[go: up one dir, main page]

JPS61181960A - Composite structure - Google Patents

Composite structure

Info

Publication number
JPS61181960A
JPS61181960A JP60021378A JP2137885A JPS61181960A JP S61181960 A JPS61181960 A JP S61181960A JP 60021378 A JP60021378 A JP 60021378A JP 2137885 A JP2137885 A JP 2137885A JP S61181960 A JPS61181960 A JP S61181960A
Authority
JP
Japan
Prior art keywords
polysaccharide
carrier
solvent
composite structure
bore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60021378A
Other languages
Japanese (ja)
Other versions
JPH0475893B2 (en
Inventor
Yoshio Okamoto
佳男 岡本
Koichi Hatada
畑田 耕一
Yoichi Yuki
結城 陽一
Toru Shibata
徹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP60021378A priority Critical patent/JPS61181960A/en
Publication of JPS61181960A publication Critical patent/JPS61181960A/en
Publication of JPH0475893B2 publication Critical patent/JPH0475893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enable the manufacture of a composite structure useful as separa tion agent, filler or the like, by supporting polysaccharide on a whole porous carrier with the specified particle diameter and average bore diameter. CONSTITUTION:Polysaccharide is supported on a whole porous carrier with the particle diameter 1mum-1cm, the average bore diameter 10Angstrom -100mum and the ratio of bore diameter and particle size of below 1/10. The polysaccharide shall be cellose, amyloe and the like and the number-average degree of the polysaccharides is set at 5 or more, preferably 10 or more while the holding amount at 1-100 wt.% with respect to the carrier. Chemical and physical methods are available for holding the polysaccharide on the carrier. One of the physical methods is that a saccharide is disolved into a solvent to be mixed with the carrier thoroughly and the solvent is fractioned away in an air current under a reduced pressure and a raised heat. The chemical supporting method is a reactive functional group is added to the carrier and polysaccharide to bond the saccharide to the carrier. This facilitates the manufacture of a composite structure while a wide range of use is expected as it s hard in the nature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合構造物に関し、特に多糖を担体に担持させ
てなる、分離剤、充填剤等として有用な複合構造物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite structure, and more particularly to a composite structure in which a polysaccharide is supported on a carrier and is useful as a separating agent, a filler, etc.

〔従来の技術〕[Conventional technology]

従来セルロース等の光学活性な多糖の粒状物は、生体適
合性が良く、不斉な炭化水素を持った骨格から構成され
ていることから、化粧品や分離剤等の広い分野での利用
が期待されている。
Conventional granular optically active polysaccharides such as cellulose have good biocompatibility and are composed of a skeleton with asymmetric hydrocarbons, so they are expected to be used in a wide range of fields such as cosmetics and separation agents. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、多糖のみからなる粒状物そのものの合成は困難
であり、又例え可能であっても比較的長い工程を要した
。さらに、多糖の粒状物は比較的圧力に弱く、一般的に
柔らかいものが多く、そのためその利用範囲を著しく狭
めていた。
However, it is difficult to synthesize granules consisting only of polysaccharide, and even if it were possible, it would require a relatively long process. Furthermore, polysaccharide granules are relatively sensitive to pressure and are generally soft, which has significantly narrowed the range of their use.

本発明者らは、多糖の持つ有用な性質を損なわずに、上
記欠点を克服して多糖を粒状で利用し得る様にするため
に鋭意研究した結果、本発明に到達したものである。
The present inventors have arrived at the present invention as a result of intensive research in order to overcome the above-mentioned drawbacks and make it possible to utilize polysaccharide in granular form without impairing the useful properties of polysaccharide.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明は、粒径が1ttm〜1c11で、平均孔径
が10人〜1OOIBnであり、孔径対粒径の比がl/
10以下である全多孔性担体に多糖を担持させてなるこ
とを特徴とする複合構造物を提供するものである。
That is, the present invention has a particle size of 1ttm to 1c11, an average pore size of 10 to 1OOIBn, and a ratio of pore size to particle size of l/
The present invention provides a composite structure characterized in that a polysaccharide is supported on a carrier having a total porosity of 10 or less.

