[go: up one dir, main page]

JPS61185429A - Method and apparatus for producing bottle - Google Patents

Method and apparatus for producing bottle

Info

Publication number
JPS61185429A
JPS61185429A JP60025219A JP2521985A JPS61185429A JP S61185429 A JPS61185429 A JP S61185429A JP 60025219 A JP60025219 A JP 60025219A JP 2521985 A JP2521985 A JP 2521985A JP S61185429 A JPS61185429 A JP S61185429A
Authority
JP
Japan
Prior art keywords
pressure chamber
annular
parison
molded part
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60025219A
Other languages
Japanese (ja)
Other versions
JPH0423622B2 (en
Inventor
Akihito Morimura
暁仁 森村
Toru Suzuki
通 鈴木
Setsu Matsuhashi
松橋 摂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP60025219A priority Critical patent/JPS61185429A/en
Publication of JPS61185429A publication Critical patent/JPS61185429A/en
Publication of JPH0423622B2 publication Critical patent/JPH0423622B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To produce a bottle with a highly accurate wall thickness distribution by blowing a gas circumferentially to the section of a parison having a relatively high temperature where molding is effected. CONSTITUTION:A bottomed parison 1 of a polyester at a higher temperature state than the glass transition point of the involved resin is taken out from an injection mold, the holding ring 1a is held by a holder 3 and the molding section 2 is inserted into a cooling block 5. A cooling apparatus 4 is provided with a cooling block 5 and a driving mechanism 6 that will drive the cooling block 4 vertically in a prescribed timing. A pressurized air 18 in a high pressure chamber 13 flows via slits 16a, 16b into a low pressure chamber 15, whereas the relatively low pressure air 21 in the low pressure chamber 15 is once throttled at a throttling section 19 and is blown from a blowing outlet 20 to cool the molding section 2 of the parison 1 circumferentially uniformly to a prescribed temperature that is equal to or higher than the glass transition point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はボトルの製造方法と装置に関し、さらに詳しく
はポリエステル有底・やりソンの成形部の温度を調節し
た後、この成形部を延伸吹込成形してボトルを製造する
方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for manufacturing bottles, and more specifically, after adjusting the temperature of the molding section of a polyester bottomed jason, the molding section is stretched and blown. This invention relates to a method and apparatus for molding and manufacturing bottles.

(従来の技術) 特公昭53−22096号公報には、射出成形金型で、
溶融樹脂より有底i4リソンを形成した後、このa4リ
ソンを加熱ステージにおいて、内外から電熱ヒータによ
り所要温度に加熱し、次いでこのパリソンを延伸吹込成
形してyjr)ルを製造する技術が提案されている・ (発明が解決しようとする問題点) 近年ポリエステル樹脂の延伸吹込成形ボトル、特にポリ
エチレンテレフタレートの2軸延伸吹込成形コ)ルに収
納される内容物、およびボトルの形状(例えばビード部
の設定等により)が多様化し、そのためボトルの肉厚分
布が非常に高い精度で要求される場合が増えてきた。例
えば炭酸飲料やビール等を収納するボトルの場合は、正
内圧による変形や破断の防止、およびガスバリヤ−性(
特に炭酸ガスに対する)の向上のため、局部的に所定肉
厚より薄い壁部分が生じないようにする必要があるが、
一方材料コストの点から必要以上に肉厚の壁部分が生ず
るのを避けなければならない。またジーース等がホット
ツク、りされる場合は、負内圧による変形を防止するた
め、同様な注意が必要である。
(Prior art) Japanese Patent Publication No. 53-22096 discloses that an injection mold,
A technology has been proposed in which after forming a bottomed I4 litho from a molten resin, this A4 litho is heated to a required temperature from the inside and outside with an electric heater on a heating stage, and then this parison is stretch blow molded to produce YJR). (Problems to be Solved by the Invention) In recent years, the contents stored in polyester resin stretch blow molded bottles, especially polyethylene terephthalate biaxial stretch blow molded bottles, and the shape of the bottle (for example, the shape of the bead) have become increasingly important. (depending on settings, etc.) have diversified, and as a result, there are increasing cases where bottle wall thickness distribution is required with extremely high precision. For example, in the case of bottles for storing carbonated drinks, beer, etc., it is necessary to prevent deformation and breakage due to positive internal pressure, and to have gas barrier properties (
In order to improve the resistance (particularly against carbon dioxide gas), it is necessary to prevent wall portions that are locally thinner than a predetermined thickness from occurring.
On the other hand, from the viewpoint of material costs, it is necessary to avoid creating wall sections that are thicker than necessary. Also, when hot-picking or removing gears, similar precautions must be taken to prevent deformation due to negative internal pressure.

