JPS6118393A - Control circuit of inverter - Google Patents
Control circuit of inverterInfo
- Publication number
- JPS6118393A JPS6118393A JP59137878A JP13787884A JPS6118393A JP S6118393 A JPS6118393 A JP S6118393A JP 59137878 A JP59137878 A JP 59137878A JP 13787884 A JP13787884 A JP 13787884A JP S6118393 A JPS6118393 A JP S6118393A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- output
- current
- voltage
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008929 regeneration Effects 0.000 claims description 22
- 238000011069 regeneration method Methods 0.000 claims description 22
- 230000006698 induction Effects 0.000 claims description 7
- 238000010248 power generation Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 5
- 230000001172 regenerating effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 7
- 238000004804 winding Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/047—V/F converter, wherein the voltage is controlled proportionally with the frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
- H02M7/53875—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、誘導電動機の力行時及び回生時を通してト
ルク特性の改善を図ったインバータの制御回路に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an inverter control circuit that improves the torque characteristics of an induction motor during power running and during regeneration.
従来のこの種装置として第1図に示すものがあった。図
において、1は交流電源、2は交流を直流に変換する交
流直流変換回路、3は平滑用コンデンサ、4は直流より
新たな交流に変換する直流交流変換回路、5は誘導電動
機である。また、6は周波数設定回路、Tは前記周波数
設定回路6で設定された周波数になめらかに特性を追従
させるためのクッション回路、8は周波数に対する電圧
を指令する電圧周波数比率回路、9は前記クッション回
路7から出力される周波数指令と電圧周波数比率回路8
から出力される電圧指令により、インバータの出力のス
イッチングタイミングを決定するPWM発生回路である
。10は、直流母線の直流を検出しその電流に比例した
電圧を出力する電流検出器、11は無負荷時の電流値を
設定する電流設定回路で、この電流設定回路11の出力
値を前記電力検出器10の出力値より差引くことにより
、負荷による電流の増加分を検出する。12は電流増加
分に比例した電圧を出力する補正電圧出力回路で、その
比例定数は誘導機の一次抵抗(第2図のrl)に略一致
させている。この補正電圧出力回路12からの補正電圧
と前記電圧O周波数比率回路8の出力とを加え、PWM
発生回路9に入力するようにしている。A conventional device of this type is shown in FIG. In the figure, 1 is an AC power supply, 2 is an AC/DC conversion circuit that converts AC to DC, 3 is a smoothing capacitor, 4 is a DC/AC conversion circuit that converts DC to new AC, and 5 is an induction motor. Further, 6 is a frequency setting circuit, T is a cushion circuit for smoothly following the characteristic to the frequency set by the frequency setting circuit 6, 8 is a voltage frequency ratio circuit for commanding voltage to frequency, and 9 is the cushion circuit. Frequency command output from 7 and voltage frequency ratio circuit 8
This is a PWM generation circuit that determines the switching timing of the inverter output based on the voltage command output from the inverter. Reference numeral 10 denotes a current detector that detects the direct current of the DC bus and outputs a voltage proportional to the current. Reference numeral 11 denotes a current setting circuit that sets the current value during no-load. By subtracting it from the output value of the detector 10, the increase in current due to the load is detected. Reference numeral 12 denotes a correction voltage output circuit that outputs a voltage proportional to the increase in current, and its proportionality constant is made approximately equal to the primary resistance (rl in FIG. 2) of the induction machine. This correction voltage from the correction voltage output circuit 12 and the output of the voltage O frequency ratio circuit 8 are added, and the PWM
The signal is input to the generating circuit 9.
次に第1図の従来回路の動作について説明する。Next, the operation of the conventional circuit shown in FIG. 1 will be explained.
動作の詳細説明に入るまえに第2図に示す誘動電動機の
等価回路について解説する。まず無負荷時の励磁巻線の
端子電圧Eは無負荷時の電流を1.とすると
K = V4− (r1+ Ptt)to ・・・・
・・・・・・・・・・・・・・・・・・・・(1)但し
、p= −
t
ここで、rl;−次巻線の抵抗、
t1ニー次巻線の漏洩インダクタンス
となる。ここで負荷が重くなフ、すべ9Sが増大して無
負荷時電流ioがio+Δ1に変化したとすると励磁巻
線電圧E′は(2)式で表わされる。Before entering into a detailed explanation of the operation, the equivalent circuit of the induction motor shown in FIG. 2 will be explained. First, the terminal voltage E of the excitation winding at no load is equal to the current at no load of 1. Then, K = V4- (r1+ Ptt)to...