本発明の複合構造物は多糖と担体とよりなるが、まず本
発明に使用される担体について説明する。
The composite structure of the present invention consists of a polysaccharide and a carrier, and first, the carrier used in the present invention will be explained.

担体としては多孔質有機担体又は多孔質無機担体があり
、好ましくは多孔質無機担体である。
The carrier may be a porous organic carrier or a porous inorganic carrier, preferably a porous inorganic carrier.

多孔質有機担体として適当なものは、ポリスチレン、ポ
リアクリルアミド、ポリアクリレート等からなる高分子
物質が挙げられる。多孔質無機担体として適当なものは
シリカ、アルミナ、マグネシア、酸化チタン、ガラス、
ケイ酸塩、カオリンの如き合成もしくは天然の物質が挙
げられ、多糖との親和性を良くするために表面処理を行
っても良い。表面処理の方法としては有機シラン化合物
を用いたシラン化処理やプラズマ重合による表面処理方
法等がある。
Suitable porous organic carriers include polymeric substances such as polystyrene, polyacrylamide, and polyacrylate. Suitable porous inorganic carriers include silica, alumina, magnesia, titanium oxide, glass,
Examples include synthetic or natural substances such as silicates and kaolin, which may be surface-treated to improve their affinity with polysaccharides. Examples of surface treatment methods include silanization using an organic silane compound and surface treatment using plasma polymerization.

担体の粒径は1IBn〜fellであり、好ましくはl
−〜1000−であり、更に好ましくはII!In〜3
0〇−である。平均孔径は10人〜100−であり、好
ましくは50人〜50000人である。又、孔径対粒径
の比がl/10以下である。
The particle size of the carrier is 1 IBn~fell, preferably l
-~1000-, more preferably II! In~3
It is 0〇-. The average pore size is from 10 to 100, preferably from 50 to 50,000. Further, the ratio of pore size to particle size is 1/10 or less.

次に本発明に使用される多糖について説明する。Next, the polysaccharide used in the present invention will be explained.

本発明における多糖とは合成多糖、天然多糖、天然物変
成多糖のいずれかを問わず、光学活性であればいかなる
ものでも良いが、好ましくは結合様式の規則性の高いも
のである。例示すればβ−1,4−グルカン(セルロー
ス)、α−1゜4−グルカン(アミロース、アミロペク
チン)、α−1,6−グルカン(デキストラン)、β−
1゜6−グルカン(プスッラン)、β−1,3−グルカ
ン(例えばカードラン、シゾフィラン等)、α−1,3
−グルカン、β−1,2−グルカン(CrownGal
l多1り 、β−1,4−ガラクタン、β−1,4−マ
ンナン、α−1,6−マンナン、β−1,2−フラクタ
ン(イヌリン)、β−2,6−フラクタン(レバン)、
β−1,4−キシラン、β−1,3−キシラン、β−1
,4−キトサン、β−1,4−N−アセチルキトサン(
キチン)、プルラン、アガロース、アルギン酸等であり
、更に好ましくは高純度の多糖を容易に得ることのでき
るセルロース、アミロース、β−1,4−キトサン、キ
チン、β−1,4−マンナン、β−1,4−キシラン、
イヌリン、カードラン等である。
The polysaccharide in the present invention may be any optically active polysaccharide, regardless of whether it is a synthetic polysaccharide, a natural polysaccharide, or a modified natural polysaccharide, but preferably one with a highly regular bonding pattern. Examples include β-1,4-glucan (cellulose), α-1゜4-glucan (amylose, amylopectin), α-1,6-glucan (dextran), β-
1゜6-glucan (pusullan), β-1,3-glucan (e.g. curdlan, schizophyllan, etc.), α-1,3
-glucan, β-1,2-glucan (CrownGal
1, β-1,4-galactan, β-1,4-mannan, α-1,6-mannan, β-1,2-fructan (inulin), β-2,6-fructan (levan) ,
β-1,4-xylan, β-1,3-xylan, β-1
, 4-chitosan, β-1,4-N-acetylchitosan (
chitin), pullulan, agarose, alginic acid, etc., and more preferably cellulose, amylose, β-1,4-chitosan, chitin, β-1,4-mannan, β- from which highly purified polysaccharides can be easily obtained. 1,4-xylan,
These include inulin and curdlan.

