JPS61182721A - Electric discharge circuit of electric discharge machine - Google Patents
Electric discharge circuit of electric discharge machineInfo
- Publication number
- JPS61182721A JPS61182721A JP2087085A JP2087085A JPS61182721A JP S61182721 A JPS61182721 A JP S61182721A JP 2087085 A JP2087085 A JP 2087085A JP 2087085 A JP2087085 A JP 2087085A JP S61182721 A JPS61182721 A JP S61182721A
- Authority
- JP
- Japan
- Prior art keywords
- electric discharge
- circuit
- pulse
- power supply
- transistors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 claims abstract description 20
- 238000009760 electrical discharge machining Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/02—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
- B23H1/022—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
a、産業上の利用分野
この発明は放電加工装置に使用される放電回路に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application This invention relates to a discharge circuit used in a discharge machining apparatus.
b、従来の技術
トランジスタ放電回路又はトランジスタ制御付コンデン
サ放電回路は、スイッチング素子としてトランジスタが
使用されており、このトランジスタのドライブパルスの
発振器には、一般にマルチバイブレータが利用されてい
る。放電加工においては、加工条件に応じて、放電電流
の加工パルス幅、休止幅デユーティ比(DUTY F
ACTOR2放電と休止の1サイクル中の放電電流の流
れている時間割合、以下り記号で表わす)等を変更する
必要がある。この変更は、一般にパルス発信器のコンデ
ンサや抵抗を切換え、ドライブパルスの波形を変えて行
なわれ、その波形一般に上下の幅が異る非対称波形であ
る。b. Prior Art A transistor discharge circuit or a capacitor discharge circuit with transistor control uses a transistor as a switching element, and a multivibrator is generally used as an oscillator for a drive pulse of this transistor. In electric discharge machining, the machining pulse width of the discharge current and the pause width duty ratio (DUTY F) are determined according to the machining conditions.
It is necessary to change the time ratio during which the discharge current is flowing during one cycle of ACTOR2 discharge and rest (hereinafter represented by the symbol). This change is generally made by changing the waveform of the drive pulse by switching the capacitor or resistor of the pulse oscillator, and the waveform is generally an asymmetrical waveform with different widths at the top and bottom.
C1発明が解決しようとする@照点
前記のように、ドライブパルス発振器のパルス波形の変
更はコンデンサや抵抗の切換によるので、変更範囲に限
度があり、任意に広範囲な調節ができなかった。また、
ドライブパルスは一般に非対称波形になるので、パルス
発振器とトランジスタの間に交流結合(トランス)を用
いると、パルス出力の変化が大きくなり、トランジスタ
を広範囲なデユーティ比りでドライブすることが困難で
あつ lこ 。C1 @ Point of Interest that the Invention Attempts to Solve As mentioned above, since the pulse waveform of the drive pulse oscillator is changed by switching capacitors and resistors, there is a limit to the range of change, and it has not been possible to arbitrarily make wide-ranging adjustments. Also,
Drive pulses generally have an asymmetric waveform, so if an AC coupling (transformer) is used between the pulse oscillator and the transistor, the pulse output changes greatly, making it difficult to drive the transistor over a wide range of duty ratios. child .
また、放電加工における仕上加工では、面あらざを小さ
くりるために放電電流のパルス幅を短くする必要があり
、パルス発振器のパルス幅を前記のように、コンデンサ
や抵抗を変更して短くしている。一般に、トランジスタ
にはパルスの立上り及び立下りが遅くなるターンオン、
ターンオフ時間があり、パルス幅をあまり短くすると、
パルスが充分立上がる前に降下が始まり、加工用スイッ
チング素子をドライブするパルス出力が得られなかった
。In addition, in finishing machining in electrical discharge machining, it is necessary to shorten the pulse width of the discharge current in order to reduce surface roughness, so the pulse width of the pulse oscillator is shortened by changing the capacitor and resistor as described above. ing. In general, transistors have a turn-on mode that slows down the rise and fall of pulses.
There is a turn-off time, and if the pulse width is too short,
The pulse began to fall before it rose sufficiently, and the pulse output to drive the processing switching element could not be obtained.