・・・・・・・・・・・・・・・・・・・・・(1) However, p= − t, where rl; − the resistance of the secondary winding, t1 the leakage inductance of the secondary winding. Become. Assuming that the load becomes heavy and the total 9S increases and the no-load current io changes to io+Δ1, the excitation winding voltage E' is expressed by equation (2).
E’=’h −(r1+P4X1o+Δ1)=V1−(
rx+P4)to (r1+Pt1)Δs ・−・
−[21従って、励磁巻線電圧E′は(rx+pz4)
Δlだけ減少する。この電圧減少分を交流入力電圧■1
により補正し、励磁巻線電圧E′が一定になるように制
御したのが第1図の従来例でちる。E'='h - (r1+P4X1o+Δ1)=V1-(
rx+P4)to (r1+Pt1)Δs ・-・
-[21 Therefore, the excitation winding voltage E' is (rx+pz4)
It decreases by Δl. This voltage decrease is calculated as AC input voltage ■1
In the conventional example shown in FIG. 1, the excitation winding voltage E' is controlled to be constant.
すなわち、電流検出器10により最初に直流母線電流の
ピーク値を検出する。第4図(a)の波形はインバータ
出力電圧が方形波時の直流母線電流1dcと3相交流の
一相の線電流1を同じスケールで示したもので、 i
dcのピーク値ipは線電流lのピーク値と一致してい
る。一方、(線電流iのピーク値)=々(1基本波実効
値)十i(高調波リップル分)であり、高調波リップル
分は線電流iの基本波実効値に関係なくほぼ一定である
。従って、直流母線電流ピーク値ipを検出し、固定の
高調波リップル分を引き去ることによって、線電流lの
基本波実効値を得ることができる。That is, the current detector 10 first detects the peak value of the DC bus current. The waveform in Fig. 4(a) shows the DC bus current 1 dc and the 3-phase AC single-phase line current 1 on the same scale when the inverter output voltage is a square wave, i
The peak value ip of dc matches the peak value of the line current l. On the other hand, (peak value of line current i) = 1 fundamental wave effective value) 10 i (harmonic ripple component), and the harmonic ripple component is almost constant regardless of the fundamental wave effective value of line current i. . Therefore, by detecting the DC bus current peak value ip and subtracting the fixed harmonic ripple component, the fundamental wave effective value of the line current l can be obtained.
すなわち、電流検出器10では、上述の回路演算を行な
い、線電流1の基本波実効値に相当する電圧を出力する
。また、直流母線電流を検出するには、検出器1個のイ
ンバータ出力周波数を6倍することによって検出するこ
とができる。よってインバータ出力電流(線電流i)を
検出する場合に比し、応答性や経済性の面から効果的で
ある。That is, the current detector 10 performs the above-mentioned circuit calculation and outputs a voltage corresponding to the fundamental wave effective value of the line current 1. Furthermore, the DC bus current can be detected by multiplying the inverter output frequency of one detector by six. Therefore, compared to detecting the inverter output current (line current i), this method is more effective in terms of responsiveness and economy.
次に電流設定回路11では(2)式の無負荷電流IQに
相当する値を予め設定しておき電流検出器10の出力よ
り差引くようにする。この数値演算により(2)式に示
した負荷による電流増加分Δlを得る。補正電圧出力回
路12は前記電流増加分Δiを11倍する補正電圧出力
回路で、この出力信号が補正すべき電圧値を与える。正
確には補正電圧出力回路12で(rl+pt1)倍すべ
きであるが、tlはrlに比して小さいので無視してい
る。また、゛補正電圧出力回路12の出力を電圧周波数
比率回路8の出力に加えて、PWM発生回路9に入力す
る。以上の動作によりミ動機負荷の影響によυ線電流l
が増加した場合にも第2図の電圧Eは一定に保たれるた
め、重負荷時に励磁磁束の減少に起因するトルク不足を
解消することができるとしていた。Next, in the current setting circuit 11, a value corresponding to the no-load current IQ of equation (2) is set in advance and subtracted from the output of the current detector 10. Through this numerical calculation, the current increase amount Δl due to the load shown in equation (2) is obtained. The correction voltage output circuit 12 is a correction voltage output circuit that multiplies the current increase amount Δi by 11, and this output signal provides the voltage value to be corrected. More precisely, it should be multiplied by (rl+pt1) in the correction voltage output circuit 12, but since tl is smaller than rl, it is ignored. Further, the output of the corrected voltage output circuit 12 is added to the output of the voltage frequency ratio circuit 8 and input to the PWM generation circuit 9. Due to the above operation, the υ line current l is reduced due to the influence of the motor load.