すなわちボトルの形状2寸法、材料強度、内圧。In other words, the shape and dimensions of the bottle, material strength, and internal pressure.

要求されるガスバリヤ−性等に応じて、ボルトの肩部、
胴部、底部等の各部分の肉厚が、所定値に、高い精度で
なるようにすることが望ましい。このボトルの各部分の
肉厚、すなわち延伸性は、延伸吹込成形直前の、p4’
 リソンの、当該ボルト部分に対応する部分の温度(こ
の温度は成形可能温度、すなわち当該ポリエステルのガ
ラス転移点以上の温度である)によって大きく支配され
る。
Depending on the required gas barrier properties, the shoulder of the bolt,
It is desirable that the wall thickness of each part such as the body and the bottom be set to a predetermined value with high accuracy. The wall thickness of each part of this bottle, that is, the stretchability is p4' immediately before stretch blow molding.
It is largely controlled by the temperature of the part of the litho corresponding to the bolt part (this temperature is the moldable temperature, ie, the temperature above the glass transition temperature of the polyester).

すなわちボルトの肉厚分布を高い精度で所定値に管理す
るためには、パリソンの延伸吹込成形直前の温度分布を
高い精度で調節する必要がある。
That is, in order to control the wall thickness distribution of the bolt to a predetermined value with high precision, it is necessary to adjust the temperature distribution of the parison immediately before stretch blow molding with high precision.

しかしながら従来の加熱方式によっては、パリソンの温
度分布を高い精度で調節することが困難であった。従っ
て肉厚分布が高い精度で管理された延伸吹込成形ポリエ
ステルyj?)ルな製造することが困難であった。
However, depending on the conventional heating method, it is difficult to adjust the temperature distribution of the parison with high precision. Therefore, stretch blow-molded polyester yj? has a wall thickness distribution that is controlled with high precision. ) It was difficult to produce a standard product.

(発明の目的) 本発明は、ポリエステル有底/4リソンより、延伸吹込
成形により、高い精度の肉厚分布を有するyf)ルな製
造する方法および装置を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a method and apparatus for manufacturing polyester with a highly accurate wall thickness distribution by stretch-blow molding from polyester bottomed/quadrature.

(発明の構成) 本発明は、ポリエステル有底i4 リソンの成形部を延
伸吹込成形してボトルを製造する方法において、射出成
形金型より、該成形部が当該ポリエステルのガラス転移
点より高い、比較的高温の状態で該パリソンを取出し、
取出された該パリソンの成形部に、円周方向から同時に
気体を吹付けて、該成形部を該ガラス転移点以上の所定
温度まで冷却した後、直ちに延伸吹込成形を行なうこと
を特徴とするボトルの製造方法を提供するものである。
(Structure of the Invention) The present invention provides a method for manufacturing a bottle by stretch-blow molding a molded part of a polyester bottomed i4 lison, in which the molded part is higher than the glass transition point of the polyester than an injection mold. Take out the parison at a high temperature,
A bottle characterized in that stretch blow molding is immediately performed after the molded part of the taken out parison is simultaneously blown with gas from the circumferential direction to cool the molded part to a predetermined temperature above the glass transition point. The present invention provides a method for manufacturing.

さらに本発明はポリエステル有底i4リソンの成形部を
延伸吹込成形して、ボトルを製造する装置において、該
装置は、該成形部を挿入可能な透孔、該透孔を包囲する
環状高圧室、該環状高圧室に加圧気体を導く、該環状高
圧室に対しほぼ接線方向に延びる導孔、該環状高圧室の
半径方向内側にあって、円周方向に沿い不連続な複数の
スリットを介して該環状高圧室と接続する環状低圧室、
および該環状低圧室に環状絞9部を介して接続し、半径
方向内側に向って断面台形状に拡開した、該透孔に挿入
された該成形部に気体を吹付けて、該成形部を所定温度
まで冷却するための環状気体吹出口を有する、冷却ブロ
ックを備えることを特徴とするyjr)ルの製造装置を
提供するものである。
Furthermore, the present invention provides an apparatus for manufacturing a bottle by stretch-blow molding a molded part of a polyester bottomed i4 lison, the apparatus comprising: a through hole into which the molded part can be inserted; an annular high pressure chamber surrounding the through hole; A guide hole extending substantially tangentially to the annular high-pressure chamber for introducing pressurized gas into the annular high-pressure chamber, and a plurality of discontinuous slits located on the radially inner side of the annular high-pressure chamber along the circumferential direction. an annular low pressure chamber connected to the annular high pressure chamber;
and the molded part connected to the annular low-pressure chamber through the annular restrictor 9 and expanded radially inward to have a trapezoidal cross section and inserted into the through hole, and the molded part The present invention provides an apparatus for manufacturing yjr) characterized by comprising a cooling block having an annular gas outlet for cooling the yjr to a predetermined temperature.

