体の破損、爆発等のトラブルの原因となる。一方、
運転中にリン酸の容量が増加すると、リン酸が電極上の
触媒層外に溢れ出す、いわゆる、フラディング現象が生
じこれにより電極上の触媒がリン酸中にうもれてしまい
、反応ガスが直接拡散する現象が阻害されて電池性能の
極端な低下が起こり、更にガス中にリン酸ミストとして
持ち出される量が多くなる。つまり、電解質であるリン
酸量が低減化し、いずれクロスオーバー現象を誘発する
ことになる。Therefore, in order to operate the fuel cell safely and with stable performance, it is required to keep the capacity of phosphoric acid, which is the electrolyte in the thin electrolyte layer, constant. In other words, when the capacity of phosphoric acid decreases during operation, voids occur in the thin electrolyte layer, making it porous, reducing the catalyst-electrolyte-reactant gas interface, which is the reaction point, and increasing contact resistance, which causes the battery to deteriorate. Performance decreases. In addition, even if the differential pressure between the fuel gas and the oxidant gas is small, mixing of the above two reaction gases (referred to as a crossover phenomenon) occurs, resulting in a decrease in power generation efficiency due to ineffective consumption of the above two reaction gases. This may cause trouble such as damage to the fuel cell body or explosion due to abnormal heat generation. on the other hand,
When the capacity of phosphoric acid increases during operation, phosphoric acid overflows out of the catalyst layer on the electrode, a so-called flooding phenomenon, which causes the catalyst on the electrode to be submerged in the phosphoric acid, and the reaction gas is directly The diffusion phenomenon is inhibited, resulting in an extreme drop in battery performance, and furthermore, the amount carried out as phosphoric acid mist in the gas increases. In other words, the amount of phosphoric acid, which is an electrolyte, decreases, eventually inducing a crossover phenomenon.
そこで従来から、前述のような電解質の容量変化を抑制
するため、燃料および酸化剤両系ガスに適当量の水蒸気
を添加することが行なわれている。Therefore, in order to suppress the above-mentioned change in electrolyte capacity, it has been conventionally practiced to add an appropriate amount of water vapor to both the fuel and oxidizer gases.
しかしながら、燃料電池から排出される燃料ガスおよび
酸化剤ガスの一部を循環して再び原料ガスとして使用す
る、いわゆるリサイクル運転を行なう場合、このリサイ
クルガス中に含まれる水分量が上記燃料ガスおよび酸化
ガス両系に添加している水蒸気量に加算される、ことに
なる。However, when performing a so-called recycling operation in which part of the fuel gas and oxidant gas discharged from the fuel cell is circulated and used again as raw material gas, the amount of water contained in this recycled gas is This will be added to the amount of water vapor added to both gas systems.
一方、このリサイクル運転は燃料電池の発生電圧の調節
等のため、リサイクル率(リサイクルガス量/原料ガス
流入量の比)を様々に変えることがある。そのため、リ
サイクルガスが持ち込む水分量は一定でなく、上記電解
質に供給される水蒸気量は過剰または不足をきたして前
述の如く電解質の容l変化が起こり、電池性能および寿
命の低下という悪影響を及ぼすことになる。On the other hand, in this recycle operation, the recycle rate (ratio of recycled gas amount/raw material gas inflow amount) may be varied in order to adjust the voltage generated by the fuel cell. Therefore, the amount of moisture brought in by the recycled gas is not constant, and the amount of water vapor supplied to the electrolyte may be excessive or insufficient, causing the volume of the electrolyte to change as described above, which has the negative effect of reducing battery performance and life. become.
[発明の目的コ
本発明は上記のような事情を考慮して成されたもので、
その目的は高い電池性能を長期間にゎたつで保持し長寿
命化を図ることが可能な燃料電池装置を提供することに
ある。[Object of the invention] The present invention has been made in consideration of the above circumstances,
The purpose is to provide a fuel cell device that can maintain high cell performance for a long period of time and extend its life.