これら多糖の数平均重合度(−分子中に含まれるピラノ
ースあるいは、フラノース環の平均数)は5以上、好ま
しくは10以上であり、特に上限はないが500以下で
あることが取り扱いの容易さにおいて好ましい。
The number average degree of polymerization (-average number of pyranose or furanose rings contained in the molecule) of these polysaccharides is 5 or more, preferably 10 or more, and although there is no upper limit, it is preferably 500 or less for ease of handling. preferable.

本発明の複合構造物をつくるためには、上記多糖を上記
担体に担持させるが、多糖を保持させる量は担体に対し
て1〜100重量%、好ましくは5〜50重量%である
In order to produce the composite structure of the present invention, the polysaccharide is supported on the carrier, and the amount of polysaccharide retained is 1 to 100% by weight, preferably 5 to 50% by weight, based on the carrier.

多糖を担体に保持させる方法は化学的方法でも物理的方
法でも良い。
The method for retaining the polysaccharide on the carrier may be either a chemical method or a physical method.

物理的方法としては、多糖を可溶性の溶剤に溶解させ、
担体と良く混合し、減圧又は加温下、気流により溶剤を
留去させる方法や、多糖を可溶性の溶剤に溶解させ、担
体と良く混合した後該溶剤と相溶性のない液体中に攪拌
、分散せしめ、該溶剤を拡散させる方法もある。又、多
糖を溶解し担持させる適当な溶媒がない場合には、多糖
の水酸基を保護して担持させた後に保護基をはずすこと
もできる。
As a physical method, polysaccharide is dissolved in a soluble solvent,
A method of mixing well with a carrier and distilling off the solvent by air flow under reduced pressure or heating, or dissolving the polysaccharide in a soluble solvent, mixing well with the carrier, and then stirring and dispersing it in a liquid that is incompatible with the solvent. There is also a method of diffusing the solvent. Furthermore, if there is no suitable solvent for dissolving and supporting the polysaccharide, the hydroxyl groups of the polysaccharide may be protected and supported, and then the protecting groups may be removed.

例えば、セルロースとトリチルクロライドを塩基の存在
下で反応させ、6−o−)リチルセルロースを得る。こ
れをクロロホルムに溶解させ、シラン処理したシリカゲ
ルにコーティングした後、塩酸等の酸でトリチル基をは
ずして、セルロースのコーティングされたシリカゲルか
らなる充填剤を得る。
For example, cellulose and trityl chloride are reacted in the presence of a base to obtain 6-o-) lytyl cellulose. This is dissolved in chloroform and coated on silane-treated silica gel, and then the trityl group is removed with an acid such as hydrochloric acid to obtain a filler made of cellulose-coated silica gel.

次に化学的担持方法としては、担体に反応性官能基を付
けるか、多糖に反応性官能基をつけて、担体と多糖を化
学的に結合することによって担持させ得る。
Next, as a chemical loading method, loading can be carried out by attaching a reactive functional group to the carrier or attaching a reactive functional group to the polysaccharide and chemically bonding the carrier and the polysaccharide.

さらに、担体に多糖をまず物理的にコーティングし、次
いで反応性官能基を反応させることによって、担体と多
糖を化学結合することもできる。例えば、アミノプロビ
リシラン処理したシリカゲルに、多糖を物理的にコーテ
ィングした後に、乾燥不活性溶媒中で多官能イソシアナ
ート誘導体を反応させるとによって、シリカゲルと多糖
を化学的に結合させた複合構造物が得られる。
Additionally, the carrier and polysaccharide can be chemically bonded by first physically coating the carrier with the polysaccharide and then reacting the reactive functional groups. For example, a composite structure in which silica gel and polysaccharide are chemically bonded by physically coating polysaccharide on aminopropylisilane-treated silica gel and then reacting it with a polyfunctional isocyanate derivative in a dry inert solvent. is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の多糖を担体に担持した複合構造物は、従来の多
糖の粒状物とは異なり、製造が容易であり、又硬質であ
るために幅広い用途が期待される。例えば、化粧品パウ
ダー、分離剤、充填剤、除放性担体等である。
The composite structure in which the polysaccharide of the present invention is supported on a carrier is easy to manufacture, unlike conventional polysaccharide granules, and is hard, so it is expected to have a wide range of uses. For example, cosmetic powders, separating agents, fillers, sustained release carriers, etc.

