[go: up one dir, main page]

JPS61181185A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS61181185A
JPS61181185A JP60022452A JP2245285A JPS61181185A JP S61181185 A JPS61181185 A JP S61181185A JP 60022452 A JP60022452 A JP 60022452A JP 2245285 A JP2245285 A JP 2245285A JP S61181185 A JPS61181185 A JP S61181185A
Authority
JP
Japan
Prior art keywords
layer
lattice constant
strained
active layer
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60022452A
Other languages
Japanese (ja)
Other versions
JPH0632340B2 (en
Inventor
Yoshitake Katou
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2245285A priority Critical patent/JPH0632340B2/en
Publication of JPS61181185A publication Critical patent/JPS61181185A/en
Publication of JPH0632340B2 publication Critical patent/JPH0632340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To maintain the injection efficiency of carriers while improving luminous efficiency by forming a strain superlattice layer, in which first strain super-thin films, an energy gap thereof is larger than a clad layer and a lattice constant thereof is smaller than the clad layer, and second strain super-thin films having a lattice constant larger than the clad layer are laminated alternately, to at least one side between the clad layer and an active layer. CONSTITUTION:The titled light-emitting element is formed by using a S-doped In0.48Ga0.52P layer and a Zn-doped In0.48Ga0.52P layer as each of an N-type clad layer 11 and a P-type clad layer 12, an In0.21Ga0.79As0.57P0.43 layer as an active layer 14, a GaP layer as a first strain super-thin film 12, an energy gap thereof is larger than the clad layer and a lattice constant thereof is smaller than the clad layer, and an InP layer as a second strain super-thin film 13 having a lattice constant smaller than the clad layer. The film thickness of the GaP layer 12 and the InP layer 13 severally takes 25Angstrom and 20Angstrom , and the number of respective layer is each brought to three layers and two layers. According to such constitution, electrons in the active layer 14 cannot tunnel the energy barriers of the GaP layers 12 in a strain superlattice layer, and function as energy barriers.

Description

【発明の詳細な説明】 (瀘粟上の利用分野) 本発明は光通信や情報処理等で便用される半導体発光素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Fields of Application) The present invention relates to a semiconductor light emitting device conveniently used in optical communications, information processing, etc.

(従来技術とその問題点) InP やGa A s又はこnらの多元混晶を用いた
発光素子としては、半導体レーザ、発光ダイオードがあ
る。これら発光素子の基本構造は、n型およびp盤りラ
ッド層がこれらクラッド層よりエネルギーギャップの小
さい活性層を挾み込んだダブルへテロ構造である。とこ
ろが近年、活性層とクラッド層との間の伝導帯下端のエ
ネルギー不連続量が発光素子の発光温度特性や%に半導
体レーザの発振閾値電流密度に影響を与えることが分っ
てきた。この対策として、活性層とクラッド層との間に
クラッド層よりエネルギーギャップが大き〜、半導体層
を挿入することが提案された0他方、格子定数の異なる
2つの半導体層を交互に配した歪超格子や格子定数の異
なるヘテロエピタキシーの研究も進められている。クラ
ッド層に比ベエネルギーギャップが大きく、格子定数の
異なる歪層薄膜を有した化合物半導体発光素子も特願昭
57−104756  のように提案されている。
(Prior art and its problems) Light-emitting elements using InP, GaAs, or multi-component mixed crystals include semiconductor lasers and light-emitting diodes. The basic structure of these light emitting devices is a double heterostructure in which n-type and p-type rad layers sandwich an active layer having a smaller energy gap than these clad layers. However, in recent years, it has been found that the amount of energy discontinuity at the lower end of the conduction band between the active layer and the cladding layer affects the emission temperature characteristics of the light emitting device and the oscillation threshold current density of the semiconductor laser. As a countermeasure to this problem, it has been proposed to insert a semiconductor layer between the active layer and the cladding layer, which has a larger energy gap than the cladding layer.On the other hand, it has been proposed to insert a semiconductor layer between the active layer and the cladding layer. Research on heteroepitaxy with different lattices and lattice constants is also underway. A compound semiconductor light emitting device having a strained layer thin film with a large energy gap and different lattice constants in the cladding layer has also been proposed as in Japanese Patent Application No. 104756/1983.