一方ターンオフ時間は一般にターンオン時間よりも長く
、全体としてパルス幅を長くするものである。ターンオ
ン時間を短くするには立上がり時にベース電流を大きく
し、ターンオフ時間を短くするには、立上がり後ベース
電流を小さくする必要があるが、1個のトランジスタで
これを行なうことはむつかしい。マルチバイブレータは
2個のトランジスタを用いているので、立上がりの速い
方形パルスの発生が可能であるが、1個のトランジスタ
を用いた従来の放電回路では、ドライブパルスが方形波
でもパルス幅の短い放電電流を得ることは困難である。On the other hand, the turn-off time is generally longer than the turn-on time, which increases the overall pulse width. To shorten the turn-on time, it is necessary to increase the base current at rise, and to shorten the turn-off time, it is necessary to decrease the base current after rise, but it is difficult to do this with a single transistor. Since a multivibrator uses two transistors, it is possible to generate a square pulse with a fast rise, but in a conventional discharge circuit using one transistor, even if the drive pulse is a square wave, it is possible to generate a discharge with a short pulse width. Obtaining current is difficult.
この発明は以上のような問題点を改善し、放電加工装置
の極間に接続された直流電源を広範囲なパルス幅で断続
することの出来るスイッチング機能を備えた放電回路を
提供することを目的とづ−るものである。The purpose of this invention is to improve the above-mentioned problems and provide a discharge circuit equipped with a switching function capable of intermittent DC power supply connected between the poles of an electric discharge machine with a wide range of pulse widths. It is something that can be done.
d9問題を解決するための手段
前記の目的を達成するために、この発明は、直列に接続
された2個のスイッチング素子の0組(nは1以上の整
数)を並列に接続し、これを通して直流電源を極間に接
続すると共に、各スイッチング素子のドライブパルスを
互に位相差可変の同一周期の対称方形波としたものであ
る。Means for Solving the d9 Problem In order to achieve the above object, the present invention connects 0 sets of two switching elements connected in series (n is an integer of 1 or more) in parallel, and through this, A DC power source is connected between the poles, and the drive pulses of each switching element are symmetrical square waves with the same period and variable phase difference.
01作用
このように、スイッチング素子を駆動するドライブパル
スはパルス幅が常に上下共等しい一定周期の方形波であ
るので、パルス発振器とスイッチング素子間に交流結合
(トランス)を用いてもドライブ状態は一定で変動しな
い。また、ドライブパルスの位相差を遅延回路等によっ
て変更するので、放電回路のデユーティ比りは広範囲に
安定して変化する。また、スイッチング素子が2個直列
に接続されているので、スイッチング素子のターンオン
l1iV間を一つのスイッチング素子のベース電流を大
きくすることにより短くし、ターンオフ時間を、他の一
つのスイッチング素子のペース電゛流を小さくして、短
くすることができる。したがって、パルス幅の短い加工
パルスを極間に出力することができる。01 Effect In this way, the drive pulse that drives the switching element is a square wave with a constant period whose pulse width is always equal on both the upper and lower sides, so even if an AC coupling (transformer) is used between the pulse oscillator and the switching element, the drive state remains constant. It does not change. Furthermore, since the phase difference between the drive pulses is changed by a delay circuit or the like, the duty ratio of the discharge circuit can stably change over a wide range. In addition, since two switching elements are connected in series, the turn-on time of the switching elements can be shortened by increasing the base current of one switching element, and the turn-off time can be shortened by increasing the base current of one switching element.゛The flow can be made smaller and shorter. Therefore, a machining pulse with a short pulse width can be output between the machining electrodes.
f、実施例
次に、この発明の実施例について図面に基づいて説明す
る。第1図はこの発明の1つの実施例を示す回路図で、
電極1及び被加工物3が加工間隙5を隔てて対向し、極
間(電極1及び被加工物3の間の意)に直流電源Eを、
直列に接続された2個のトランジスタTγ1及びTγ2
と、限流抵抗Rを通して接続したものである。トランジ
スタTγ1及びTγ2には、それぞれドライブ回路7及
び9が接続され、ドライブ回路7は、パルス発振器11
に接続され、ドライブ回路9は、遅延回路13を介して
同じくパルス発振器11に接続されている。前記遅延回
路13には2個のトランジスタのパルス幅を制御するパ
ルス幅IIjIll器15が接続されている。また、極
間には加工状態判別装置17が接続され、その出力が前
記パルス発振器11及びパルス幅制御器15に加えられ
ている。f. Example Next, an example of the present invention will be described based on the drawings. FIG. 1 is a circuit diagram showing one embodiment of this invention.