[発明の概要]
上記目的を達成するために本発明では、電解質層を挟ん
でアノード電極およびカソード電極の一対の多孔質電極
を配置し、上記アノード電極の背面に水素等の燃料ガス
を、カソード電極の背面に酸素等の酸化剤ガスを夫々供
給し、このときの電気化学的反応により発生する電気エ
ネルギーを上記一対の電極間から取り出す燃料電池にお
いて、上記燃料電池からの排出ガスを循環し再び原料ガ
スとして使用する前述したリサイクル運転時に、このリ
サイクルガス中に含まれる水蒸気量を測定器により測定
し、この測定値と各基の原料ガス流量とを基に最適水蒸
気量を演算して上記燃料ガスおよび酸化剤ガスに添加す
る水蒸気量を制御することにより、電解質の容量変化を
抑制して前述したクロスオーバー現象やフランデインク
現象による電池の劣化および損傷を防止するようにした
ことを特徴とする。[Summary of the Invention] In order to achieve the above object, the present invention arranges a pair of porous electrodes, an anode electrode and a cathode electrode with an electrolyte layer in between, and injects a fuel gas such as hydrogen onto the back surface of the anode electrode. In a fuel cell in which oxidizing gas such as oxygen is supplied to the back of each electrode and the electrical energy generated by the electrochemical reaction is extracted from between the pair of electrodes, the exhaust gas from the fuel cell is circulated and reused. During the above-mentioned recycling operation, which is used as a raw material gas, the amount of water vapor contained in this recycled gas is measured with a measuring device, and the optimum amount of water vapor is calculated based on this measurement value and the raw material gas flow rate of each group. By controlling the amount of water vapor added to the gas and oxidizing gas, changes in the capacity of the electrolyte are suppressed, thereby preventing deterioration and damage to the battery due to the aforementioned crossover phenomenon and Flanders ink phenomenon. do.
[発明の実施例] 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.
第1図は、本発明による燃料電池装置の構成例をブロッ
ク的に示すものである。図において、前述した構成の燃
料電池本体6のガス入口側には、水素等の燃料ガスFを
供給する燃料ガス供給部7と、同じく空気等の酸化剤ガ
スAを供給する酸化剤ガス供給部8を夫々接続している
。また、各々のガス出口側には、燃料ガス排出部9およ
び酸化剤ガ、ス排出部10を夫々接続している。さらに
、上記、燃料ガス供給部7に接続されて上記燃料ガスF
に水蒸気SFを添加する燃料ガス系水蒸気供給部11F
1およびこれに設けられた燃料ガス系水蒸気調節弁12
Fと、上記酸化剤ガス供給部8に接続されて上記酸化剤
ガスAに水蒸気SAを添加する酸化剤ガス系水蒸気供給
部11A、およびこれに設けられた酸化剤ガス系水蒸気
調節弁12Aを夫々備えている。FIG. 1 shows in block form an example of the configuration of a fuel cell device according to the present invention. In the figure, on the gas inlet side of the fuel cell main body 6 configured as described above, there is a fuel gas supply section 7 that supplies a fuel gas F such as hydrogen, and an oxidant gas supply section that also supplies an oxidant gas A such as air. 8 are connected to each other. Furthermore, a fuel gas discharge section 9 and an oxidizing gas discharge section 10 are connected to each gas outlet side, respectively. Further, the fuel gas F is connected to the fuel gas supply section 7.
Fuel gas system steam supply section 11F that adds steam SF to
1 and a fuel gas system steam control valve 12 provided therein.
F, an oxidizing gas-based steam supply section 11A that is connected to the oxidizing gas supply section 8 and adds steam SA to the oxidizing gas A, and an oxidizing gas-based steam regulating valve 12A provided therein, respectively. We are prepared.
一方、上記燃料ガス排出部9に接続されて排出ガスの一
部を燃料ガス供給部7へ返送するりサイクルガス供給部
13Fと、これに設けられたブロワ−14Fと、リサイ
クルガス中に含まれる水分量を測定するリサイクル燃料
ガス中水分層測定器15Fと、これからの測定信号を受
けて上記燃料ガス系水蒸気調節弁12Fの開度を調節し
、燃料ガスFに添加する水蒸気SF量を制御する燃料ガ
ス系水蒸気量制御器16F1および同じく酸化剤ガス排
出部1oに接続されて排出ガスの一部を酸化剤ガス供給
部8へ返送するリサイクルガス供給部13Aと、これに
設けられたブロワ−14Aと、このリサイクルガス中に
含まれる水分量を測定するリサイクル酸化剤ガス中水分
量測定器15Aと、これからの測定信号を受けて上記酸
化剤ガス系水蒸気調節弁12Aの開度を調節し、酸化剤
ガスAに添加する水蒸気Sa量を制御する酸化剤ガス系
水蒸気量制御器16Aとを夫々備えて構成している。On the other hand, a cycle gas supply section 13F connected to the fuel gas discharge section 9 and returning a part of the exhaust gas to the fuel gas supply section 7, and a blower 14F provided therein, The moisture layer measuring device 15F in the recycled fuel gas that measures the moisture content and the opening degree of the fuel gas system steam control valve 12F are adjusted in response to the measurement signal, thereby controlling the amount of steam SF added to the fuel gas F. A recycle gas supply section 13A that is also connected to the fuel gas system water vapor amount controller 16F1 and the oxidizing gas discharge section 1o and returns a part of the exhaust gas to the oxidizing gas supply section 8, and a blower 14A provided therein. Then, a recycled oxidizing gas water content meter 15A measures the amount of water contained in this recycled gas, and in response to the measurement signal, the opening degree of the oxidizing gas system steam control valve 12A is adjusted, and the oxidizing gas is An oxidizing gas-based water vapor amount controller 16A that controls the amount of water vapor Sa added to the agent gas A is provided.