第2図は従来の歪層薄gt−有する発光素子の断面模式
図である。図において、11.15はそれぞれn型およ
びp型クラッド層、21.22はそれぞれクラッド層よ
りエネルギーギャップが大きく、格子定数が小さい歪層
薄膜、14は活性層である。従来の歪層薄g21.22
は、活性層14に隣接して配置されておp、 n!!!
Iクラッド層11に注入された電子は、歪層薄膜(半導
体層)21の低いエネルギーバリアを越え、活性層14
に注入される。ところが活性層14に注入された電子は
歪層薄膜22の高いバリアのため、p型クラッド層15
に到達できない。他方、同時ICp型クラッド層15に
注入された正孔も逆方向に注入され。
FIG. 2 is a schematic cross-sectional view of a light emitting device having a conventional strained layer with a thin gt-layer. In the figure, 11.15 is an n-type and p-type cladding layer, 21.22 is a strained thin film having a larger energy gap and smaller lattice constant than the cladding layer, and 14 is an active layer. Conventional strain layer thickness g21.22
are arranged adjacent to the active layer 14, p, n! ! !
The electrons injected into the I-cladding layer 11 cross the low energy barrier of the strained layer thin film (semiconductor layer) 21 and enter the active layer 14.
is injected into. However, due to the high barrier of the strained layer thin film 22, the electrons injected into the active layer 14 pass through the p-type cladding layer 15.
cannot be reached. On the other hand, holes simultaneously injected into the ICp type cladding layer 15 are also injected in the opposite direction.

活性層14に注入される。この活性層14に注入される
。この活性層14に注入されたキャリアは、活性層14
にとどまり、有効に発光に寄与する。
is implanted into the active layer 14. This active layer 14 is injected. The carriers injected into the active layer 14 are
remains and effectively contributes to light emission.

ところが、従来の歪層薄膜(21,22)を有する発光
素子では、歪層薄膜の歪が活性層14&C及ぶため、キ
ャリアの注入効率の上昇に比べ発光強度があまり改善さ
れない上、素子の寿命が短く、高温動作時は熱による歪
が加わり1発光特性が低下するという問題があった。
However, in a conventional light emitting device having a strained layer thin film (21, 22), the strain in the strained layer thin film extends to the active layer 14&C, so that the emission intensity is not improved much compared to the increase in carrier injection efficiency, and the life of the device is shortened. There was a problem in that during short and high-temperature operation, distortion due to heat was added and the light emitting characteristics deteriorated.

(発明の目的) 本発明の目的は、このような問題を解決し、キャリア注
入効率が高く、低電流動作、高温動作に優れた半導体発
光素子を提供することにある。
(Objective of the Invention) An object of the present invention is to solve such problems and provide a semiconductor light emitting device with high carrier injection efficiency and excellent low current operation and high temperature operation.

(発明の構成) 本発明の構成は、発光領域となる単層あるいは多層の活
性層が、この活性層に比ベエネルギーギャップの大きい
クラッド層で挾み込まnた構造の半導体発光素子におい
て、前記クラッド層よりエネルギーギャップが大きくか
つ格子定数が小さい第1の歪層薄膜と前記クラッド層よ
シ格子定数が大きい第2の歪層fjgPAとを交互に積
層した歪超格子層を、前記クラッド層と前記活性層の間
の少なくとも一方に有すること1層%ikとし、前記格
子定数の異なる層を交互に積層した歪超格子層の膜厚で
平均化した格子定数が、活性層の格子定数の0.995
から1.005  倍の範囲にあるものが好ましい。
(Structure of the Invention) The structure of the present invention is a semiconductor light-emitting device having a structure in which a single-layer or multi-layer active layer serving as a light-emitting region is sandwiched between the active layer and a cladding layer having a relatively large energy gap. A strained superlattice layer in which a first strained layer thin film having a larger energy gap and a smaller lattice constant than the cladding layer and a second strained layer fjgPA having a larger lattice constant than the cladding layer are laminated alternately is used as the cladding layer. It is assumed that at least one of the active layers has a lattice constant of 1% ik, and the lattice constant averaged over the thickness of the strained superlattice layer formed by alternately stacking layers with different lattice constants is 0 of the lattice constant of the active layer. .995
It is preferable to have a value in the range of 1.005 times.