(実施例) 第1図において、lはポリエステル、例えばポリエチレ
ンテレフタレートよりなる有底ノぐリソンであって、1
aは保持リングである。有底zf リソン1の保持リン
グ1aより下方の部分が成形部2であって、成形部2の
上方部2a、その下方の、下方に向って僅かに小径とな
る円筒状部2b、および底部2cが夫れ夫れ、延伸吹込
成形によって形成されるボトル(第6図参照)の肩部、
胴部および底部となるべき部分である。
(Example) In FIG. 1, l is a bottomed nozzle made of polyester, for example polyethylene terephthalate;
a is a retaining ring. Bottomed zf The part below the retaining ring 1a of the litho 1 is the molded part 2, which includes an upper part 2a of the molded part 2, a cylindrical part 2b below which becomes slightly smaller in diameter toward the bottom, and a bottom part 2c. However, the shoulder of the bottle (see Figure 6) formed by stretch blow molding,
These are the parts that should become the torso and bottom.

有底a41Jソン1は、当該樹脂のガラス転移点より高
い、比較的高温の状態で、射出成形金型より取出され、
直ちに保持リングlaをホルダー3によって保持された
まま、冷却装置4に垂下した状態で運ばれ、図示のよう
に、成形部2を後述の冷却ブロック5に挿入され、その
位置に保持される。
The bottomed A41Json 1 is taken out from the injection mold at a relatively high temperature higher than the glass transition point of the resin,
Immediately, the retaining ring la, held by the holder 3, is carried in a hanging state to the cooling device 4, and as shown in the figure, the molded part 2 is inserted into a cooling block 5, which will be described later, and is held in that position.

冷却装置4は、冷却ブロック5と〜冷却ブロック5を所
定のタイミングで上下動させる駆動機構6を備えている
。駆動機構6は、冷却プロ、り5と係合する垂直ウオー
ムギヤ7、ステッピングモータ8、ステッピングモータ
8の回転をウオームギヤ7に伝導するためのゼヤ9.I
Oを備えている。すなわち冷却ブロック5は、ステッピ
ングモータ8の回転に応じて、ウオームギヤ7を介して
上下動するように構成されている。
The cooling device 4 includes a cooling block 5 and a drive mechanism 6 that moves the cooling block 5 up and down at predetermined timing. The drive mechanism 6 includes a vertical worm gear 7 that engages with the cooling gear 5, a stepping motor 8, and a gear 9 for transmitting the rotation of the stepping motor 8 to the worm gear 7. I
It is equipped with O. That is, the cooling block 5 is configured to move up and down via the worm gear 7 according to the rotation of the stepping motor 8.

冷却プロ、り5は、例えばアルミニウム合金より形成さ
れ、第2図、第3図に示されるように、若干の間隙11
(間隙幅Wは好ましくは3〜10簡)をあけて、成形部
2を挿入可能な、断面円形の透孔12、透孔12を包囲
する円環状高圧室13、および高圧室13と円環状障壁
部14により分離され、′高圧室13の半径方向内側に
ある、円環状低圧室15を備えている。
The cooling plate 5 is made of aluminum alloy, for example, and has a slight gap 11 as shown in FIGS. 2 and 3.
A through hole 12 with a circular cross section into which the molded part 2 can be inserted with a gap width W of preferably 3 to 10, an annular high pressure chamber 13 surrounding the through hole 12, and an annular high pressure chamber 13 surrounding the through hole 12. An annular low pressure chamber 15 is separated by a barrier section 14 and is located radially inside the high pressure chamber 13.

