[go: up one dir, main page]

JPS61180104A - Measuring instrument for position displacement - Google Patents

Measuring instrument for position displacement

Info

Publication number
JPS61180104A
JPS61180104A JP21509985A JP21509985A JPS61180104A JP S61180104 A JPS61180104 A JP S61180104A JP 21509985 A JP21509985 A JP 21509985A JP 21509985 A JP21509985 A JP 21509985A JP S61180104 A JPS61180104 A JP S61180104A
Authority
JP
Japan
Prior art keywords
reflected light
light
measured
position displacement
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21509985A
Other languages
Japanese (ja)
Other versions
JPH0371041B2 (en
Inventor
Toshio Ichikawa
市川 敏夫
Hideto Kondo
秀人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP21509985A priority Critical patent/JPS61180104A/en
Publication of JPS61180104A publication Critical patent/JPS61180104A/en
Publication of JPH0371041B2 publication Critical patent/JPH0371041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To detect the direction of the displacement of a body to be measured even when the setting position of the object body is not within a measurement range by extending the photodetection surface of a PSD (position detecting photodiode) further form an electrode as the measurement range. CONSTITUTION:Photodetection surface S1 and S2 are provided extending to outside electrodes 4 and 5 fitted on the photodetection surface 2 of a PSD17, which is mounted on a position displacement measuring device. When reflected light 13b from the object 14 is at the center point of the PSD17, nearly equal currents i1 and i2 flow to the electrodes 4 and 5. If the reflected light 13b is off the point O, the currents i1 and i'd2 increase and decrease in the opposite directions according to a position (y) shifting from the point O. When the reflected light 13b further shifts and reaches the photodetection surface S1, the current i1 is ceased. When the currents i1 and i2 are inputted to a computing element 18 and a positive and a negative full-scale output voltage are obtained even if the reflected light 13b strike the photodetection surfaces S1 and S2, so that the direction of the displacement of the reflected light 13b is detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光ビームを被測定物に照射し、その反射光を
利用して被測定物の位置、および変位を測定し、被測定
物の形状寸法等を算出することができる位置変位測定装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention irradiates a light beam onto an object to be measured, and uses the reflected light to measure the position and displacement of the object. The present invention relates to a position displacement measuring device that can calculate shapes and dimensions.

〔従来の技術〕[Conventional technology]

第1図は位置変位測定装置の主要部を図示したもので、
11はレーザ光などが出力される光源、12は照射レン
ズ、13aは被測定物14上に集束される照射光、13
bは被測定物14において反射・散乱した光の一部が集
束レンズ15によって捕捉された反射光、16は変位検
出器であって前記反射光13bが照射されている位置検
出用のホトダイオード17.および検出した信号の演算
器18によって構成されている。
Figure 1 shows the main parts of the position displacement measuring device.
11 is a light source that outputs a laser beam or the like; 12 is an irradiation lens; 13a is irradiation light that is focused on the object to be measured 14;
16 is a displacement detector and is a position detection photodiode 17.b which is a displacement detector and is irradiated with the reflected light 13b. and an arithmetic unit 18 for the detected signal.

第2図はかかる位置変位測定装置において使用されてい
る従来の位置検出用のホトダイオード(P ositi
on S ensitive  D evice :以
下PSDという)の構造を模式図としたもので、1はn
型の高抵抗半導体基板、1′は薄い半導体絶縁層(1層
)、2はp型の半導体表面層、3は前記n型の高抵抗半
導体基板1のn・層に設けられている電極 4,5は前
記p型の半導体表面層2の両端に設けられている電極で
ある。
FIG. 2 shows a conventional position detection photodiode used in such a position displacement measuring device.
This is a schematic diagram of the structure of on S sensitive device (hereinafter referred to as PSD), where 1 is n
1' is a thin semiconductor insulating layer (one layer), 2 is a p-type semiconductor surface layer, and 3 is an electrode provided on the n layer of the n-type high-resistance semiconductor substrate 1. , 5 are electrodes provided at both ends of the p-type semiconductor surface layer 2.

このようなPIN構造とされたダイオードは、図に示し
たように直流電源6.負荷抵抗7,8を接続してp型の
半導体表面層2にスポット状の光ビームLを照射すると
、負荷抵抗7,8には光電効果によって発生した電流が
半導体表面層2の表面抵抗によって分流した光電流11
および12が流れることが知られている。
A diode with such a PIN structure is connected to a DC power source 6. as shown in the figure. When the load resistors 7 and 8 are connected and the p-type semiconductor surface layer 2 is irradiated with a spot-shaped light beam L, the current generated by the photoelectric effect is shunted in the load resistors 7 and 8 by the surface resistance of the semiconductor surface layer 2. Photocurrent 11
and 12 are known to flow.