The electrode 1 and the workpiece 3 face each other across the machining gap 5, and a DC power source E is connected between the electrodes (meaning between the electrode 1 and the workpiece 3).
Two transistors Tγ1 and Tγ2 connected in series
and are connected through a current limiting resistor R. Drive circuits 7 and 9 are connected to the transistors Tγ1 and Tγ2, respectively, and the drive circuit 7 is connected to the pulse oscillator 11.
The drive circuit 9 is also connected to a pulse oscillator 11 via a delay circuit 13. A pulse width IIjIll circuit 15 is connected to the delay circuit 13 to control the pulse widths of the two transistors. Further, a machining state determining device 17 is connected between the machining holes, and its output is applied to the pulse oscillator 11 and the pulse width controller 15.
次にこの装置の動作について第2図によって説明する。Next, the operation of this device will be explained with reference to FIG.
a図は第1図を簡略化した回路図でドライブ1及び2は
トランジスタTγ1及びTγ2に加えられるドライブパ
ルスである。b図はトランジスタTγ1及びTγ2に加
えられる対称方形ドライブパルス1.2の位相が一致し
ている場合で、AB間の導通時間は斜線部のようになり
、ドライブパルスの周期Tの1/2になる。Figure a is a simplified circuit diagram of Figure 1, and drives 1 and 2 are drive pulses applied to transistors Tγ1 and Tγ2. Figure b shows the case where the phases of the symmetrical rectangular drive pulses 1.2 applied to transistors Tγ1 and Tγ2 match, and the conduction time between A and B is as shown by the shaded area, and is equal to 1/2 of the period T of the drive pulse. Become.
0図はドライブパルス2の位相がドライブパルス1の位
相よりT/4だけ遅れており、AB間の導通時間は斜線
のようにT/4になる。d図はドライブパルス2の位相
がドライブパルス1の位相よりT/2だけ遅れており、
AS間の導通時間は0になる。このように、トランジス
タTγ1及びTγ2のベースに加えられる対称方形パル
スの位相を制御することにより、2個のトランジスタの
共通導通時間を、0からドライブパルスの周期の1/2
まで自由に変更することができる。この放電回路のデユ
ーティ比りの範囲は0〜50%である。In Figure 0, the phase of drive pulse 2 lags the phase of drive pulse 1 by T/4, and the conduction time between AB is T/4 as shown by the diagonal line. In figure d, the phase of drive pulse 2 lags the phase of drive pulse 1 by T/2,
The conduction time between AS becomes 0. In this way, by controlling the phase of the symmetrical square pulse applied to the bases of transistors Tγ1 and Tγ2, the common conduction time of the two transistors can be varied from 0 to 1/2 of the period of the drive pulse.
can be changed freely. The range of the duty ratio of this discharge circuit is 0 to 50%.
第3図は他の実施例を示す図である。a図のように直列
に接続されたトランジスタTγ1及びTγ2の組と、同
様に接続されたトランジスタTγ3及びTγ4の組を並
列に接続し、各トランジスタのドライブパルスの位相を
各組及び各粗間で可変にしたものである。即ちb図のよ
うに、ドライブパルス1及び2の位相を同位相とし、ド
ライブパルス3と4の位相をこれよりT/2遅らせると
、AB間は常に導通し、デユーティ比りは100%にな
る。また、0図のように各ドライブパルス1゜2.3.
4の位相を順次T/4遅らせると、A 8間はT/4毎
にT/4時間導通し、デユーティ比りは50%になる。FIG. 3 is a diagram showing another embodiment. As shown in figure a, a set of transistors Tγ1 and Tγ2 connected in series and a set of transistors Tγ3 and Tγ4 connected in the same way are connected in parallel, and the phase of the drive pulse of each transistor is set for each set and each coarse interval. It is made variable. In other words, as shown in figure b, if the phases of drive pulses 1 and 2 are the same and the phases of drive pulses 3 and 4 are delayed by T/2, conduction will always occur between AB and the duty ratio will be 100%. . Also, as shown in Figure 0, each drive pulse is 1°2.3.
