[go: up one dir, main page]

JPS61180485A - Manufacture of mos semiconductor device - Google Patents

Manufacture of mos semiconductor device

Info

Publication number
JPS61180485A
JPS61180485A JP60020447A JP2044785A JPS61180485A JP S61180485 A JPS61180485 A JP S61180485A JP 60020447 A JP60020447 A JP 60020447A JP 2044785 A JP2044785 A JP 2044785A JP S61180485 A JPS61180485 A JP S61180485A
Authority
JP
Japan
Prior art keywords
oxide film
transistor
region
drain region
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020447A
Other languages
Japanese (ja)
Inventor
Teiichirou Nishisaka
禎一郎 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60020447A priority Critical patent/JPS61180485A/en
Publication of JPS61180485A publication Critical patent/JPS61180485A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Abstract

PURPOSE:To manufacture easily a transistor with a high withstanding voltage, by a method in which, after ion implantation is done selectively into the drain region, the entire face of the substrate is thermal-oxidized in order to thicken the insulating oxide film lying under the polycrystalline silicon gate electrode near the drain region. CONSTITUTION:After an inactive region 13 and gate oxide film 14 are formed on a P-type semiconductor substrate 12, a polycrystalline silicon gate electrode 15 is formed. Next, a photo resist film 16 covering a source region is formed, and arsenic ions are implanted to form an N-type diffusion layer 17. After the resist film 16 is removed, the entire face of the substrate is thermally oxidized to thicken the gate oxide film near the drain region thicker than a film thickness of the channel section. Thereafter, N-type impurities are implanted into the source region to form a diffusion layer 19, and finally an inter-layer insulating film 20 and electrode 22 are formed. In this way, a MOS transistor with a high withstanding voltage can be easily manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MOS型半導体装置の製造方法に関し、特に
高耐圧トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a MOS type semiconductor device, and particularly to a method of manufacturing a high voltage transistor.

〔従来の技術〕[Conventional technology]

高耐圧のMOS型トランジスタの一例として、トランジ
スタのドレイ/領域近傍のゲート酸化膜を厚くした構造
をもつ高耐圧トランジスタが知られている。これは、ド
レイン近傍のゲート&化膜を厚くすることにより、ゲー
ト、ドレイン間の電界を弱くして耐圧全高めようとする
ものである。
As an example of a high voltage MOS transistor, a high voltage transistor having a structure in which a gate oxide film near the drain/region of the transistor is thickened is known. This is intended to increase the total breakdown voltage by weakening the electric field between the gate and drain by thickening the gate and dielectric film near the drain.

しかし、従来、知られている製造方法では、トランジス
タのドレインとなる部分の近傍に、チャンネルとなる部
分のゲート酸化膜とは別に、あらかじめ厚いゲート酸化
膜を形成しておく必要があシ、さらに、この厚いゲー)
R化膜上に、ゲート電極のドレイン近傍端がのるような
構造にしなければならない。
However, with conventionally known manufacturing methods, it is necessary to form a thick gate oxide film in advance near the part that will become the drain of the transistor, separate from the gate oxide film of the part that will become the channel. , this thick game)
The structure must be such that the end of the gate electrode near the drain is placed on the R film.

従来の高耐圧のMOS型半導体装置は例えば第2図(a
)〜(0に示す工程によシ製造されている。
A conventional high-voltage MOS semiconductor device is shown in FIG. 2 (a), for example.
) to (0).

第2図(a)に示すようにPfi半導体基板l上に、選
択的に非活性領域のフィールド酸化膜2及び活性領域3
を形成する。
As shown in FIG. 2(a), a field oxide film 2 in an inactive region and an active region 3 are selectively formed on a Pfi semiconductor substrate l.
form.