Since the voltage E shown in FIG. 2 is kept constant even when E increases, it is possible to eliminate the torque shortage caused by a decrease in excitation magnetic flux during heavy loads.
従来のインバータ制御装置は以上のように構成されてい
るので、電動機運転モードが力行モードか回生モードか
を判別することなく、直流母線電流の正極性電流ピーク
値を検出して出力電圧を加算補正することにしていたの
で、回生モードにおいては、第2図の等価回路における
電流ioの流れが逆になるので、出力電圧補正をしなく
てもE電圧が上昇し、過励磁運転になる他、従来の補正
方法では加算補正しているので更に過励磁運転になる等
の欠点があった。Conventional inverter control devices are configured as described above, so they detect the positive polarity current peak value of the DC bus current and add and correct the output voltage without determining whether the motor operation mode is power running mode or regeneration mode. Therefore, in the regeneration mode, the flow of current io in the equivalent circuit shown in Figure 2 is reversed, so the E voltage increases even without output voltage correction, resulting in overexcitation operation. Since the conventional correction method performs additive correction, there are also drawbacks such as overexcitation operation.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電動機運転モードが、力行モード
か、回生モードかを自動的に判別するモード判別器を設
け、力行時には負荷電流レベルに応じて出力電圧を加算
補正し、回生時には負荷電流レベルに応じて出力電圧を
減算補正し、過励磁運転を回避するようにしたインバー
タの制御装置を提供することを目的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes a mode discriminator that automatically determines whether the motor operation mode is power running mode or regeneration mode. It is an object of the present invention to provide an inverter control device that performs additive correction on the output voltage according to the load current level and subtractive correction on the output voltage during regeneration according to the load current level to avoid overexcitation operation.
以下、この発明の一実施例を図について説明する。図中
第1図と同一の部分は同一の符号をもって図示した第3
図において101は直流母線電流瞬時値を検出する瞬時
電流検出器、13は瞬時電流検出器101の平均値が正
ならば力行モード、負ならば回生モードと判別するモー
ド判別器、14は瞬時電流検出器101の電流検出出力
値より電流に比例した正極性出力を得る絶対値回路、1
5は前記モード判別器13の出力を受けて、力行モード
時は絶対値出力に正符号を付加し、回生モード時には絶
対値出力に負符号を付加する、極性付加回路である。An embodiment of the present invention will be described below with reference to the drawings. In the figure, the same parts as in Figure 1 are designated by the same reference numerals.
In the figure, 101 is an instantaneous current detector that detects the instantaneous value of the DC bus current, 13 is a mode discriminator that determines the power running mode if the average value of the instantaneous current detector 101 is positive, and the regeneration mode if it is negative, and 14 is the instantaneous current Absolute value circuit that obtains a positive polarity output proportional to the current from the current detection output value of the detector 101, 1
5 is a polarity adding circuit which receives the output of the mode discriminator 13 and adds a positive sign to the absolute value output in the power running mode, and adds a negative sign to the absolute value output in the regeneration mode.
次に動作について説明する。まず、第4図を用いて力行
時と回生時の直流母線電流と出力電流の関係、及び直流
母線電流からモード判別をし、絶対値回路14で出力電
流に比例した出力の絶対値が得られる原理について説明
する。しかし第4図においては説明の簡累化のため矩形
波出力電圧時の電流波形を示し、PWMの影響は無視し
ている。Next, the operation will be explained. First, the mode is determined from the relationship between the DC bus current and output current during power running and regeneration, and the DC bus current using Fig. 4, and the absolute value of the output proportional to the output current is obtained using the absolute value circuit 14. Explain the principle. However, in order to simplify the explanation, FIG. 4 shows the current waveform at the time of a rectangular wave output voltage, and ignores the influence of PWM.