次に、第1図を用いてかかる燃料電池装置の作用につい
て説明する。Next, the operation of this fuel cell device will be explained using FIG. 1.
まず、電解質層を挟んでアノード電極及びカソ−ド電極
の一対の多孔質電極を配置した燃料電池本体6に、燃料
ガスF及び酸化剤ガスAを各々のガス供給部7.8を通
して供給し、電池内で電気化学的反応を起こさせて電気
エネルギーを発生させる燃料電池装置においては、前述
のように燃料電池本体6内の電解質の容量を一定に保つ
必要性から、従来より燃料ガスFおよび酸化剤ガスAの
夫々に水蒸気供給部11F、11Aを通して水蒸気Sp
、SAを添加することが行なわれている。First, a fuel gas F and an oxidizing gas A are supplied to the fuel cell main body 6 in which a pair of porous electrodes, an anode electrode and a cathode electrode are arranged with an electrolyte layer in between, through each gas supply section 7.8, In a fuel cell device that generates electrical energy by causing an electrochemical reaction within the cell, it is necessary to keep the capacity of the electrolyte in the fuel cell main body 6 constant as described above, so conventionally, fuel gas F and oxidation The agent gas A is supplied with water vapor Sp through the water vapor supply parts 11F and 11A, respectively.
, SA has been added.
一方、上記燃料電池本体6に供給された燃料ガスFおよ
び酸化剤ガスAは各系ガス排出部9.10を通して放°
出されるが、この際に上記両排出ガスの一部をリサイク
ルガス供給部13Fおよび13Aを通して各プロ、ワー
14F、14Aにて加圧した後、それぞれのガス供給部
7.8に返送し再び原料ガスとして使用するりサイクl
し運転時においては、これら両リサイクルガス中に含ま
れる水分mが過剰となり、前述のように電池にとっては
悪影響を受ける。On the other hand, the fuel gas F and oxidant gas A supplied to the fuel cell main body 6 are released through each system gas discharge section 9.10.
At this time, a part of both of the exhaust gases is passed through the recycled gas supply sections 13F and 13A, pressurized by the respective processors 14F and 14A, and then returned to the respective gas supply sections 7.8 to be used as raw materials again. Cycle used as gas
During operation, the water m contained in both of these recycled gases becomes excessive, which adversely affects the battery as described above.
そこで、両リサイクル中の水分量を、燃料ガス系ではリ
サイクル燃料ガス中水分測定装置15Fで、また酸化剤
ガス系ではリサイクル酸化剤ガス中水分測定装@15A
でそれぞれ測定する。そしてこの測定値を、まず燃料ガ
ス系では燃料ガス系水蒸気量制御器16Fへ送出し、こ
の制御器16Fでは前述した燃料電池本体6内の電解質
の容量を一定に保つのに必要な水分」をその時点の燃料
電池本体6へ供給される燃料ガス流量から算出し、その
値と上記リサイクルガス中水分量とを比較し過剰分を燃
料ガス系水蒸気供給部11Fに設けられた燃料ガス系水
蒸気ma節弁12Fの開度を調節することにより、燃料
ガスFに添加する水蒸気量SFを最適値に調節すること
が出来る。一方酸化剤ガス系も同様に酸化剤ガス系水分
測定装置15Aでの測定値を酸化剤ガス系水蒸気前制御
器16Aへ送出し、この制御器16Aで上記燃料ガス系
と同様に酸化剤ガス系水蒸気供給部11Aに設けられた
酸化剤ガス系水蒸気量調節弁12Aの開度を調節するこ
とにより、酸化剤ガスAに添加する水蒸気ISAを最適
値に調節することが出来る。Therefore, the moisture content during both recycling was measured using the recycled fuel gas moisture measuring device 15F for the fuel gas system, and the recycled oxidizing gas moisture measuring device @15A for the oxidizing gas system.