〔実施例〕〔Example〕

次に本発明を実施例について説明するが、本発明はこれ
らの実施例に限定されるものではない。
Next, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.

実施例1 セルロース1.51部、LiCl2.27部、N、N−
ジメチルアセトアミド23部を混合し、80℃に10時
間保ち、ピリジン10部、トリチルクロライド21.2
部を加え48時間反応させた。これをメタノール中に沈
澱し、洗浄し真空乾燥した。収量4.17部。
Example 1 Cellulose 1.51 parts, LiCl 2.27 parts, N, N-
Mix 23 parts of dimethylacetamide, keep at 80°C for 10 hours, add 10 parts of pyridine, and 21.2 parts of trityl chloride.
1 part was added and reacted for 48 hours. This was precipitated into methanol, washed and dried in vacuo. Yield: 4.17 parts.

得られた6−o−)ジチルセルロース0.フ5部をクロ
ロホルム10部に溶かし、3−アミノプロピルトリエト
キシシラン処理したシリカゲル3.00部に2回に分け
て担持した。
The obtained 6-o-)ditylcellulose 0. Five parts of the solution was dissolved in 10 parts of chloroform and supported on 3.00 parts of 3-aminopropyltriethoxysilane-treated silica gel in two portions.

トリチルセルロ−ス 元素分析値は次の如くであった。tritylcellulose The elemental analysis values were as follows.

Cχ    Hχ   Nχ 15、40    1.23    0.09このシリ
カゲルにメタノール30部と濃塩酸0.3部を加え、室
温で放置した。25時間後、4号グラスフィルターで集
め、メタノールで洗浄した。
Cχ Hχ Nχ 15,40 1.23 0.09 30 parts of methanol and 0.3 part of concentrated hydrochloric acid were added to this silica gel, and the mixture was allowed to stand at room temperature. After 25 hours, it was collected using a No. 4 glass filter and washed with methanol.

この濾液の溶媒を留去すると黄褐色の結晶0.545部
を得た。IRスペクトルよりトリフェニルカルビノール
と同定した。
When the solvent of this filtrate was distilled off, 0.545 parts of yellowish brown crystals were obtained. It was identified as triphenyl carbinol from the IR spectrum.

グラスフィルターで集めたシリカゲルをナスフラスコに
移し、メタノール−トリエチルアミン(30m : 0
.3 rnl)を加え、塩酸塩を除いた。
Transfer the silica gel collected with a glass filter to an eggplant flask, and add methanol-triethylamine (30m:0
.. 3 rnl) was added and the hydrochloride was removed.

再び4号グラスフィルターで集め、メタノールで洗浄し
た後、乾燥し、シリカゲル上にセルロースを担持した充
填剤を得る。
The mixture is collected again using a No. 4 glass filter, washed with methanol, and then dried to obtain a filler in which cellulose is supported on silica gel.

トリチル基をはずした後の充填剤の元素分析値は次の如
(であった。
The elemental analysis values of the filler after removing the trityl group were as follows.

Cχ   H!    N! 3、61    0.60    一 応用例1 実施例1で得られたシリカゲルにセルロースを担持した
充填剤を25X0.46(id)cmのカラムにメタノ
ールで充填した。溶媒にヘキサン−2−プロパツールを
用いて流速0.5m7/minT:Co(acac) 
sを流した所、(−)体が先に流出し後で(+)体が流
出した。ただし、旋光度の測定波長は365nn+であ
る。
Cχ H! N! 3,61 0.60 Application Example 1 The packing material prepared by supporting cellulose on the silica gel obtained in Example 1 was packed into a 25×0.46 (id) cm column with methanol. Using hexane-2-propertool as a solvent, flow rate 0.5 m7/minT:Co(acac)
When s was poured, the (-) body flowed out first and the (+) body flowed out later. However, the measurement wavelength of the optical rotation is 365nn+.