If the phase of 4 is sequentially delayed by T/4, conduction will occur between A and 8 for T/4 time every T/4, and the duty ratio will be 50%.
また、d図のように、ドライブパルス1と2の間、及び
3と4の間にそれぞれT/2の位相差を与えると、AB
間は常に不導通になり、デユーティ比りは0%になる。Also, as shown in figure d, if a phase difference of T/2 is given between drive pulses 1 and 2 and between drive pulses 3 and 4, AB
There is always no conduction between them, and the duty ratio is 0%.
この実施例は1組のトランジスタを2組並列に接続した
ものであるが、2個一組のトランジスタを3組着列に接
続し、各組の導通時間の最大値をT/3とすれば更に安
定に動作する。In this example, two sets of transistors are connected in parallel, but if two sets of transistors are connected in three sets in series, and the maximum conduction time of each set is T/3. It works even more stably.
この放電回路の極間に、第1図に示すように、加工状態
判別装置を接続して、その信号によりパルス幅制御器を
制御し、またパルス発振器の出力を制御すれば能率的な
放電加工を行なうことが出来る。As shown in Fig. 1, between the poles of this discharge circuit, a machining state discriminator is connected, and the pulse width controller is controlled by the signal, and the output of the pulse oscillator is controlled, thereby achieving efficient discharge machining. can be done.
Ω1発明の効果
以上の説明から理解されるように、この発明は特許請求
の範囲に記載の構成を備えているので、放電加工装置の
極間に接続された直流電源を広範囲なパルス幅で断続す
ることの出来るスイッチング機能を備えた放電回路を提
供することができる。Ω1 Effects of the Invention As understood from the above explanation, the present invention has the structure set forth in the claims, so that the DC power supply connected between the poles of the electrical discharge machining device can be switched on and off over a wide range of pulse widths. It is possible to provide a discharge circuit with a switching function that can perform the following functions.
第1図はこの発明の1つの実施例を示す放電回路図、第
2図は第1図の動作説明図、第3図は他の実施例を承り
放電回路及び動作説明図である。
(図面の主要な部分を表わす符号の説明)1・・・電極
3・・・被加工物5・・・加工間隙
7.9ドライブ回路11・・・パルス発振器
13・・・遅延回路15・・・パルス幅制御器
17・・・加工状態判別装置
第2図
第3図FIG. 1 is a discharge circuit diagram showing one embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of FIG. 1, and FIG. 3 is a discharge circuit and an operation explanatory diagram of another embodiment. (Explanation of symbols representing main parts of the drawing) 1... Electrode 3... Workpiece 5... Machining gap
7.9 Drive circuit 11...Pulse oscillator
13...Delay circuit 15...Pulse width controller 17...Machining state discrimination device Fig. 2 Fig. 3
Claims (3)
(nは1以上の整数)を並列に接続し、これを通して直
流電源を極間に接続すると共に、前記各スイッチング素
子のドライブパルスを、互に位相差可変の同一周期の対
称方形波としたことを特徴とする放電加工装置の放電回
路。(1) n sets of two switching elements connected in series (n is an integer of 1 or more) are connected in parallel, and a DC power supply is connected between the poles through this, and the drive pulses of each switching element are , a discharge circuit for an electrical discharge machining device, characterized in that a symmetrical square wave having the same period and a mutually variable phase difference is formed.
抵抗を通して直流電源を極間に接続すると共に、前記各
スイッチング素子をドライブする対称方形波を出力する
パルス発振器を設け、各スイッチング素子に供給される
ドライブパルスに、位相差を生ぜしめる遅延回路を前記
パルス発振器と1つのドライブ回路の間に設けた第1項
記載の放電加工装置の放電回路。(2) A DC power supply is connected between the poles through two switching elements connected in series and a current limiting resistor, and a pulse oscillator is provided to output a symmetrical square wave to drive each switching element. 2. The electric discharge circuit for an electric discharge machining apparatus according to claim 1, wherein a delay circuit for generating a phase difference in the supplied drive pulses is provided between the pulse oscillator and one drive circuit.