また正弦波近似PWMを行った場合の電流波形は正弦波
状になるが、基本的関係はPWMにおいても変わらない
としている。Furthermore, although the current waveform when performing sine wave approximation PWM becomes a sine wave, the basic relationship remains the same in PWM.
まず、第4図において(a)〜(d)は力行モード、(
e)〜(h)は回生モードの動作説明用図である。そこ
で(a)は力行モード、(e)は回生モードにおける出
力電流(交流1相分の線電流)iと直流母線電流1dc
の波形を示す。力行モードにおいては直流母線電流1d
cの正の最大値(ピーク値)と、出力電流1のピーク値
は一致する。又、回生モードにおいては直流母線電流1
dcの負の最大値と出力電流lのピーク値は一致する。First, in Fig. 4, (a) to (d) are power running mode, (
e) to (h) are diagrams for explaining the operation in regeneration mode. Therefore, (a) is the power running mode, (e) is the regeneration mode, the output current (line current for one AC phase) i and the DC bus current 1dc
The waveform of is shown. In power running mode, DC bus current 1d
The maximum positive value (peak value) of c and the peak value of output current 1 match. In addition, in the regeneration mode, the DC bus current 1
The maximum negative value of dc and the peak value of the output current l match.
これらの現象から力行モードか、回生モードかが判断で
きれば直流母線電流idcより出力電流lのピーク値が
判明する。あるいは、直流母線電流1dcの絶対値のピ
ーク値は出力電流lのピーク値と一致するから、直流母
線電流idcを観測することによ多出力電流iのピーク
値、すなわち実効値レベルが判明することになる。If it can be determined from these phenomena whether it is the power running mode or the regeneration mode, the peak value of the output current l can be determined from the DC bus current idc. Alternatively, since the peak value of the absolute value of the DC bus current 1dc matches the peak value of the output current l, the peak value of the multi-output current i, that is, the effective value level, can be determined by observing the DC bus current idc. become.
次に力行モードか回生モードかをいかに判別するかを示
す。まず力行時にはインバータは電動機に電力を供給し
ており、直流部の出力電力は正で直流母線電流1dcの
平均値は正となる。この時の波形を(b)に示す。回生
時は電動機からインバータが逆に電力を供給されており
直流母線電流idcの平均値は(f)に示す如く負とな
る。従って、直流母線電流1dcの平均値の極性により
正ならば力行、負ならば回生であると判別する。第4図
の(C)と(g)は直流母線電流1daの絶対値および
そのピーク値ipである。また、(d) 、 (h)は
(c)のピーク値1.に(b)。Next, we will show how to determine whether the mode is power running mode or regeneration mode. First, during power running, the inverter supplies power to the motor, the output power of the DC section is positive, and the average value of the DC bus current 1dc is positive. The waveform at this time is shown in (b). During regeneration, power is supplied from the motor to the inverter in reverse, and the average value of the DC bus current idc becomes negative as shown in (f). Therefore, depending on the polarity of the average value of the DC bus current 1 dc, it is determined that if it is positive, it is power running, and if it is negative, it is regeneration. (C) and (g) in FIG. 4 are the absolute value of the DC bus current 1 da and its peak value ip. In addition, (d) and (h) are the peak value of (c) 1. (b).
(f)で得られた極性を付加した波形の状態を示す。The state of the waveform obtained in (f) with added polarity is shown.
引続いて第3図の動作について説明する。Subsequently, the operation shown in FIG. 3 will be explained.
まず、瞬時直流検出器101により直流母線電流ide
を検出する。第5図に示した様にモード判別器13の前
記1dcの平均値をとシ正ならば力行、負ならば回生モ
ードと判別する。次に絶対値回路14で直流母線電流1
dcの絶対値をと9そのピーク値をピークホールドする
。この検出値は第5図に示す様に出力電流1のピーク値
と一致する。すなわち、前述したように出力電流iは(
1のピーク値)=々(1基本波実効値)+L(高調波リ
ップル電流)であシ、高調波リップル分は前記出力電流
lの基本波実効値とは関係なくほぼ一定でちる。従って
、直流母線電流idc 、ピーク値1pを検出し、固定
の高調波リップル分を引くことによって出力電流iの基
本波実効値を得ることができる。First, the DC bus current ide is detected by the instantaneous DC detector 101.