実施例2 実施例1で得られた充填剤をナスフラスコに入れ、乾燥
し、窒素置換する。窒素気流下で乾燥トルエンとトリレ
ン−2,4 −ジイソシアナート0.062部を混合し
、これを上記充填剤に加える。この段階のシリカゲルの
IRスペクトルには一NCOの吸収が見られるので、ピ
リジン2n7を加え、60〜70℃で加温した。すると
、シリカゲルのIRスペクトルに一NGOの吸収がなく
なり、− N II C −の吸収が現れ、シリカゲル
とセルロースが化学結合したことを示す。
Example 2 The filler obtained in Example 1 is placed in an eggplant flask, dried, and replaced with nitrogen. Dry toluene and 0.062 parts of tolylene-2,4-diisocyanate are mixed together under a nitrogen stream, and this is added to the filler. Since the IR spectrum of the silica gel at this stage shows absorption of 1NCO, pyridine 2n7 was added and heated at 60 to 70°C. Then, in the IR spectrum of the silica gel, the absorption of one NGO disappears and the absorption of -N II C- appears, indicating that the silica gel and cellulose are chemically bonded.

実施例3 セルローストリスアセテート1.6gを塩化メチレン1
0mlに溶解したものを、ジフェニルジメトキシシラン
で表面処理した孔径1000人、粒径■0−のシリカゲ
ルに加えた後、塩化メチレンを留去して表面に皮膜を形
成する。これにさらに泡水ヒドラジン2dをイソプロピ
ルアルコール20−に溶解したものを加え、60℃で7
時間反応させ、脱アセチル化を行った。
Example 3 1.6 g of cellulose tris acetate was added to 1 part of methylene chloride.
After adding the solution dissolved in 0 ml to silica gel having a pore size of 1,000 and a particle size of 0-1 which had been surface-treated with diphenyldimethoxysilane, methylene chloride was distilled off to form a film on the surface. To this was further added a solution of 2d of bubble water hydrazine in 20% of isopropyl alcohol, and the mixture was heated to 60℃ for 7 hours.
The mixture was allowed to react for several hours and deacetylation was performed.

応用例2 実施例3で得られたセルロースを被覆したシリカゲル充
填剤を、内径0.46cm、長さ25ωの円筒ステンレ
ス製カラムに充填した。この充填カラムのベンゼン及び
アセトンに対する理論段数は溶媒として99.5%エタ
ノールを0.2m/分流した場合、ベンゼン900段、
アセトン1296段であった。
Application Example 2 The cellulose-coated silica gel packing material obtained in Example 3 was packed into a cylindrical stainless steel column with an inner diameter of 0.46 cm and a length of 25 ω. The number of theoretical plates for benzene and acetone in this packed column is 900 plates for benzene when 99.5% ethanol is flowed as a solvent at 0.2 m/min.
It was 1296 steps of acetone.

実施例4 置換度2.5のセルロースアセテート2.0gを無水ピ
リジンに溶解し、トリノトキシグリシドキシブロピルシ
ランで処理した孔径1000人、粒径10I!Inのシ
リカゲル3.5gに加え、室温で4日反応させた後、溶
媒をイソプロピルアルコールに置換し、抱水ヒドラジン
2+n7を加え、60℃で9時間反応させ脱アセチル化
した。
Example 4 2.0 g of cellulose acetate with a degree of substitution of 2.5 was dissolved in anhydrous pyridine and treated with trinotoxyglycidoxypropylsilane. Pore size: 1000, particle size: 10I! After adding In to 3.5 g of silica gel and reacting at room temperature for 4 days, the solvent was replaced with isopropyl alcohol, hydrazine hydrate 2+n7 was added, and the mixture was reacted at 60° C. for 9 hours to perform deacetylation.