障壁部14の上端部には、第3図、第4図に示すように
、複数の、好ましくは6個以上の(図では8個)スリブ
)16aが、好ましくは円周方向に沿い等間隔に設けら
れている。第3図に明示されるように、障壁部14の下
端部にも、好ましくは上部スリット16aと互い違いの
位置に複数のスリブ)16bが設けられている。
As shown in FIGS. 3 and 4, the upper end of the barrier portion 14 has a plurality of, preferably six or more (eight in the figure) sleeves 16a, preferably equally spaced along the circumference. It is set in. As clearly shown in FIG. 3, the lower end of the barrier portion 14 is also provided with a plurality of slits 16b, preferably at alternate positions with the upper slits 16a.

また高圧室13に、図示されない加圧気体(通常はエア
、以下エアとして説明する)源よ多連管。
In addition, the high pressure chamber 13 is connected to a source of pressurized gas (usually air, hereinafter referred to as air), which is not shown.

流量電磁弁を介して、加圧エア18を導く複数の(図で
は2個の)導孔17が設けられている0各導孔17は中
心対称に、かつ高圧室13のほぼ接線方向に延びるよう
に形成されていて、高圧室13内に、できるだけ均一な
、かつスムースな加圧エア18の流れが生ずるようにな
っている。すなわち高圧室13内には円周方向に沿って
実質的に均一な一次圧(例えば1 kg/ff12)が
生ずるようになっている。
A plurality of (two in the figure) guide holes 17 are provided to guide pressurized air 18 through a flow solenoid valve. Each guide hole 17 is symmetrical about the center and extends substantially tangentially to the high pressure chamber 13. The pressurized air 18 is formed in such a manner that the flow of the pressurized air 18 is as uniform and smooth as possible within the high pressure chamber 13. That is, a substantially uniform primary pressure (for example, 1 kg/ff12) is generated within the high pressure chamber 13 along the circumferential direction.

高圧室13の加圧エア18は、スリブ)16a。The pressurized air 18 in the high pressure chamber 13 is supplied to the sleeve) 16a.

16bを通って低圧室15に流入するが、スリブ)16
m、16bは前述のように円周方向に沿い、各々等間隔
に形成されているので、かつ低圧室15内のエアを一時
貯めるための、後記の環状絞フ部19が設けられている
ので、低圧室15内に、円周方向に沿りて実質的に均一
な二次圧(例えば0.5 kg/cn2)が生ずるよう
になっている。
16b into the low pressure chamber 15, the sleeve) 16
m and 16b are formed at equal intervals along the circumferential direction as described above, and an annular throttle part 19 to be described later is provided for temporarily storing the air in the low pressure chamber 15. , a substantially uniform secondary pressure (for example, 0.5 kg/cn2) is generated in the low pressure chamber 15 along the circumferential direction.

低圧室15の半径方向内側にハ1.環状絞シ部19と環
状エア吹出口20が設けられておシ、吹出口20は半径
方向内側に向って断面台形状に拡開している。低圧室1
5の比較的低い圧力のエア21は、絞シ部19で−たん
絞られてから、吹出口20から吹出されて、ノ9リソン
1の成形部2に円周方向に沿い、同時に、かつ実質的に
均一に当って、透孔12内の成形部2の部分を、円周方
向に沿い実質的に均一に、当該ポリエステルのガラス転
移点以上の所定温度まで冷却する。エア21は比較的低
圧であるので、かつ吹出口20は出口側が拡開している
ので、エア21が成形部2に当るさい、成形部2の変形
等を招くおそれがない。
C1. inside the low pressure chamber 15 in the radial direction. An annular constriction portion 19 and an annular air outlet 20 are provided, and the outlet 20 expands radially inward to have a trapezoidal cross section. Low pressure chamber 1
The relatively low-pressure air 21 of No. 5 is squeezed by the constriction part 19, and then blown out from the blow-off port 20, along the circumferential direction of the forming part 2 of No. The part of the molded part 2 inside the through hole 12 is cooled substantially uniformly along the circumferential direction to a predetermined temperature equal to or higher than the glass transition point of the polyester. Since the air 21 has a relatively low pressure and the outlet side of the blow-off port 20 is widened, there is no risk of deformation of the molded part 2 when the air 21 hits the molded part 2.

成形部2の軸方向特定部分の冷却程度、すなわち冷却後
の温度は、特定部分への冷却プロ、り5よりの、単位時
間当シのエア21吹出し量および吹出し時間によって調
節される。
The degree of cooling of a specific portion in the axial direction of the molding section 2, that is, the temperature after cooling, is adjusted by the amount of air 21 blown per unit time and the blowing time from the cooling process 5 to the specific portion.