Measure each. This measured value is first sent to the fuel gas water vapor amount controller 16F in the fuel gas system, and this controller 16F collects the water vapor necessary to keep the electrolyte capacity in the fuel cell main body 6 constant. It is calculated from the fuel gas flow rate supplied to the fuel cell main body 6 at that time, and the value is compared with the moisture content in the recycled gas, and the excess amount is calculated from the fuel gas system water vapor ma provided in the fuel gas system steam supply section 11F. By adjusting the opening degree of the moderation valve 12F, the amount SF of water vapor added to the fuel gas F can be adjusted to an optimal value. On the other hand, for the oxidizing gas system, the measured value from the oxidizing gas moisture measuring device 15A is sent to the oxidizing gas system water vapor pre-controller 16A, and this controller 16A sends the measured value of the oxidizing gas system moisture measuring device 15A to the oxidizing gas system water vapor pre-controller 16A. By adjusting the opening degree of the oxidizing gas system steam amount control valve 12A provided in the steam supply section 11A, the steam ISA added to the oxidizing gas A can be adjusted to an optimal value.
また、このような構成とすることにより、リサイクル率
(リサイクルガス流量/原料ガス)が低い領域(つまり
は、リサイクルガス中水分量が少ない)での運転におい
ても、電解質へ供給する水蒸気量を最適に維持すること
が出来る。In addition, with this configuration, the amount of water vapor supplied to the electrolyte can be optimized even when operating in a region where the recycle rate (recycle gas flow rate/raw material gas) is low (in other words, the amount of water in the recycle gas is low). can be maintained.
上述したように本実施例構成の燃料電池装置とすること
により、燃料電池本体6内の電解質の容量を一定に保つ
ための水蒸気量を常に最適値にすることができ、もって
前述のように水蒸気量の不足または過剰等から起こるク
ロスオーバー現象による電池性能の低下および寿命の低
下等を確実に防止することが可能となり、ひいては安定
した電池性能を長期間にわたって保持し長寿命化を図る
ことができる。As described above, by using the fuel cell device having the configuration of this embodiment, the amount of water vapor for keeping the capacity of the electrolyte in the fuel cell main body 6 constant can always be kept at an optimum value, and as a result, as described above, the amount of water vapor can be maintained at an optimum value. It is now possible to reliably prevent the deterioration of battery performance and lifespan due to crossover phenomena caused by insufficient or excessive amounts, and in turn, it is possible to maintain stable battery performance over a long period of time and extend its lifespan. .
[発明の効果]
以上説明したように本発明によれば、燃料電池からの排
出ガスを循環し再び原料ガスとして使用する前述したリ
サイクル運転時に、このリサイクルガス中に含まれる水
蒸気量を測定器により測定し、この測定値と各県の原料
ガス流量とを基に最適水蒸気量を演算して、上記燃料ガ
スおよび酸化剤ガスに添加する水蒸気量を制御する構成
としたので、高い電池性能を長期間にわたって保持し長
寿命化を図ることが可能な極めて信頼性の高い燃料電池
装置が提供できる。[Effects of the Invention] As explained above, according to the present invention, during the above-mentioned recycling operation in which the exhaust gas from the fuel cell is circulated and used again as raw material gas, the amount of water vapor contained in this recycled gas is measured using a measuring device. The optimum amount of water vapor is calculated based on this measured value and the raw material gas flow rate of each prefecture, and the amount of water vapor added to the fuel gas and oxidizer gas is controlled, so high battery performance can be maintained for a long time. An extremely reliable fuel cell device that can be maintained for a long period of time and has a long service life can be provided.