より各スイッチング素子のドイブパルスの位相差を制御
する第1項又は第2項記載の放電加工装置の放電回路。(3) The electric discharge circuit of the electric discharge machining apparatus according to item 1 or 2, wherein a machining state determination device is provided between the machining holes, and the phase difference between the dove pulses of each switching element is controlled by this detection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2087085A JPS61182721A (en) | 1985-02-07 | 1985-02-07 | Electric discharge circuit of electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2087085A JPS61182721A (en) | 1985-02-07 | 1985-02-07 | Electric discharge circuit of electric discharge machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61182721A true JPS61182721A (en) | 1986-08-15 |
Family
ID=12039199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2087085A Pending JPS61182721A (en) | 1985-02-07 | 1985-02-07 | Electric discharge circuit of electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61182721A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124223A (en) * | 1988-11-01 | 1990-05-11 | Sodick Co Ltd | Discharge current supplying device for electric discharge machine |
EP0707915A1 (en) * | 1994-10-19 | 1996-04-24 | Fanuc Ltd. | Power supply unit for an electric discharge machine |
JP2008175836A (en) * | 2005-03-24 | 2008-07-31 | Yamaguchi Univ | Braille reading device with braille reading sensor |
JP2008175835A (en) * | 2006-02-16 | 2008-07-31 | Yamaguchi Univ | Braille reading device with tactile sensing mechanism |
WO2020090073A1 (en) * | 2018-10-31 | 2020-05-07 | 株式会社牧野フライス製作所 | Power source device for electric discharge machine |
-
1985
- 1985-02-07 JP JP2087085A patent/JPS61182721A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02124223A (en) * | 1988-11-01 | 1990-05-11 | Sodick Co Ltd | Discharge current supplying device for electric discharge machine |
EP0707915A1 (en) * | 1994-10-19 | 1996-04-24 | Fanuc Ltd. | Power supply unit for an electric discharge machine |
JP2008175836A (en) * | 2005-03-24 | 2008-07-31 | Yamaguchi Univ | Braille reading device with braille reading sensor |
JP2008175835A (en) * | 2006-02-16 | 2008-07-31 | Yamaguchi Univ | Braille reading device with tactile sensing mechanism |
WO2020090073A1 (en) * | 2018-10-31 | 2020-05-07 | 株式会社牧野フライス製作所 | Power source device for electric discharge machine |
JPWO2020090073A1 (en) * | 2018-10-31 | 2021-09-02 | 株式会社牧野フライス製作所 | Power supply for electric discharge machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS622867A (en) | Switching time correction circuit | |
US4409535A (en) | Gated asynchronous carrier modulation | |
US4695696A (en) | Electric discharge machine with control of the machining pulse's current value in accordance with the delay time | |
US4742208A (en) | Welding system with electronic control | |
JPS61182721A (en) | Electric discharge circuit of electric discharge machine | |
US4117384A (en) | Tachogenerator processing circuits and motor speed control systems including such circuits | |
US3956644A (en) | Integral cycle, precise zero voltage switch | |
US3982170A (en) | Variable speed, constant frequency induction generator system | |
US3848176A (en) | Control circuit for an inverter with a variable output voltage and frequency | |
JPH0585521U (en) | Spark generator for electric discharge machine | |
US3376493A (en) | Inverter circuit having improved control frequency compensating means for producing a regulated a.c. output | |
US3333204A (en) | Apparatus for producing pulses having adjustable phase and uniform width | |
JPH0532168B2 (en) | ||
JP2003018843A (en) | Ac voltage regulator | |
JPH0549263A (en) | Power supply | |
JP3633564B2 (en) | Inverter device for induction machine drive | |
JP3574503B2 (en) | Electric discharge machining method and apparatus | |
JP2841879B2 (en) | Inverter DC braking control method | |
US3541412A (en) | Control for alternating-current motors | |
JPS6127875B2 (en) | ||
JPH0522951A (en) | Inverter power device | |
JPH04331472A (en) | Power supply | |
JP2860657B2 (en) | Power supply device for electric discharge machine and electric discharge method | |
US3780366A (en) | Electric control apparatus | |
JP3332046B2 (en) | Discharge lamp circuit device |