(発明の作用) 本発明の構成によnば、クラッド層よりエネルギーギャ
ップの大きい歪超薄膜層をこのクラッド層と活性層との
間に配置することによシ、キャリアの漏れ1流を防止す
る機能は失わず、かつその歪超薄膜層を格子定数の長い
層と短い層とを交互に積層すること罠より、歪を積層さ
れた歪超格子層に集中させ、歪がクラッド層や活性層に
及ばないようにした。このため得られた素子の内部歪は
緩和され、素子の寿命、温度%性が改善される。
(Function of the Invention) According to the structure of the present invention, by arranging a strained ultra-thin film layer having a larger energy gap than the cladding layer between the cladding layer and the active layer, carrier leakage is prevented. By stacking the strained ultra-thin film layer alternately with layers with long lattice constants and layers with short lattice constants, the strain is concentrated in the stacked strained superlattice layers, and the strain is transferred to the cladding layer and the active layer. I tried not to touch the layers. Therefore, the internal strain of the obtained element is alleviated, and the life and temperature characteristics of the element are improved.

また、格子定数の長い層と短い層とt交互に積層した歪
超格子層の膜厚で平均化した格子定数が活性層の格子定
数の0.995から1.005 倍の範囲(格子整合度
±0.5%以内)にすることによシ。
In addition, the lattice constant, which is averaged over the film thickness of the strained superlattice layer in which layers with long lattice constants and layers with short lattice constants are laminated alternately, is in the range of 0.995 to 1.005 times the lattice constant of the active layer (lattice matching degree (within ±0.5%).

素子の結晶成長も容易となシ歪が活性層に及ばなくなり
、活性層の発光強度も上昇するという効果がある。
This has the effect of facilitating crystal growth of the device, preventing strain from reaching the active layer, and increasing the emission intensity of the active layer.

(実施例) 次に図面によシ本発明を詳細Kit!明する。(Example) Next, we will explain the present invention in detail according to the drawings! I will clarify.

第1図は本発明の一実施例の素子の断面模式図である。FIG. 1 is a schematic cross-sectional view of an element according to an embodiment of the present invention.

本実施例の構造は、nfiクラッド層11゜p臘りラッ
ド層15にそれぞれSドープInk、411Gao、s
zP層、ZnドープInoisGaoszP#を、活性
層14 K Ino、zlGao re AgG、!1
? P 0.43層を、クラッド層よシエネルギーギャ
ップが大きく格子定数が小さい第1の歪層薄膜12にG
aP層、クラッド層よシ格子定数の小さい第2の歪層薄
膜13KInP 層を用いて構成される。GaP 層1
2とInP 層13との膜厚は、それぞれ25Aと20
又とし、各層数はそれぞれ3層と2層とした。このよう
な構成のため活性層14にある電子は歪超格子層のGa
P 層12のエネルギーバリアをトンネルすることが出
来ず、エネルギーバリアとして働(。又、InP層13
を20人とすることにょり、InP 層13での量子化
された電子準位は、GaP 層12バリア導電帯下端の
すぐ下に位置するため、n側クラッド層11にある電子
はInP層13にトラップされずに容易に通過する。
In the structure of this embodiment, the NFI cladding layer 11°p and the rad layer 15 are doped with S, 411Gao, and S, respectively.
zP layer, Zn-doped InoisGaoszP#, active layer 14 K Ino, zlGao re AgG,! 1
? The P0.43 layer is applied to the first strained layer thin film 12, which has a larger energy gap and a smaller lattice constant than the cladding layer.
The second strained layer thin film 13KInP layer has a smaller lattice constant than the aP layer and the cladding layer. GaP layer 1
The film thicknesses of InP layer 2 and InP layer 13 are 25A and 20A, respectively.
In addition, the number of layers was 3 and 2, respectively. Because of this structure, electrons in the active layer 14 are transferred to Ga in the strained superlattice layer.
The energy barrier of the P layer 12 cannot be tunneled and acts as an energy barrier (also, the InP layer 13
By setting 20 people, the quantized electron level in the InP layer 13 is located just below the lower end of the barrier conduction band of the GaP layer 12, so the electrons in the n-side cladding layer 11 are transferred to the InP layer 13. easily pass through without being trapped.