第5図は上記調節の例を示したものであって、縦軸にお
ける■、■、・・・、■は上方からの設定位置を示し、
その左側の数字、例えば最上段の数字は設定位置■と0
間の距離が10m+であることを示す。最上部の設定位
置■は、例えば冷却プロ。
FIG. 5 shows an example of the above adjustment, where ■, ■, ..., ■ on the vertical axis indicate the setting position from above,
The numbers on the left side, for example the top number, are the setting positions ■ and 0
This indicates that the distance between them is 10m+. The top setting position ■ is, for example, Cooling Pro.

り5の上面5m(第1図)が保持リングlaにほぼ接触
する位置に、また最下部の設定位置[株]は、例えば下
面5bが成形部2の底部2cの下面とほぼ同一レベルに
ある位置に定められる。Qlt・・・、Q6はエア流量
であって、導孔17と加圧エア温間に設けられた流量電
磁弁の開度を、コントローラへの入力信号によって調節
することによって定められる。vl、・・・、マ4は、
冷却ブロック5の下降速度、又は上昇速度(第5図にお
いて、下向きの矢印は下降を、上向きの矢印は上昇を示
す)を示し、ステッピングモータ8の回転速度および回
転方向によって定められる。tl+・・・、tsは冷却
プロ、り5の停止時間であって、ステッピングモータ8
の停止時間に等しい。
The upper surface 5m (Fig. 1) of the ring 5 is in almost contact with the retaining ring la, and the lowest setting position is such that the lower surface 5b is at approximately the same level as the lower surface of the bottom 2c of the molding part 2. determined in position. Qlt..., Q6 are air flow rates, which are determined by adjusting the opening degree of a flow rate solenoid valve provided between the guide hole 17 and the pressurized air temperature using an input signal to the controller. vl..., Ma4 is,
This indicates the descending speed or ascending speed of the cooling block 5 (in FIG. 5, a downward arrow indicates descending and an upward arrow indicates ascending), and is determined by the rotational speed and rotation direction of the stepping motor 8. tl+..., ts is the stop time of the cooling professional 5, and the stepping motor 8
equal to the stop time of

図において、■、■の区間においては、冷却プロ、り5
はvlの速度で下降し、かつQ2の流量でエアが吹出口
20から吹出されている。■、■の区間、および■、■
の区間においては、エアの吹き出し流量はQ工で等しい
が、下降速度が夫れ夫れv2およびv3と異なる。設定
位置■においては、冷却ブロック5は時間1.停止し、
その間Q3の流量のエアが吹出される。その后冷却プロ
、り5は、位置■までv4の速度で上昇し、その間Q1
の流量のエアが吹出される。
In the figure, in the sections marked ■ and ■, the cooling
is lowered at a speed of vl, and air is blown out from the air outlet 20 at a flow rate of Q2. ■, ■ intervals, and ■, ■
In the section, the flow rate of air blowing out is the same in Q-factor, but the descending speed is different in both v2 and v3. In the setting position ■, the cooling block 5 is operated for a time of 1. stop,
During that time, air with a flow rate of Q3 is blown out. After that, the cooling pro, Ri5, rises to position ■ at the speed of v4, while Q1
A flow rate of air is blown out.

以降説明を省略するが、前記と同様にして、図示の記号
(Qi + Vi r ti)に従い、冷却ブロック5
の上昇、下降、停止、エア吹出しが行なわれる。
Although the explanation will be omitted hereafter, in the same manner as above, the cooling block 5 is
is raised, lowered, stopped, and air is blown out.

そして冷却ブロック5が最下部の位置■に達して所定量
(Q5)のエア吹出しが終った後、パリソンlは冷却ブ
ロック5から取出され、その後冷却ブロック5は、エア
吹出しを停止して最上部の位置■に復帰する。図示の場
合、区間■〜■、■〜■。
After the cooling block 5 reaches the lowest position (■) and a predetermined amount (Q5) of air has been blown out, the parison l is taken out from the cooling block 5, and then the cooling block 5 stops blowing air and moves to the top position. Return to position ■. In the case shown, the intervals ■~■, ■~■.

■〜■、■〜Oではエアを・吹付けられる時間が比較的
短かく、区間■〜■が比較的長いことになる。
In ■~■ and ■~O, the time during which air is blown is relatively short, and the sections ■~■ are relatively long.