次に、縞2図(b)に示すように、P型半導体基板1全
面を熱酸化することにょシ、厚いゲート絶縁酸化膜4を
形成し、トランジスタのドレイン近傍にフォトレジスト
5t−選択的に形成する。
Next, as shown in FIG. 2(b), the entire surface of the P-type semiconductor substrate 1 is thermally oxidized, a thick gate insulating oxide film 4 is formed, and a photoresist 5t is selectively applied near the drain of the transistor. Form.

次に、第2図(C)に示すように、前工程で形成したフ
ォトレジスト5をマスクにして、弗化水素溶液で、選択
的にエツチングを行ない、厚いゲート絶縁酸化膜4t−
のこす。次いでフォトレジスト5を除去したのち、トラ
ンジスタのチャンネル部のゲート絶縁酸化膜6を熱酸化
によシ形成する。
Next, as shown in FIG. 2C, using the photoresist 5 formed in the previous step as a mask, selective etching is performed with a hydrogen fluoride solution to form a thick gate insulating oxide film 4t-
Nokosu. Next, after removing the photoresist 5, a gate insulating oxide film 6 in the channel portion of the transistor is formed by thermal oxidation.

次に、第1図(d)に示すように、P散半導体基板l上
の全面に多結晶シリコン層を成長し、その多結晶シリコ
ン層を7オトレジストを用い、厚いゲート絶縁酸化膜4
上にゲート電極のドレイン端がのるように、選択的にエ
ツチングして、多結晶シリコンゲート電極7を形成する
Next, as shown in FIG. 1(d), a polycrystalline silicon layer is grown on the entire surface of the P-dispersed semiconductor substrate l, and the polycrystalline silicon layer is covered with a thick gate insulating oxide film 4 using an oxide resist.
A polycrystalline silicon gate electrode 7 is formed by selectively etching so that the drain end of the gate electrode is placed thereon.

次に、第1図(e)に示すように、多結晶シリコンゲー
ト電極7とドレイン領域がオフセットにならないよう、
厚いゲート絶縁酸化膜4を透過してN+拡散層8を形成
することが可能な注入不純物及び注入加速電圧を選択し
て不純物注入を行なう。
Next, as shown in FIG. 1(e), so that the polycrystalline silicon gate electrode 7 and the drain region are not offset,
The impurity is implanted by selecting an implanted impurity and an implantation acceleration voltage that can penetrate through the thick gate insulating oxide film 4 and form the N+ diffusion layer 8.

最後に、第1図(f)に示すように、P型半導体基板1
上全面に層間絶縁膜9を形成し、コンタクト部10を開
孔した後、アルミニウム電極11t−形成し、高耐圧の
MOS型半導体装置を完成させる。
Finally, as shown in FIG. 1(f), the P-type semiconductor substrate 1
After forming an interlayer insulating film 9 on the entire upper surface and opening a contact portion 10, an aluminum electrode 11t is formed to complete a high breakdown voltage MOS type semiconductor device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来の製造方法では、2種の異なる膜
厚のゲート絶縁酸化膜を形成するのに、2度の熱酸化が
必要であシ、又、ゲート電極のドレイン側は、厚いゲー
ト絶縁酸化膜上に、のる構造にしなければならないため
に、製造上の位置ずれを見込まなければならず、素子寸
法の縮少化には不向きである。
As mentioned above, in the conventional manufacturing method, two thermal oxidations are required to form gate insulating oxide films of two different thicknesses, and the drain side of the gate electrode has a thick gate. Since the structure must be placed on an insulating oxide film, it is necessary to allow for misalignment during manufacturing, making it unsuitable for reducing device dimensions.

加えて、ドレイン領域、N+拡散層形成時の不純物注入
は、ゲート電極とドレイン領域がオフセット構造になら
ないようにしなければならないために、不純物が厚いゲ
ート絶縁酸化膜を透過するにヒ分な、高加速電圧が必要
になる。
In addition, impurity implantation when forming the drain region and N+ diffusion layer must be done at a high enough temperature to allow the impurity to penetrate through the thick gate insulating oxide film, since it is necessary to avoid an offset structure between the gate electrode and the drain region. Accelerating voltage is required.