この光電流i1.i2は負荷抵抗7,8が半導体表面層
2の表面抵抗より十分に小さいとき、光ビームLの位置
が中心0よりyだけ変位した位置にあると、前記負荷抵
抗7.8に流れる光電流i1゜12は、第3図(a)に
示すようにy=Qであるときは1l=i2 となり、中
心Oより離れると互いに逆方向に増減する。そのため、
光ビームLが中心○から変位した位@yは、第3図(b
)の実線で示すように Y=K・、   、(但し、Kは比例定数)11  +
t2 によって計算することができる。
This photocurrent i1. When the load resistances 7 and 8 are sufficiently smaller than the surface resistance of the semiconductor surface layer 2, and the position of the light beam L is displaced from the center 0 by y, the photocurrent i1 flows through the load resistance 7.8. As shown in FIG. 3(a), when y=Q, 12 becomes 1l=i2, and increases and decreases in opposite directions when moving away from the center O. Therefore,
The distance @y that the light beam L is displaced from the center ○ is shown in Figure 3 (b
) as shown by the solid line, Y=K・, , (where K is a constant of proportionality) 11 +
It can be calculated by t2.

ところで、前記した第1図の位置変位測定装置において
、被測定物14の位置が点線のように変位するとPSD
17に照射されている反射光13bも点線で示すように
結像点が移動するから、この結像点の移動した位置yを
光電流i+、i2の値から演算すると被測定物14の変
位またはその形状等を測定することができる。
By the way, in the above-mentioned position displacement measuring device shown in FIG.
Since the imaging point of the reflected light 13b irradiated on the object 17 also moves as shown by the dotted line, calculating the moved position y of this imaging point from the values of the photocurrents i+ and i2 yields the displacement of the object 14 or Its shape etc. can be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記変位した位置yの値は、光電流i1
.i2が得られる測定範囲、すなわち、反射光13bが
PSD 17の半導体表面層2に照射されるような被測
定物14のセット位置において計算可能になり、例えば
、反射光13bが半導体表面層2の測定範囲から完全に
外れたとき、つまり、被測定物14の位置が測定範囲よ
り外れたときは、暗電流による影響や、熱雑音による電
流に点線で示すように不定となり、被測定物14の位置
と無関係な出力が発生する。
However, the value of the displaced position y is equal to the photocurrent i1
.. i2 can be calculated in the measurement range where i2 is obtained, that is, in the set position of the object to be measured 14 such that the reflected light 13b irradiates the semiconductor surface layer 2 of the PSD 17. When the position of the object under test 14 is completely out of the measurement range, that is, when the position of the object under test 14 is outside the measurement range, the current due to dark current and thermal noise becomes unstable as shown by the dotted line, and the position of the object under test 14 becomes unstable. Output independent of position occurs.

受光レンズによる結像スポフトが半導体表面層2から外
れたとき、つまり被測定物14の位置が測定範囲から外
れたとき不定出力が生じ、この不定出力により、被測定
物14の位置が測定範囲内か、外れているかの判断が困
難になる場合が多発する。 特に受光倍率を高くした高
精度装置では数mm離れた位置にある空間の被測定物1
4を0.1mm程度を測定範囲とするため、被測定物1
4を位置変位測定装置にセットする際に、その初期位置
を定めることがきわめて困難になると同時に、被測定物
14の設定を自動的にセットする際もサーボ回路を構成
することができないという問題があった。
When the imaging spot formed by the light-receiving lens comes off the semiconductor surface layer 2, that is, when the position of the object to be measured 14 goes out of the measurement range, an indefinite output is generated, and this irregular output causes the position of the object to be measured 14 to be within the measurement range. There are many cases where it is difficult to judge whether the target is correct or not. Especially in high-precision equipment with high light receiving magnification, the object to be measured 1 in space is located several mm away.
4 to a measurement range of about 0.1 mm, the object to be measured 1
When setting the object to be measured 14 in a position displacement measuring device, it becomes extremely difficult to determine its initial position, and at the same time, there is a problem in that it is not possible to configure a servo circuit when automatically setting the settings of the object to be measured 14. there were.

この発明は、かかる点にかんがみてなされたもので、P
SDの受光面を改良することによって被測定物のセット
位置が測定範囲内にない場合でも、その外れている方向
が検出できるようにした位置変位測定装置を提供するも
のである。
This invention was made in view of these points, and
The present invention provides a position displacement measuring device that is capable of detecting the direction in which an object to be measured is set even if the set position of the object is not within the measurement range by improving the light receiving surface of the SD.