なお成形部2の特定部分のみを冷却したい場合は、冷却
ブロック5を上下動しなくてもよい。
Note that if it is desired to cool only a specific portion of the molding section 2, the cooling block 5 does not need to be moved up and down.

冷却ブロック5から取出された/4リソン1は、直ちに
延伸吹込成形金型(図示されない)に運ばれて、公知の
方法により2軸延伸吹込成形されてボトル(第6図の2
2参照)に形成される。
The /4 Lithon 1 taken out from the cooling block 5 is immediately transferred to a stretch blow mold (not shown) and biaxially stretch blow molded by a known method to form a bottle (2 in Figure 6).
2).

(発明の効果) 本発明の方法によれば、比較的高温のパリソンの成形部
に、内周方向から同時に気体を吹付けるのであるから、
成形部の各部分を、円周方向に実質的に均一に、ガラス
転移点以上の延伸吹込成形に適した所定温度まで冷却す
るのが容易であり、つまシ冷却されるべき温度の調節が
容易であシ、。
(Effects of the Invention) According to the method of the present invention, gas is simultaneously blown onto the molded part of the parison at a relatively high temperature from the inner peripheral direction.
It is easy to cool each part of the molding section substantially uniformly in the circumferential direction to a predetermined temperature suitable for stretch blow molding that is above the glass transition point, and it is easy to adjust the temperature to be cooled. Adashi.

従りて形成された&)ルの肉厚分布の調節が容易に、か
つ確実に行なえるという効果を奏する。
Therefore, it is possible to easily and reliably adjust the thickness distribution of the formed &) hole.

さらに本発明の装置によれば、比較的高温の、p4リソ
ンの成形部の各部分を、円周方向に実質的に均一に、所
定温度まで確実に冷却することができ以下実験例につい
て説明する。
Further, according to the apparatus of the present invention, each part of the molding section of the p4 litho, which is relatively high temperature, can be reliably cooled to a predetermined temperature substantially uniformly in the circumferential direction.Experimental examples will be described below. .

保持リング1aの下面に接する上方部2aの部分の外径
が26.26m、円筒状部2bの最小径の部分の外径が
23.28mm、成形部2の高さが115.04種、肉
厚3.7mのポリエチレンテレフタレートよりなる有底
・クリソン1を射出成形によって形成し、直ちに金型よ
り取出し、第1図に示すように冷却装置4にセットした
。セット直後の成形部2の温度を輻射温度計で測定した
所、上方部2aの上端近傍が120℃、それより下方に
行くに従って温度が低下して、円筒状部2bの下端近傍
が90℃であった。
The outer diameter of the upper part 2a in contact with the lower surface of the retaining ring 1a is 26.26 mm, the outer diameter of the smallest diameter part of the cylindrical part 2b is 23.28 mm, the height of the molded part 2 is 115.04 mm, A bottomed crison 1 made of polyethylene terephthalate having a thickness of 3.7 m was formed by injection molding, immediately taken out of the mold, and set in a cooling device 4 as shown in FIG. When the temperature of the molded part 2 was measured with a radiation thermometer immediately after setting, it was 120°C near the upper end of the upper part 2a, and the temperature decreased as it went downward, and was 90°C near the lower end of the cylindrical part 2b. there were.

冷却装置4に用いられた冷却ブロック5の厚さは20瓢
、吹出口20の開口部20aの高さ12瓢、間隙11の
幅Wは8.6調であった。ノ41)ソン1のセット後直
ちに、冷却ブロック5を、その下面5bがパリソンの底
部2Cの下面よ、960+m++上方に位置するように
移動して、その位置に保ったまま、エアを吹出口20よ
・シ吹出して、3秒間成形部2の冷却を行なった。なお
高圧室13の1次圧および低圧室15の2次圧は夫れ夫
れ、1 kl/cm2および0.3 kg/an2であ
シ、冷却風量は150 NA、4であった。
The thickness of the cooling block 5 used in the cooling device 4 was 20 mm, the height of the opening 20a of the outlet 20 was 12 mm, and the width W of the gap 11 was 8.6 mm. 41) Immediately after setting the parison 1, move the cooling block 5 so that its lower surface 5b is located 960+m++ above the lower surface of the bottom 2C of the parison, and while keeping it in that position, air is supplied to the air outlet 20. The molded part 2 was cooled for 3 seconds by blowing out water. The primary pressure of the high pressure chamber 13 and the secondary pressure of the low pressure chamber 15 were 1 kl/cm2 and 0.3 kg/an2, respectively, and the cooling air volume was 150 NA, 4.