例えば、ドレイン近傍の厚いゲート絶縁酸化膜の膜厚が
2000人の場合、不純物としてリンを選べば、加速電
圧は200KVと言う高電圧が必要になシ、これは逆に
、ソース側でのN+拡散層のチャンネル部への拡散長が
長くなり、トランジスタのチャンネル長を長くしておく
必要がでてくるために、トランジスタの縮少化には不都
合である。
For example, if the thickness of the thick gate insulating oxide film near the drain is 2000 KV, if phosphorus is selected as the impurity, a high acceleration voltage of 200 KV will be required. This increases the diffusion length of the diffusion layer into the channel portion, making it necessary to increase the channel length of the transistor, which is inconvenient for downsizing the transistor.

本発明は、上記の欠点を解消するためになされたもので
あり、トランジスタのドレイン近傍に厚いゲート絶縁酸
化膜を自己整合的に形成する製造方法を提供することを
目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a manufacturing method for forming a thick gate insulating oxide film in the vicinity of the drain of a transistor in a self-aligned manner.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のMOS型半導体装置の製造方法は、−導電型半
導体基体上に活性領域を形成する工程と。
A method for manufacturing a MOS type semiconductor device according to the present invention includes a step of forming an active region on a -conductivity type semiconductor substrate.

該活性領域に多結晶シリコンゲート電極を絶縁酸化膜を
介して形成する工程と、トランジスタのドレイン領域に
のみ選択的に反対導電型不純物のイオン注入を行なう工
程と、前記−導電型半導体基体全面を熱酸化し、前記ト
ランジスタの前記ドレイン領域を厚く酸化することによ
り、前記ドレイン領域近傍の前記多結晶シリコンゲート
電極下の絶縁酸化膜を厚くする工程と、前記トランジス
タの前記ソース領域に反対導電型不純物を注入する工程
とを含んで構成される。
a step of forming a polycrystalline silicon gate electrode in the active region via an insulating oxide film; a step of selectively implanting ions of an opposite conductivity type impurity only into the drain region of the transistor; thickening the insulating oxide film under the polycrystalline silicon gate electrode in the vicinity of the drain region by thermally oxidizing the drain region of the transistor; and adding impurities of opposite conductivity type to the source region of the transistor. The method includes a step of injecting.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照して説明す
る。第1図(a)〜(e)は本発明の一実施例を説明す
るために工程順に示した断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1(a) to 1(e) are cross-sectional views shown in order of steps to explain an embodiment of the present invention.

まず、第1図(a)に示すように、P型半導体基板12
上に非活性領域13及び活性領域を形成したのち、活性
領域にはゲート酸化膜14t−形成する°。
First, as shown in FIG. 1(a), a P-type semiconductor substrate 12
After forming an inactive region 13 and an active region thereon, a gate oxide film 14t is formed in the active region.

次に、第1図5)に示すように、ゲート酢化膜14上に
多結晶シリコン膜を形成し、フォトエツチング法によシ
多結晶シリコンゲート寛極15を選択的に残す。
Next, as shown in FIG. 1 (FIG. 5), a polycrystalline silicon film is formed on the gate acetate film 14, and a polycrystalline silicon gate electrode 15 is selectively left by photoetching.

次に、第り図(C)に示すように、トランジスタのソー
ス領域を穂うように7オトレジスト16を形成したのち
、フォトレジスト16及び多結晶シリコンゲート電極1
5をマスクにしてヒ素のイオン注入を行い、N型拡散層
L7を形成する。
Next, as shown in Figure (C), a photoresist 16 is formed so as to cover the source region of the transistor, and then the photoresist 16 and the polycrystalline silicon gate electrode 1 are formed.
Using No. 5 as a mask, arsenic ions are implanted to form an N-type diffusion layer L7.