本実施例と従来の歪層薄膜を有する発光素子とを共に製
作し、ストライプ電極型半導体レーザとして比較したと
ころ1本実施例のレーザは、従来のものに比べて外部微
分量子効率が優れ、同一駆動電流において約3倍の光出
力が得ら詐、最高発振温度で40℃も優れていた。又、
50℃55tnWの寿命試験を行ったところ、劣化率が
1桁以上も改善され長寿命が確認された。
This example and a conventional light emitting device having a thin strained layer were fabricated and compared as stripe electrode type semiconductor lasers.The laser of this example had superior external differential quantum efficiency compared to the conventional one, and was identical to the conventional one. The optical output was approximately three times as high at the drive current, and the maximum oscillation temperature was 40°C higher. or,
When a life test was conducted at 50° C. and 55 tnW, the deterioration rate was improved by more than one digit and a long life was confirmed.

又、第1の歪層薄膜12と第2の歪層薄膜13との各膜
厚を変えて素子を製作し、その素子の歪超格子層の膜厚
で平均化した格子定数と活性層の7オトルミネツセンス
強度(PL強度)の関係を調べた。その結果、歪超格子
層の平均の格子定数が活性層14のそれとの差が大きく
なる程、PL強度は減少することが分った。しかし、歪
超格子層の平均定数が活性層のそnの0.995〜1.
005倍の範囲内ではPL強度がほぼ一定であり、この
範囲内であれば強い発光強度の素子が得られ、さらにこ
の範囲内では再現性よく素子が得られ、素子製作上有利
となることが確認できた。
In addition, devices are manufactured by changing the film thicknesses of the first strained layer thin film 12 and the second strained layer thin film 13, and the lattice constant averaged by the film thickness of the strained superlattice layer of the device and the active layer are 7 The relationship between otoluminescence intensity (PL intensity) was investigated. As a result, it was found that the larger the difference between the average lattice constant of the strained superlattice layer and that of the active layer 14, the lower the PL intensity. However, the average constant of the strained superlattice layer is 0.995 to 1.
Within the range of 005 times, the PL intensity is almost constant, and within this range, a device with strong emission intensity can be obtained, and furthermore, within this range, a device can be obtained with good reproducibility, which is advantageous in device production. It could be confirmed.

なお1本実施例においては、I nGaAs PlIn
GaP系発光素子とし、歪超格子層t=GaP 層とI
nP層で構成したが、これら化合物半導体に限定されず
、InGaAsP/InP系、AlGaSb/Ga8b
系。
In this example, InGaAs PlIn
A GaP-based light emitting device is used, and the strained superlattice layer t=GaP layer and I
Although it is composed of an nP layer, it is not limited to these compound semiconductors, and may include InGaAsP/InP, AlGaSb/Ga8b
system.

I/Vl族化合物半導体でも良く、又、歪超格子層も化
合物半導体や8i、Ge等の元素半導体でも良い。また
、歪超格子層を活性層の両側に配したが。
An I/Vl group compound semiconductor may be used, and the strained superlattice layer may also be a compound semiconductor or an elemental semiconductor such as 8i or Ge. In addition, strained superlattice layers were placed on both sides of the active layer.