Detect. As shown in FIG. 5, if the average value of 1 dc is determined by the mode discriminator 13 and is positive, it is determined that it is a power running mode, and if it is negative, it is determined that it is a regeneration mode. Next, in the absolute value circuit 14, the DC bus current 1 is
Take the absolute value of dc and hold its peak value. This detected value coincides with the peak value of the output current 1 as shown in FIG. That is, as mentioned above, the output current i is (
1 peak value) = (1 fundamental wave effective value) + L (harmonic ripple current), and the harmonic ripple component remains almost constant regardless of the fundamental wave effective value of the output current l. Therefore, by detecting the peak value 1p of the DC bus current idc and subtracting the fixed harmonic ripple, the effective value of the fundamental wave of the output current i can be obtained.
よって絶対値回路14においては、以上の回路演算をお
こない、出力電流1の基本波実効値に和尚する信号を出
力する。Therefore, the absolute value circuit 14 performs the above circuit calculations and outputs a signal that corresponds to the effective value of the fundamental wave of the output current 1.
次に極性付加回路15においてはモード判別器13の出
力により、力行時には絶対値回路14の出力を正極性と
して出力し、回生時には絶対値出力を負極性として出力
する。Next, in the polarity adding circuit 15, according to the output of the mode discriminator 13, the output of the absolute value circuit 14 is output as positive polarity during power running, and the absolute value output is output as negative polarity during regeneration.
次に電流設定回路11では(2)式の無負荷電流i(H
に相当する値を予め設定しておき極性付加回路15の出
力より差引くようにする。この演算により(2)式の負
荷による電流増加分Δiを得る。補正電圧出力回路12
はΔiを11倍する補正電圧出力回路で、この出力が補
正すべき電圧を与える。正確には前記補正電圧出力回路
12で(r1+Pt1)倍すべきであるが、tlは小さ
いので無視している。よって、補正電圧出力回路12の
出力を電圧周波数比率回路8の出力に加えPWM発生回
路9に入力する。Next, in the current setting circuit 11, the no-load current i(H
A value corresponding to is set in advance and subtracted from the output of the polarity adding circuit 15. Through this calculation, the current increase amount Δi due to the load in equation (2) is obtained. Correction voltage output circuit 12
is a correction voltage output circuit which multiplies Δi by 11, and this output provides the voltage to be corrected. To be exact, the correction voltage output circuit 12 should multiply it by (r1+Pt1), but since tl is small, it is ignored. Therefore, the output of the corrected voltage output circuit 12 is added to the output of the voltage frequency ratio circuit 8 and input to the PWM generation circuit 9.
以上の動作により負荷により電流が増加しても、力行モ
ードにおいては出力電圧を加算補正し回生モードにおい
ては紙力電圧を減算補正するので、第2図の電圧Eは一
定に保たれ力行重負荷時励磁磁束の減少に起因するトル
ク不足を解消することができるし、また、回生重負荷に
おいては過励磁現象を回避することが可能となる。As a result of the above operation, even if the current increases due to the load, the output voltage is added and corrected in the power running mode, and the paper power voltage is subtracted and corrected in the regeneration mode, so the voltage E in Figure 2 is kept constant and the power running load is It is possible to eliminate the torque shortage caused by the decrease in the excitation magnetic flux, and it is also possible to avoid the overexcitation phenomenon under regenerative heavy loads.
また、第5図は本発明の他の実施例を示したインバータ
の制御回路の構成図で、第3図の絶対値回路14と極性
付加回路15の代わりに正側ピークホールド回路16と
負側ピークホールド回路17を設は力行モード時は正側
ピークホールドを回生時・は負側ビークホールド出力を
選択するようにしている。選択回路18の出力は第4図
(d) 、 (h)の様になる。また、実施例はPWM
方式インバータについて示したが、PAM変調方式等の
他の方式であってもよく、更に電流検出器出力から補正
電圧値を演算するのにマイクロプロセッサ−を用いても
よい。FIG. 5 is a configuration diagram of an inverter control circuit showing another embodiment of the present invention, in which a positive side peak hold circuit 16 and a negative side peak hold circuit 16 are used instead of the absolute value circuit 14 and polarity addition circuit 15 in FIG. The peak hold circuit 17 is designed to select a positive peak hold output during power running mode and a negative peak hold output during regeneration. The output of the selection circuit 18 is as shown in FIGS. 4(d) and (h). In addition, the example is PWM
Although an inverter method is shown, other methods such as a PAM modulation method may be used, and a microprocessor may also be used to calculate the corrected voltage value from the current detector output.