第1図は本発明の一実施例を示す構成図、第2図は燃料
電池の原理構成を示す概念図である。
1・・・電解質層、2・・・アノード電極、3・・・カ
ソード電極、6・・・燃料電池本体、11F・・・燃料
ガス系水蒸気供給部、11A・・・酸化剤ガス系水蒸気
供給部、12F・・・燃料ガス系水蒸気調節弁、12A
・・・酸化剤ガス系水蒸気調節弁、15F・・・リサイ
クル燃料ガス中水分測定器、15F・・・リサイクル酸
化剤ガス中水分測定器、16F・・・燃料ガス系水蒸気
量制御器、16A・・・酸化剤ガス系水蒸気量制御器。
出願人代理人 弁理士 鈴江武彦
第1図
第2図FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a conceptual diagram showing the principle structure of a fuel cell. DESCRIPTION OF SYMBOLS 1... Electrolyte layer, 2... Anode electrode, 3... Cathode electrode, 6... Fuel cell main body, 11F... Fuel gas system steam supply part, 11A... Oxidizing gas system steam supply Part, 12F...Fuel gas system steam control valve, 12A
... Oxidizing gas system water vapor control valve, 15F... Moisture measuring device in recycled fuel gas, 15F... Moisture measuring device in recycled oxidizing gas, 16F... Fuel gas system water vapor amount controller, 16A. ... Oxidizing gas system water vapor amount controller. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2
Claims (1)
対の多孔質電極を配置し、前記アノード電極の背面に燃
料ガスをカソード電極の背面に酸化剤ガスを夫々供給し
、このときの電気化学的反応により発生する電気エネル
ギーを前記一対の多孔質電極間から取り出す燃料電池に
おいて、前記燃料電池からの排ガスを循環し再び原料ガ
スとして使用するリサイクル系統を構成し、前記燃料ガ
スおよび酸化剤ガスへ水蒸気を添加する手段と、前記リ
サイクル系統のリサイクルガス中に含まれる水蒸気量を
測定する測定器と、この測定器からの測定値と各系の原
料ガス流量とを基に最適水蒸気量を演算して前記燃料ガ
スおよび酸化剤ガスに添加する水蒸気量を制御する手段
とを具備して成ることを特徴とする燃料電池装置。A pair of porous electrodes, an anode electrode and a cathode electrode, are arranged with an electrolyte layer in between, and a fuel gas is supplied to the back surface of the anode electrode, and an oxidant gas is supplied to the back surface of the cathode electrode. In a fuel cell that extracts generated electrical energy from between the pair of porous electrodes, a recycling system is configured to circulate the exhaust gas from the fuel cell and use it again as raw material gas, and water vapor is added to the fuel gas and oxidizing gas. a measuring device for measuring the amount of water vapor contained in the recycled gas of the recycling system; and a measuring device for measuring the amount of water vapor contained in the recycled gas of the recycling system, and calculating an optimum amount of water vapor based on the measured value from the measuring device and the raw material gas flow rate of each system to 1. A fuel cell device comprising means for controlling the amount of water vapor added to gas and oxidizing gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60026762A JPS61185872A (en) | 1985-02-14 | 1985-02-14 | Fuel cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60026762A JPS61185872A (en) | 1985-02-14 | 1985-02-14 | Fuel cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61185872A true JPS61185872A (en) | 1986-08-19 |
Family
ID=12202296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60026762A Pending JPS61185872A (en) | 1985-02-14 | 1985-02-14 | Fuel cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61185872A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7108932B2 (en) | 2001-02-21 | 2006-09-19 | Nissan Motor Co., Ltd. | Fuel cell system |
JP2008240274A (en) * | 2007-03-26 | 2008-10-09 | Yuhshin Co Ltd | Cylinder lock |
-
1985
- 1985-02-14 JP JP60026762A patent/JPS61185872A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7108932B2 (en) | 2001-02-21 | 2006-09-19 | Nissan Motor Co., Ltd. | Fuel cell system |
JP2008240274A (en) * | 2007-03-26 | 2008-10-09 | Yuhshin Co Ltd | Cylinder lock |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6376110B1 (en) | Method for regulating membrane moisture of a polymer electrolyte fuel cell, and a polymer electrolyte fuel cell | |
JP4379987B2 (en) | Fuel cell control device | |
JP2004303717A (en) | Fuel cell system | |
JPH09283162A (en) | Solid high molecular fuel cell | |
JP2006351506A (en) | Fuel cell system | |
JPH07240220A (en) | Fuel cell system | |
CA2286701A1 (en) | Cooling and wetting polymer-electrolyte fuel cells | |
JPS59149668A (en) | Fuel battery | |
JPS61185872A (en) | Fuel cell device | |
JP5411901B2 (en) | Fuel cell system | |
JPS63143756A (en) | Fuel battery device | |
JPH069143B2 (en) | Fuel cell storage method | |
US20080152968A1 (en) | Controlling oxidant flows in a fuel cell system | |
JPS5882480A (en) | Fuel battery generating system | |
JPH0714595A (en) | Operating method of power generating device of fuel cell type | |
JPH09320619A (en) | Molten carbonate fuel cell | |
JPS63310573A (en) | Fuel line control system of fuel cell power generating facilities | |
JPS62154472A (en) | Fuel cell | |
JPS5954176A (en) | Fuel cell generating system | |
JPH0326507B2 (en) | ||
CN105552403B (en) | Fuel cell system and the method using its power supply | |
JPS59149665A (en) | Fuel-cell system | |
JPS62278766A (en) | Operating method for phosphoric acid fuel cell | |
JPS59228367A (en) | Operation of fuel cell | |
JPH0622153B2 (en) | How to operate a fuel cell |