片側だけでも良く、歪超格子層の組成および層数を活性
層に対して対称としたが対称と限定することはなく非対
称でも良い。また1発光領域となる活性層を1層で構成
したが、多重量子井戸構造としても本発明の効果は十分
く発揮できる。
Only one side may be used, and although the composition and the number of layers of the strained superlattice layer are made symmetrical with respect to the active layer, they are not limited to being symmetrical, and may be asymmetrical. Further, although the active layer serving as one light emitting region is composed of one layer, the effects of the present invention can be fully exhibited even with a multiple quantum well structure.

(発明の効果) 以上詳細に述べた通91本発明によれば、従来の歪層薄
膜を有する発光素子の特舐であるキャリアの注入効率を
維持すると共に、発光効率の改善、発光温度特性の改善
、長寿命が実現できる。さらに歪超格子層の膜厚で平均
した格子定数が活性層の格子定数の0.995〜1.0
05倍の範囲にすれば、さらに高い発光効率の特注改善
が実現できる一方、素子製作も容易となる効果がある。
(Effects of the Invention) As described in detail above, the present invention maintains carrier injection efficiency, which is a special feature of conventional light emitting elements having strained layer thin films, and also improves luminous efficiency and improves luminescent temperature characteristics. Improvement and long life can be realized. Furthermore, the lattice constant averaged over the thickness of the strained superlattice layer is 0.995 to 1.0 of the lattice constant of the active layer.
If the range is set to 0.05 times, custom improvement of even higher luminous efficiency can be realized, while device fabrication becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の模式的断面図、第2図は従
来の発光素子を説明する模式的断面図である。図におい
て。 11・・・・・−nfJ&クラッド層、12・・−・・
・第1の歪層薄膜、13・・・・・・第2の歪層薄膜層
、14・・・・・・活性層、15・・・・・・p型クラ
ッド層、21.22・・・・・・歪層薄膜である。 代理人 弁理士  内 原   晋  1.パ、−・″ 第1図 手2 図
FIG. 1 is a schematic sectional view of an embodiment of the present invention, and FIG. 2 is a schematic sectional view illustrating a conventional light emitting element. In fig. 11...-nfJ & cladding layer, 12...
・First strained layer thin film, 13... Second strained layer thin film layer, 14... Active layer, 15... P-type cladding layer, 21.22... ...It is a strained layer thin film. Agent Patent Attorney Susumu Uchihara 1. Pa, -・'' Figure 1 Hand 2 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)発光領域となる単層あるいは多層の活性層が、こ
の活性層に比ベエネルギーギャップの大きいクラッド層
で挾み込まれた構造の半導体発光素子において、前記ク
ラッド層よりエネルギーギャップが大きくかつ格子定数
が小さい第1の歪超薄膜と前記クラッド層より格子定数
が大きい第2の歪超薄膜とを交互に積層した歪超格子層
を、前記クラッド層と前記活性層との間の少なくとも一
方に有することを特徴とする半導体発光素子。
(1) In a semiconductor light emitting device having a structure in which a single or multilayer active layer serving as a light emitting region is sandwiched between a cladding layer having a relatively large energy gap, the active layer has a larger energy gap than the cladding layer and A strained superlattice layer in which a first strained ultrathin film having a smaller lattice constant and a second strained ultrathin film having a larger lattice constant than the cladding layer are alternately laminated is provided at least on one side between the cladding layer and the active layer. A semiconductor light emitting device comprising:
(2)格子定数の異なる層を交互に積層した歪超格子層
の膜厚で平均化した格子定数が、活性層の格子定数の0
.995から1.005倍の範囲にあることを特徴とす
る特許請求の範囲第1項記載の半導体発光素子。
(2) The lattice constant, which is averaged over the thickness of the strained superlattice layer in which layers with different lattice constants are alternately laminated, is 0 of the lattice constant of the active layer.
.. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is in the range of 995 to 1.005 times.
JP2245285A 1985-02-07 1985-02-07 Semiconductor light emitting element Expired - Lifetime JPH0632340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2245285A JPH0632340B2 (en) 1985-02-07 1985-02-07 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2245285A JPH0632340B2 (en) 1985-02-07 1985-02-07 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS61181185A true JPS61181185A (en) 1986-08-13
JPH0632340B2 JPH0632340B2 (en) 1994-04-27