〔実施例〕〔Example〕

第4図はこの発明の位置変位測定装置に採用できるPS
D (位置検出用のホトダイオード)を示すもので、符
号1〜8の構造は第2図のものと同一である。しかしな
がら、この発明の位置変位測定袋1置に装着されるPS
Dでは受光面となるp型の半導体表面層2に取り付けた
電極4.5の外側に延長して2つの受光面sl、s2が
設けである。
Figure 4 shows a PS that can be adopted in the position displacement measuring device of this invention.
D (a photodiode for position detection), and the structures 1 to 8 are the same as those in FIG. 2. However, the PS attached to one position displacement measurement bag of this invention
In D, two light-receiving surfaces sl and s2 are provided extending outward from the electrode 4.5 attached to the p-type semiconductor surface layer 2 serving as the light-receiving surface.

つづいて、かかるPSDに反射光13bが入射した場合
について説明する。
Next, a case where the reflected light 13b is incident on the PSD will be described.

前述したように、PSDの中心点0に反射光13bがあ
る場合は、受光面に設けである2つの電極にはほぼ同一
の光電流11+12が流れる。また、この反射光の位置
が変位し、中心点0よりはずれた位置に来たときは第5
図(a)に示すように2つの光電流11+12は中心か
らずれた位置yに応じて互いに逆方向に増減する。
As described above, when the reflected light 13b is at the center point 0 of the PSD, substantially the same photocurrent 11+12 flows through the two electrodes provided on the light receiving surface. Also, when the position of this reflected light is displaced and comes to a position away from the center point 0, the fifth
As shown in Figure (a), the two photocurrents 11+12 increase and decrease in opposite directions depending on the position y shifted from the center.

そして、反射光13bのずれがさらに大きくなり、前記
した延長しである受光面S1に到達すると、反射光13
bによる光電流は全部電極5に流入し、光電流12、す
なわち電極4の電流はOとなる。逆に延長した受光面S
2の方に反射光13bがずれると、光電流11の方がO
となる。
Then, when the deviation of the reflected light 13b becomes even larger and reaches the light receiving surface S1, which is the extension described above, the reflected light 13b
All of the photocurrent due to b flows into the electrode 5, and the photocurrent 12, that is, the current of the electrode 4 becomes O. Conversely, the light receiving surface S extended
When the reflected light 13b shifts toward 2, the photocurrent 11 becomes O
becomes.

したがって、演算器18の出力は第5図(b)のように
測定範囲となる正規の受光面内では従来と同様に、y=
に一、−になり入射光の位11  +12 置を検出すると同時に、延長した受光面S l + S
 2に入った場合もフルスケールの出力電圧+V、およ
び−■が得られる。そのため、反射光13bが正規の受
光面からどの方向に変位しているかを知ることができ、
前述した第2図のPSDのように検出値が不定を示すこ
とがない。
Therefore, as shown in FIG. 5(b), the output of the arithmetic unit 18 is the same as before within the normal light-receiving surface that is the measurement range, y=
At the same time, the position 11 +12 of the incident light is detected and the extended light receiving surface S l + S
2, full-scale output voltages +V and -■ can also be obtained. Therefore, it is possible to know in which direction the reflected light 13b is displaced from the normal light receiving surface.
Unlike the PSD shown in FIG. 2 described above, the detected value does not show indeterminacy.

反射光13bが電極4,5上に入射した場合は問題があ
るが、この電極4,5を薄くまたは細く形成するか、ま
たは電極の素材に透明で導電性をもつ酸化すずなどを用
いれば、この点でもフルスケールに相当する電圧+V、
−Vが得られる。
There is a problem when the reflected light 13b is incident on the electrodes 4 and 5, but if the electrodes 4 and 5 are made thin or thin, or if the electrode material is made of transparent and conductive tin oxide, etc. In this respect, the voltage +V corresponding to full scale,
-V is obtained.

第6図(a)、(b)はこの発明の位置変位測定装置に
装着される他のPSDの形状を示したもので、第4図の
ものと比較して延長した受光面S11.Si2の幅りを
狭くしたものである。
FIGS. 6(a) and 6(b) show the shape of another PSD installed in the position displacement measuring device of the present invention, in which the light receiving surface S11 is extended compared to that of FIG. The width of Si2 is narrowed.

延長した受光面S11,312は反射光13bの一部分
でも受光できれば演算出力をフルスケールの値に保つこ
とができるので、受光面を狭くしても支障はない。
If the extended light receiving surface S11, 312 can receive even a portion of the reflected light 13b, the calculation output can be maintained at the full scale value, so there is no problem even if the light receiving surface is narrowed.

このような構造にすると、 1)延長した受光面SI1.S12によって接合容量が
増加し、応答性が悪くなることを防止することができる
With such a structure, 1) Extended light receiving surface SI1. S12 can prevent the junction capacitance from increasing and the response from worsening.