次に、第1図(d)に示すように、フォトレジスト16
を除去した後、基板全面の熱酸化を行う。これによシ、
すでにヒ素イオンの注入されたドレイン領域の拡散層上
の酸化膜は、まだN型不純物の注入されていないソース
領域の拡散層上の酸化膜に比べて、約5倍程度の増速酸
化を受け、チャンネル方向へくい込む。その結果、ドレ
イン領域近傍のゲート酸化膜厚は、チャンネル部のゲー
ト酸化膜厚に比べると十分厚く、これがゲート電極とド
レイン間に加わる電界を弱める効果がある。
Next, as shown in FIG. 1(d), the photoresist 16
After removing, the entire surface of the substrate is thermally oxidized. For this,
The oxide film on the diffusion layer of the drain region into which arsenic ions have already been implanted undergoes accelerated oxidation about five times as much as the oxide film on the diffusion layer of the source region that has not yet been implanted with N-type impurities. , bite into the channel direction. As a result, the gate oxide film near the drain region is sufficiently thicker than the gate oxide film in the channel region, which has the effect of weakening the electric field applied between the gate electrode and the drain.

次に、トランジスタのソース領域にN型不純物を注入し
ソースN+拡散層19を形成する。
Next, an N-type impurity is implanted into the source region of the transistor to form a source N+ diffusion layer 19.

最後に、第1図(e)に示すように、層間絶縁膜20を
形成したのちコンタクト部21を開孔し、アルミニウム
電極22を設けることKよυMOS型高耐工高耐圧トラ
ンジスタをすることができる。
Finally, as shown in FIG. 1(e), after forming the interlayer insulating film 20, a contact portion 21 is opened and an aluminum electrode 22 is provided. can.

上述したように、ヒ素の注入されたドレイン拡散層領域
の増速酸化を利用することにより、ドレイン近傍に自己
整合的に厚いゲート絶縁酸化膜を形成することができ、
これによ、9MOS型高耐圧トランジスタを形成するこ
とができる。
As mentioned above, by utilizing accelerated oxidation of the arsenic-injected drain diffusion layer region, it is possible to form a thick gate insulating oxide film near the drain in a self-aligned manner.
Thereby, a 9MOS type high voltage transistor can be formed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、自己整合的にドレイン近傍にゲート電
極とドレイン間の電界緩和のだめの厚いゲート絶縁酸化
膜を有するMOS型高耐圧トランジスタを容易に形成す
ることができるため、素子寸法縮少化に非常に有利であ
る。
According to the present invention, it is possible to easily form a MOS type high voltage transistor having a thick gate insulating oxide film in the vicinity of the drain in a self-aligned manner to relax the electric field between the gate electrode and the drain, so that the device size can be reduced. very advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例を説明するた
めに工程順に示した断面図、第2図(a)〜(f)は従
来の高耐圧MOS型半導体装置の製造方法を説明するた
めに工程順に示した断面図である。 1.12・・・・・・P型半導体基板、2.13・・・
・・・非活性領域(フィールド酸化膜)、3・・・・・
・活性領域、4・・・・・・厚いゲート酸化膜、5.1
6・・・・・・フオトレジス)、6.14・・・・・・
ゲート酸化膜、7.15・・・・・・多結晶シリコンゲ
ート電極、8・・・・・・N+拡散層、9.20・・・
・・・層間絶縁膜、to、21・・・・・・コンタクト
部、11.22・・・・・・アルミニウム電極、17・
・・・・・ドレインN+拡散層、18・・・・・・厚い
ケート酸化膜、19・・・・・・ソースN+拡散層。 ¥−1ヅ
FIGS. 1(a) to (e) are cross-sectional views shown in order of steps to explain an embodiment of the present invention, and FIGS. 2(a) to (f) are conventional high voltage MOS type semiconductor device manufacturing methods. FIG. 3 is a cross-sectional view shown in order of steps to explain the method. 1.12...P-type semiconductor substrate, 2.13...
...Inactive region (field oxide film), 3...
・Active region, 4...Thick gate oxide film, 5.1
6...Photoregis), 6.14...
Gate oxide film, 7.15... Polycrystalline silicon gate electrode, 8... N+ diffusion layer, 9.20...
...Interlayer insulating film, to, 21...Contact part, 11.22...Aluminum electrode, 17.
...Drain N+ diffusion layer, 18...Thick cat oxide film, 19...Source N+ diffusion layer. ¥-1ヅ