Family

ID=12083102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2245285A Expired - Lifetime JPH0632340B2 (en) 1985-02-07 1985-02-07 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0632340B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296582A (en) * 1986-06-17 1987-12-23 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS647585A (en) * 1987-06-29 1989-01-11 Nec Corp Semiconductor quantum well laser
JPS649668A (en) * 1987-07-02 1989-01-12 Kokusai Denshin Denwa Co Ltd Infrared ray emitting element
JPH01138779A (en) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp Semiconductor device
JPH02125670A (en) * 1988-11-04 1990-05-14 Nec Corp Light-emitting element
JPH04162483A (en) * 1990-10-24 1992-06-05 Nec Corp Semiconductor laser
JPH04255076A (en) * 1991-02-07 1992-09-10 Matsushita Electric Works Ltd Method for inspecting printing and method for printing
EP0606127A1 (en) * 1992-02-28 1994-07-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
EP0715380A1 (en) * 1994-11-28 1996-06-05 Xerox Corporation Diode laser with tunnel barrier layer
US5577061A (en) * 1994-12-16 1996-11-19 Hughes Aircraft Company Superlattice cladding layers for mid-infrared lasers
US5661741A (en) * 1994-06-07 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device, laser amplifier, and integrated light amplifier and wavelength variable filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152178A (en) * 1981-03-17 1982-09-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device with super lattice structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152178A (en) * 1981-03-17 1982-09-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device with super lattice structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296582A (en) * 1986-06-17 1987-12-23 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS647585A (en) * 1987-06-29 1989-01-11 Nec Corp Semiconductor quantum well laser
JPS649668A (en) * 1987-07-02 1989-01-12 Kokusai Denshin Denwa Co Ltd Infrared ray emitting element
JPH01138779A (en) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp Semiconductor device
JPH02125670A (en) * 1988-11-04 1990-05-14 Nec Corp Light-emitting element
JPH04162483A (en) * 1990-10-24 1992-06-05 Nec Corp Semiconductor laser
JPH04255076A (en) * 1991-02-07 1992-09-10 Matsushita Electric Works Ltd Method for inspecting printing and method for printing
EP0606127A1 (en) * 1992-02-28 1994-07-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US5661741A (en) * 1994-06-07 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device, laser amplifier, and integrated light amplifier and wavelength variable filter
EP0715380A1 (en) * 1994-11-28 1996-06-05 Xerox Corporation Diode laser with tunnel barrier layer
US5577061A (en) * 1994-12-16 1996-11-19 Hughes Aircraft Company Superlattice cladding layers for mid-infrared lasers

Also Published As

Publication number Publication date
JPH0632340B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
CA2254484A1 (en) Semiconductor laser device
JPH05145178A (en) Strained quantum well semiconductor laser element
JPS61181185A (en) Semiconductor light-emitting element
JP3872398B2 (en) Light emitting device manufacturing method and light emitting device
CN114006268A (en) Multi-active-region semiconductor structure and preparation method thereof
US6437362B2 (en) Avalanche photodiode
KR930015228A (en) Semiconductor laser
US5714014A (en) Semiconductor heterojunction material
JPH0371679A (en) Semiconductor light emitting element
JP2755940B2 (en) Light emitting element
JPS60101989A (en) Semiconductor laser and manufacture thereof
JPS617674A (en) Group iii-v compound semiconductor light-emitting element
JPS6350876B2 (en)
JP2748570B2 (en) Semiconductor laser device
JPH04252083A (en) Semiconductor light-emitting element
EP1130722A2 (en) Semiconductor laser device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS59172785A (en) Semiconductor laser
JPH02119271A (en) Avalanche photodiode
JPH0485981A (en) Semiconductor laser
JPS58216489A (en) Quantum well type semiconductor laser
JPS58118184A (en) Buried hetero structural semiconductor laser
JP2997689B2 (en) Double heterojunction semiconductor light emitting device
JPH0378792B2 (en)
JPH02229487A (en) Multiple quantum well type semiconductor light-emitting element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term