応用例3 実施例4で得られたセルロースを化学結合したシリカゲ
ル充填剤を、内径0.46cm、長さ25aaの円筒ス
テンレス製カラムに充填した。この充填カラムのベンゼ
ン及びアセトンに対する理論段数は溶媒として99.5
%エタノールを0.2ff+7/分流した場合、ベンゼ
ン2162段、アセトン2824段であった。溶媒を9
9.6%メタノールとした場合はベンゼン2256段、
アセトン2947段であった。
Application Example 3 The silica gel packing material chemically bonded with cellulose obtained in Example 4 was packed into a cylindrical stainless steel column with an inner diameter of 0.46 cm and a length of 25 aa. The theoretical plate number of this packed column for benzene and acetone is 99.5 as a solvent.
When % ethanol was flowed at 0.2ff+7/minute, the flow rate was 2162 stages of benzene and 2824 stages of acetone. 9 of the solvent
When using 9.6% methanol, 2256 stages of benzene,
It was 2947 steps of acetone.

比較例1 球状のセルロースゲルを内径0.46c+n、長さ25
cmのステンレス製円筒カラムに充填した分離用吸着剤
のベンゼン及びアセトンに対する理論段数は溶媒として
99.5%エタノールを0.2 m7/分流した場合、
ベンゼンは123段、アセトンは144段であった。ま
た経時的にピーク波数が変形した。但し、理論段数は次
式で与えられる。
Comparative Example 1 Spherical cellulose gel with inner diameter of 0.46c+n and length of 25
The number of theoretical plates for benzene and acetone of the adsorbent for separation packed in a stainless steel cylindrical column of cm is when 0.2 m7/min of 99.5% ethanol is flowed as the solvent.
Benzene had 123 stages and acetone had 144 stages. Moreover, the peak wavenumber changed over time. However, the number of theoretical plates is given by the following formula.

上記条件で約1時間溶媒を流したところカラム入口に長
さ2cmの空隙が生じた。
When the solvent was allowed to flow for about 1 hour under the above conditions, a gap with a length of 2 cm was created at the column inlet.

Claims (1)

【特許請求の範囲】[Claims] 粒径が1μm〜1cmで、平均孔径が10Å〜100μ
mであり、孔径対粒径の比が1/10以下である全多孔
性担体に多糖を担持させてなることを特徴とする複合構
造物。
Particle size is 1 μm ~ 1 cm, average pore size is 10 Å ~ 100 μ
A composite structure characterized in that a polysaccharide is supported on a fully porous carrier having a diameter of m and a ratio of pore size to particle size of 1/10 or less.
JP60021378A 1985-02-06 1985-02-06 Composite structure Granted JPS61181960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021378A JPS61181960A (en) 1985-02-06 1985-02-06 Composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021378A JPS61181960A (en) 1985-02-06 1985-02-06 Composite structure

Publications (2)

Publication Number Publication Date
JPS61181960A true JPS61181960A (en) 1986-08-14
JPH0475893B2 JPH0475893B2 (en) 1992-12-02

Family

ID=12053427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021378A Granted JPS61181960A (en) 1985-02-06 1985-02-06 Composite structure

Country Status (1)