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基体上に活性領域を形成する工程と、
該活性領域に多結晶シリコンゲート電極を絶縁酸化膜を
介して形成する工程と、トランジスタのドレイン領域に
のみ選択的に反対導電型不純物のイオン注入を行なう工
程と、前記一導電型半導体基体全面を熱酸化し、前記ト
ランジスタの前記ドレイン領域を厚く酸化することによ
り、前記ドレイン領域近傍の前記多結晶シリコンゲート
電極下の絶縁酸化膜を厚くする工程と、前記トランジス
タの前記ソース領域に反対導電型不純物を注入する工程
とを含むことを特徴とするMOS型半導体装置の製造方
法。
forming an active region on a semiconductor substrate of one conductivity type;
a step of forming a polycrystalline silicon gate electrode in the active region via an insulating oxide film; a step of selectively implanting impurity ions of an opposite conductivity type only into the drain region of the transistor; thickening the insulating oxide film under the polycrystalline silicon gate electrode in the vicinity of the drain region by thermally oxidizing the drain region of the transistor; and adding impurities of opposite conductivity type to the source region of the transistor. 1. A method for manufacturing a MOS type semiconductor device, comprising the step of injecting.
JP60020447A 1985-02-05 1985-02-05 Manufacture of mos semiconductor device Pending JPS61180485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020447A JPS61180485A (en) 1985-02-05 1985-02-05 Manufacture of mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020447A JPS61180485A (en) 1985-02-05 1985-02-05 Manufacture of mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS61180485A true JPS61180485A (en) 1986-08-13

Family

ID=12027309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020447A Pending JPS61180485A (en) 1985-02-05 1985-02-05 Manufacture of mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS61180485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228000A (en) * 1994-07-30 1996-09-03 Lg Semicon Co Ltd Semiconductor device and manufacturing method thereof
JP2009130192A (en) * 2007-11-26 2009-06-11 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228000A (en) * 1994-07-30 1996-09-03 Lg Semicon Co Ltd Semiconductor device and manufacturing method thereof
JP2009130192A (en) * 2007-11-26 2009-06-11 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0212836A (en) Manufacturing method of semiconductor device
JPS62213167A (en) Manufacture of power mos transistor
JPH0744275B2 (en) Method for manufacturing high breakdown voltage MOS semiconductor device
JPS5947471B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPS61180485A (en) Manufacture of mos semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JPH05283687A (en) Production of semiconductor element
JP4830184B2 (en) Manufacturing method of semiconductor device
JPS6116573A (en) Manufacture of mis type semiconductor device
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JPS6197967A (en) Semiconductor device and its manufacturing method
JP4439678B2 (en) Manufacturing method of semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JP3148227B2 (en) Method for manufacturing semiconductor device
JPS6294985A (en) Manufacture of mos semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JPS6016469A (en) Manufacturing method of MIS semiconductor device
JPH0517713B2 (en)
JPH0369137A (en) Manufacture of semiconductor integrated circuit
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPS62263658A (en) Semiconductor device and manufacture thereof
JPS62190879A (en) Manufacture of mis semiconductor device
JPS61166154A (en) Manufacturing method of MIS type semiconductor device
JPS6376376A (en) Manufacture of metal-oxide semiconductor (mos) device