以上のようにこの発明によれば、電動機の入力電流をイ
ンバータの直流母線電流より検出しその平均値を求める
ことにより力行モードか、回生モードかを判別し、電流
増加時、1次インピーダンスの降下分を動作モードに応
じて自動的に補正するようにしたので、応答性もよく、
常に励磁磁束を一定に保ちトルク不足を解消し過励磁運
転をなくすることができる効果がある。As described above, according to the present invention, the input current of the motor is detected from the DC bus current of the inverter and the average value thereof is determined to determine whether it is a power running mode or a regeneration mode, and when the current increases, the primary impedance decreases. Since the minutes are automatically corrected according to the operating mode, responsiveness is also good.
This has the effect of always keeping the excitation magnetic flux constant, eliminating torque shortages, and eliminating overexcitation operation.
第1図は従来のこの種のインノ(−夕制御装置の回路構
成図、第2図は誘導電動機の等価回路図、第3図はこの
発明の一実施例によるインノ(−夕制御装置の制御回路
構成図、第4図は本発明の一実施例の動作を説明するだ
めの出力電流と直流母線電流の関係を示す要部の波形図
、第5図はこの発明の他の実施例を示すインバータ制御
装置の回路構成図である。
1・・・交流電源、2・・・交流直流変換回路、3・・
・平滑コンデンサー、4・・・直流交流変換回路、5・
・・誘導電動機、6・・・速度設定器、7・・・クッシ
ョン回路、8・・・電圧周波数比率回路、9・・・PW
M発生回路、10.101・・・電流検出器、11・・
・無負荷電流設定器、12・・・補正電圧出力回路、1
3・・・モート°判別器、14・・・絶対値回路、15
・・・極性付加回路、16・・・正側ピークホールド回
路、17・・・負側ピークホールド回路、18・・・選
択回路
なお、図中、同一符号は同一、又は相当部分を示す。
第1図
第2図
Vr
第3図
第5図FIG. 1 is a circuit diagram of a conventional control device of this type, FIG. 2 is an equivalent circuit diagram of an induction motor, and FIG. 3 is a control diagram of a conventional control device of this type. A circuit configuration diagram, FIG. 4 is a waveform diagram of the main part showing the relationship between the output current and the DC bus current, which is used to explain the operation of one embodiment of the present invention, and FIG. 5 shows another embodiment of the present invention. It is a circuit configuration diagram of an inverter control device. 1... AC power supply, 2... AC/DC conversion circuit, 3...
・Smoothing capacitor, 4...DC/AC conversion circuit, 5.
...Induction motor, 6...Speed setter, 7...Cushion circuit, 8...Voltage frequency ratio circuit, 9...PW
M generation circuit, 10.101...Current detector, 11...
・No-load current setting device, 12...Correction voltage output circuit, 1
3...Mote degree discriminator, 14...Absolute value circuit, 15
. . . polarity addition circuit, 16 . . . positive side peak hold circuit, 17 . . . negative side peak hold circuit, 18 . Figure 1 Figure 2 Vr Figure 3 Figure 5
Claims (2)
定器と、前記周波数設定器からの出力に応じて、あらか
じめ設定された電圧周波数比率で出力電圧を指令する、
電圧周波数比率回路と、前記周波数設定器の出力に応動
して可変電圧、可変周波数をPWM発生回路より出力す
るインバータの制御回路において、前記インバータ回路
の負荷電流を無負荷相当の電流レベルに設定する電流設
定回路と、前記インバータ回路にて駆動される誘導電動
機に入力される電流を検出し、該検出電流値から前記電
流設定回路の設定値を減算する減算回路及び前記インバ
ータ回路が力行か回生かを判別するモード判別器とを備
え、力行時には前記減算回路の出力に略比例した電圧指
令を前記電圧周波数比率回路の出力に加算し、また回生
時には減算するように前記PWM発生回路に出力指令す
ることを特徴とするインバータの制御回路。(1) a frequency setter that sets the output frequency of the inverter circuit, and a command for output voltage at a preset voltage frequency ratio according to the output from the frequency setter;
In a voltage frequency ratio circuit and an inverter control circuit that outputs variable voltage and variable frequency from a PWM generation circuit in response to the output of the frequency setter, the load current of the inverter circuit is set to a current level equivalent to no load. A current setting circuit, a subtraction circuit that detects a current input to an induction motor driven by the inverter circuit, and subtracts a setting value of the current setting circuit from the detected current value, and a subtraction circuit that detects whether the inverter circuit is power or regeneration. and a mode discriminator for discriminating, and outputs an output command to the PWM generation circuit to add a voltage command approximately proportional to the output of the subtraction circuit to the output of the voltage frequency ratio circuit during power running, and to subtract it during regeneration. An inverter control circuit characterized by:
最小値を検出する絶対値回路と、前記直流母線の平均値
を得る瞬時電流検出器と、前記瞬時電流検出器の出力の
平均値が正の時は最大値を、また、負の時は最小値を選
択するモード判別器とを備えたことを特徴とする特許請
求の範囲第1項記載のインバータの制御回路。(2) an absolute value circuit that detects the maximum and minimum values of the DC bus current of the inverter circuit; an instantaneous current detector that obtains the average value of the DC bus; and an absolute value circuit that detects the average value of the DC bus current; 2. The inverter control circuit according to claim 1, further comprising a mode discriminator that selects a maximum value when the value is negative, and a mode discriminator that selects the minimum value when the value is negative.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59137878A JPS6118393A (en) | 1984-07-05 | 1984-07-05 | Control circuit of inverter |
DE19853517694 DE3517694A1 (en) | 1984-05-21 | 1985-05-17 | CONTROL CIRCUIT FOR AN INVERTER |
GB08512649A GB2159353B (en) | 1984-05-21 | 1985-05-20 | Inverter control apparatus |
US06/735,649 US4663578A (en) | 1984-05-21 | 1985-05-20 | Inverter control apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59137878A JPS6118393A (en) | 1984-07-05 | 1984-07-05 | Control circuit of inverter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6118393A true JPS6118393A (en) | 1986-01-27 |
Family
ID=15208800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59137878A Pending JPS6118393A (en) | 1984-05-21 | 1984-07-05 | Control circuit of inverter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6118393A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006296168A (en) * | 2005-04-14 | 2006-10-26 | Yaskawa Electric Corp | Power conversion equipment and power failure determination method therefor |
JP2009089600A (en) * | 2007-04-05 | 2009-04-23 | Denso Corp | Controller of multi-phase rotating machine |
-
1984
- 1984-07-05 JP JP59137878A patent/JPS6118393A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006296168A (en) * | 2005-04-14 | 2006-10-26 | Yaskawa Electric Corp | Power conversion equipment and power failure determination method therefor |
JP4737712B2 (en) * | 2005-04-14 | 2011-08-03 | 株式会社安川電機 | Power converter and its power failure determination method |
JP2009089600A (en) * | 2007-04-05 | 2009-04-23 | Denso Corp | Controller of multi-phase rotating machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900005766B1 (en) | Control system for pwm inverter | |
US4663578A (en) | Inverter control apparatus | |
US6750629B2 (en) | Inverter control apparatus and motor driving system | |
US4602701A (en) | Apparatus for controlling the speed of an elevator | |
JPS6118393A (en) | Control circuit of inverter | |
JP2022542983A (en) | Controller, inverter, assembly with inverter and electric machine, method for operating inverter and computer program | |
JPH07298627A (en) | Controller for power converter | |
JP2914364B2 (en) | Power converter | |
JPH0628517B2 (en) | Power converter | |
JPH0783605B2 (en) | Rectifier circuit controller | |
GB2168829A (en) | Apparatus for controlling the speed of an elevator | |
JPS6038960B2 (en) | Inverter voltage control device | |
JPH05176553A (en) | Inverter control method of non-interruption power supply apparatus and non-interruption power supply apparatus | |
JPS6292795A (en) | Control circuit for inverter | |
JPS6118439B2 (en) | ||
US4263541A (en) | Field control system for controlling induction machines | |
KR100313251B1 (en) | Drive control device of motor | |
JPS60245495A (en) | Controller of inverter | |
JPS63133894A (en) | Controller for inverter | |
JPH1141979A (en) | Inverter control method | |
JPH05260762A (en) | Invertor device | |
KR100286354B1 (en) | Elevator power inverter | |
JPH06165406A (en) | Battery charger | |
JPS63133886A (en) | Controller for ac motor | |
JP2510618B2 (en) | Power supply |