その後直ちに・クリソン1を延伸吹込金型に送シ、2軸
延伸吹込成形して、第6図に示す形状のボトル22を作
製した。?トル22の全高は200mで、図のように胴
部22aの高さ方向はぼ中央に、肉厚部22&1が形成
された。肉厚部22a、の厚さは0.:3m、他の胴部
部分の厚さは0.2 mであった。肉厚部22a1の高
さは80mで、その下端の&トル底端よりの高さは50
■であった。
Immediately thereafter, Clison 1 was sent to a stretch blow mold and subjected to biaxial stretch blow molding to produce a bottle 22 having the shape shown in FIG. ? The total height of the torle 22 was 200 m, and as shown in the figure, a thick portion 22&1 was formed approximately at the center of the body portion 22a in the height direction. The thickness of the thick portion 22a is 0. :3 m, and the thickness of the other body part was 0.2 m. The height of the thick part 22a1 is 80 m, and the height from its lower end to the bottom end is 50 m.
■It was.

なお比較のため、・やりソン10強制冷却を行なFor comparison, ・Yarison 10 forced cooling was performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置の例の1部
切断正面図、第2図は第1図の■−■線に沿う横断面図
であって、本発明の装置の冷却プロ、りの実施例を示す
図面、第3図は第2図の■−m線に沿う縦断面図、第4
図は第3図の■−■線に沿う横断面図、第5図は第2図
の冷却ブロックを用いてパリソンの冷却を行なうスケジ
エールの例を示す線図、第6図は本発明の方法により製
造されるボトルの例の1部切断正面図である。 1・・・有底・クリソン、2・・・成形部、5・・・冷
却プロ、り、12・・・透孔、13・・・円環状高圧室
、15・・・円環状低圧室、16ay16b・・・スリ
ット、17・・・導孔、18・・・加圧エア(加圧気体
)、19・・・環状絞シ部、20・・・環状エア吹出口
、22・・・&トル。 第 1 図 第2図 第3図 第4図
FIG. 1 is a partially cutaway front view of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■-■ of FIG. Figure 3 is a longitudinal sectional view taken along line ■-m in Figure 2,
The figure is a cross-sectional view taken along the line ■-■ in Figure 3, Figure 5 is a diagram showing an example of a schedier that cools a parison using the cooling block in Figure 2, and Figure 6 is a method according to the present invention. 1 is a partially cutaway front view of an example of a bottle manufactured by. DESCRIPTION OF SYMBOLS 1... Bottomed Clison, 2... Molding part, 5... Cooling pro, Ri, 12... Through hole, 13... Annular high pressure chamber, 15... Annular low pressure chamber, 16ay16b...slit, 17...conducting hole, 18...pressurized air (pressurized gas), 19...annular constriction part, 20...annular air outlet, 22...&tor . Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)ポリエステル有底パリソンの成形部を延伸吹込成
形してボトルを製造する方法において、射出成形金型よ
り、該成形部が当該ポリエステルのガラス転移点より高
い、比較的高温の状態で該パリソンを取出し、取出され
た該パリソンの成形部に、円周方向から同時に気体を吹
付けて、該成形部を該ガラス転移点以上の所定温度まで
冷却した後、直ちに延伸吹込成形を行なうことを特徴と
するボトルの製造方法。
(1) In a method of manufacturing a bottle by stretch blow molding a molded part of a polyester bottomed parison, the parison is heated in a relatively high temperature state higher than the glass transition point of the polyester using an injection mold. The molded part of the parison is taken out, and gas is simultaneously blown from the circumferential direction onto the molded part of the taken out parison to cool the molded part to a predetermined temperature above the glass transition point, and then stretch blow molding is immediately performed. A method of manufacturing bottles.
(2)ポリエステル有底パリソンの成形部を延伸吹込成
形して、ボトルを製造する装置において、該装置は、該
成形部を挿入可能な透孔、該透孔を包囲する環状高圧室
、該環状高圧室に加圧気体を導く、該環状高圧室に対し
ほぼ接線方向に延びる導孔、該環状高圧室の半径方向内
側にあって、円周方向に沿い不連続な複数のスリットを
介して該環状高圧室と接続する環状低圧室、および該環
状低圧室に環状絞り部を介して接続し、半径方向内側に
向って断面台形状に拡開した、該透孔に挿入された該成
形部に気体を吹付けて、該成形部を所定温度まで冷却す
るための環状気体吹出口を有する、冷却ブロックを備え
ることを特徴とするボトルの製造装置。
(2) An apparatus for manufacturing a bottle by stretch blow molding a molded part of a polyester bottomed parison, the apparatus comprising: a through hole into which the molded part can be inserted; an annular high pressure chamber surrounding the through hole; A guide hole extending substantially tangentially to the annular high-pressure chamber that guides pressurized gas into the high-pressure chamber; An annular low-pressure chamber connected to an annular high-pressure chamber, and an annular low-pressure chamber connected to the annular low-pressure chamber through an annular constriction section, expanding radially inward to have a trapezoidal cross section, and the molded section inserted into the through hole. A bottle manufacturing apparatus comprising a cooling block having an annular gas outlet for blowing gas to cool the molded part to a predetermined temperature.
JP60025219A 1985-02-14 1985-02-14 Method and apparatus for producing bottle Granted JPS61185429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025219A JPS61185429A (en) 1985-02-14 1985-02-14 Method and apparatus for producing bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025219A JPS61185429A (en) 1985-02-14 1985-02-14 Method and apparatus for producing bottle