Country Link
JP (1) JPS61181960A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543418A (en) * 1991-08-14 1993-02-23 Pola Chem Ind Inc Cosmetic
WO1995000463A1 (en) * 1993-06-22 1995-01-05 Daicel Chemical Industries, Ltd. Optical isomer separating agent and process for producing the same
US6841169B2 (en) * 1999-06-11 2005-01-11 Rijksuniversiteit Groningen Stabilizer for pharmacons
WO2006082968A1 (en) * 2005-02-07 2006-08-10 Ezaki Glico Co., Ltd. ADSORBENT CONTAINING α-1,4-GLUCAN AND PROCESS FOR PRODUCING THE SAME
WO2012033194A1 (en) * 2010-09-09 2012-03-15 ダイセル化学工業株式会社 Method for separating water-soluble biological material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260762A (en) * 1994-03-17 1995-10-13 Daicel Chem Ind Ltd Filler for high-speed liquid chromatography and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943072A (en) * 1971-12-15 1976-03-09 United Kingdom Atomic Energy Authority Separation of molecules
US3966489A (en) * 1970-04-06 1976-06-29 Rohm And Haas Company Method of decolorizing sugar solutions with hybrid ion exchange resins
US3983299A (en) * 1974-03-04 1976-09-28 Purdue Research Foundation Bonded carbohydrate stationary phases for chromatography
US4336161A (en) * 1975-12-15 1982-06-22 United Kingdom Atomic Energy Authority Composite materials comprising deformable xerogel within the pores of particulate rigid supports useful in chromatography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966489A (en) * 1970-04-06 1976-06-29 Rohm And Haas Company Method of decolorizing sugar solutions with hybrid ion exchange resins
US3943072A (en) * 1971-12-15 1976-03-09 United Kingdom Atomic Energy Authority Separation of molecules
US3983299A (en) * 1974-03-04 1976-09-28 Purdue Research Foundation Bonded carbohydrate stationary phases for chromatography
US4336161A (en) * 1975-12-15 1982-06-22 United Kingdom Atomic Energy Authority Composite materials comprising deformable xerogel within the pores of particulate rigid supports useful in chromatography

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543418A (en) * 1991-08-14 1993-02-23 Pola Chem Ind Inc Cosmetic
WO1995000463A1 (en) * 1993-06-22 1995-01-05 Daicel Chemical Industries, Ltd. Optical isomer separating agent and process for producing the same
US5587467A (en) * 1993-06-22 1996-12-24 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and process for producing the same
CN1042418C (en) * 1993-06-22 1999-03-10 大世吕化学工业株式会社 Optical isomer separating agent and process for producing the same
US6841169B2 (en) * 1999-06-11 2005-01-11 Rijksuniversiteit Groningen Stabilizer for pharmacons
WO2006082968A1 (en) * 2005-02-07 2006-08-10 Ezaki Glico Co., Ltd. ADSORBENT CONTAINING α-1,4-GLUCAN AND PROCESS FOR PRODUCING THE SAME
JPWO2006082968A1 (en) * 2005-02-07 2008-06-26 江崎グリコ株式会社 Adsorbent containing α-1,4-glucan and method for producing the same
WO2012033194A1 (en) * 2010-09-09 2012-03-15 ダイセル化学工業株式会社 Method for separating water-soluble biological material
JP5926682B2 (en) * 2010-09-09 2016-05-25 株式会社ダイセル Method for separating water-soluble biological substances

Also Published As

Publication number Publication date
JPH0475893B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
EP0156382B1 (en) Separation agent comprising acyl-or carbamoyl-substituted polysaccharide
EP0238044B1 (en) Alkyl-substituted phenylcarbamate derivative of polysaccaride
EP0656333A1 (en) Optical isomer separating agent and process for producing the same
EP0978498B1 (en) Separating agent for optical isomers and process for producing the same
JPH0813844B2 (en) Alkyl-substituted phenylcarbamate derivatives of polysaccharides
CN100391593C (en) Separating agent for optical isomers
JP2004167343A (en) Separating agent for optical isomers
JPS61181960A (en) Composite structure
WO1992015616A1 (en) Novel polysaccharide drivative and separating agent
US7740758B2 (en) Separating agent including polysaccharide derivative having a polycyclic structure
US4931184A (en) Optical resolution with tribenzoyl-b-1,4-chitosan
JPH0442371B2 (en)
JP3848377B2 (en) Manufacturing method of separation agent
JP2563433B2 (en) Polycarbamate derivative
JPH0730122B2 (en) Method for producing polysaccharide derivative
JP4871861B2 (en) Optical isomer separating agent
JP4334654B2 (en) Separating agent
JP3905564B2 (en) Method for producing separation agent
JP3291123B2 (en) Manufacturing method of separation agent
JP3100737B2 (en) Separating agent
JPS60216842A (en) Isolating agent comprising polysaccharide derivative
JPH0475216B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term