Publications (2)

Publication Number Publication Date
JPS61185429A true JPS61185429A (en) 1986-08-19
JPH0423622B2 JPH0423622B2 (en) 1992-04-22

Family

ID=12159849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025219A Granted JPS61185429A (en) 1985-02-14 1985-02-14 Method and apparatus for producing bottle

Country Status (1)

Country Link
JP (1) JPS61185429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176871A (en) * 1990-10-15 1993-01-05 Nissei Asb Machine Co., Ltd. Method of cooling a preform in a cooling tube
US5232715A (en) * 1990-10-15 1993-08-03 Nissei Asb Machine Co., Ltd. Apparatus for cooling a preform in a cooling tube
JP2006346891A (en) * 2005-06-13 2006-12-28 Aoki Technical Laboratory Inc Injection stretch blow molding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176871A (en) * 1990-10-15 1993-01-05 Nissei Asb Machine Co., Ltd. Method of cooling a preform in a cooling tube
US5232715A (en) * 1990-10-15 1993-08-03 Nissei Asb Machine Co., Ltd. Apparatus for cooling a preform in a cooling tube
JP2006346891A (en) * 2005-06-13 2006-12-28 Aoki Technical Laboratory Inc Injection stretch blow molding method
JP4714509B2 (en) * 2005-06-13 2011-06-29 株式会社青木固研究所 Injection stretch blow molding method

Also Published As

Publication number Publication date
JPH0423622B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US4929168A (en) Apparatus for producing a tubular object of polyethelene terephthalate or other thermoplastic material from a tubular blank of amorphous material
US5290506A (en) Process of injection stretch blow molding hollow article having thick-walled bottom
US5178816A (en) Method of molding heat-resistant vessel having thick portion on body
EP0481868B1 (en) Method and apparatus for cooling a preform
US4850850A (en) Apparatus for preparing heat-set plastic hollow vessel
EP0092904A1 (en) Injection blow molding apparatus
US4432530A (en) Mold-core rod combination for forming an injection molded plastic parison
US5232715A (en) Apparatus for cooling a preform in a cooling tube
US4256789A (en) Injection molded, polyethylene terephthalate parison for blow molding
US4317793A (en) Process for the production of oriented hollow bodies
CA1079014A (en) Method of injection-blow molding biaxially-oriented hollow plastic containers
GB2124543A (en) Parison for oriented plastic containers
CA1134112A (en) Method and apparatus of making molecularly oriented plastic bottles
US5124110A (en) Temperature adjusting and compressing in injection stretch blow molding for forming raised portions in the container produced
JPH1134152A (en) Large-sized container and its molding method
US4049761A (en) Process for the manufacture of oriented hollow articles made of thermoplastic material
JPS61185429A (en) Method and apparatus for producing bottle
JPH046889Y2 (en)
US11958229B2 (en) Resin container manufacturing method
US4588620A (en) Parison for making molecularly oriented plastic bottles
US4235837A (en) Method of making oriented containers
US4221759A (en) Process for the production of hollow articles from preforms of a thermoplastic
US4521369A (en) Method of making molecularly oriented plastic bottles
US7905719B2 (en) Blow mold
JP3513673B2 (en) Manufacturing method and apparatus for plastic bottles and mandrel for holding cap