2)延長した受光面Sll、S12によって増加する漏
えい電流を小さくすることができるので、検出値のS/
Nが増加する。
2) Since the increased leakage current can be reduced by extending the light receiving surfaces Sll and S12, the detected value S/
N increases.

などの利点がある。There are advantages such as

なお、延長した受光面S1.S2  (S11 、31
2)のP型半導体領域における層抵抗は特に均一にする
必要がなく、その光電変換の感度は低くても、作用効果
に支障が生じることがない。
Note that the extended light receiving surface S1. S2 (S11, 31
The layer resistance in the P-type semiconductor region of 2) does not need to be particularly uniform, and even if the sensitivity of photoelectric conversion is low, the operation and effect will not be affected.

以上の説明から理解できるように、この発明の位置変位
測定装置では、PSDの受光面を測定範囲となる電極4
.5からさらに外側に延長して反射光の捕捉範囲を広く
しているので、位置変位測定装置にセットされる被測定
物の位置が従来の位置変位測定装置よりも広い範囲で検
出することができ、被測定物のセントの位置が多少ずれ
ていてもPSDかも得られた光電流の演算値でそのずれ
方向が検出できるようになる。
As can be understood from the above explanation, in the position displacement measuring device of the present invention, the light receiving surface of the PSD is the electrode 4 that is the measurement range.
.. 5 further outward to widen the capturing range of the reflected light, so the position of the object to be measured set in the position displacement measuring device can be detected over a wider range than with conventional position displacement measuring devices. Even if the position of the center of the object to be measured is slightly shifted, the direction of the shift can be detected using the calculated value of the photocurrent obtained from the PSD.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の位置変位測定装置は、
被測定物のセット位置がきわめて広い範囲で捕捉できる
という効果がある。特に、受光倍率を高くした高精度の
装置では数mmの空間距離をおいて0.1mm程度の位
置変位を測定する必要があるが、この場合も位置変位測
定装置と被測定物との位置合わせが容易になるという利
点がある。
As explained above, the position displacement measuring device of the present invention has the following features:
This has the effect that the set position of the object to be measured can be captured over an extremely wide range. In particular, with a high-precision device with a high light-receiving magnification, it is necessary to measure a positional displacement of about 0.1 mm at a spatial distance of several mm, but in this case as well, alignment between the position displacement measuring device and the object to be measured is necessary. This has the advantage of making it easier.

また、被測定物を自動的に初期位置に設定するためのサ
ーボ系も容易に構成できるようになるという効果がある
Further, there is an effect that a servo system for automatically setting the object to be measured at the initial position can be easily configured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被測定物の位置変位からその形状を測定する位
置変位測定装置の概要図、第2図は位置検出用ダイオー
ド(P S D)の構造図、第3図(a)、(b)はP
SDの光電流の特性図、第4図はこの発明の位置変位測
定装置に採用されたPSDの構造図、第5図はこの発明
の位置変位測定装置で検出される光電流の特性図と演算
値を示す図、第6図(a)、(b)はPSIM)他の実
施例を示す構造図である。 図中、11は光源、12は照射レンズ、13aは照射光
、13bは反射光、14は被測定物、]5は集束レンズ
、17はホトダイオード、18は演算器を示す。 第1図 第2図 第4図
Figure 1 is a schematic diagram of a position displacement measurement device that measures the shape of an object from its position displacement, Figure 2 is a structural diagram of a position detection diode (PSD), and Figures 3 (a) and (b). ) is P
A characteristic diagram of the photocurrent of the SD, Fig. 4 is a structural diagram of the PSD adopted in the position displacement measuring device of the present invention, and Fig. 5 is a characteristic diagram of the photocurrent detected by the position displacement measuring device of the present invention and calculations. Figures 6(a) and 6(b) are structural diagrams showing other embodiments of the PSIM. In the figure, 11 is a light source, 12 is an irradiation lens, 13a is irradiation light, 13b is reflected light, 14 is an object to be measured, ]5 is a focusing lens, 17 is a photodiode, and 18 is a computing unit. Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 光ビームを照射して被測定物の表面に輝点を発生し、前
記輝点からの反射光を前記光ビームの照射方向に対して
一定の角度で捕捉する集光レンズによって位置検出用の
ホトダイオード上に結像し、前記被測定物の位置変位を
非接触の状態で検出する位置変位検出装置において;前
記位置検出用のホトダイオードは前記反射光を受光する
位置検出用の受光面と、該受光面の両側に配置され前記
反射光の位置を検出するための2個の電極と、前記2個
の電極からさらに外側に延在し、前記反射光が前記受光
面外に移動するオーバレンジ領域を検出する2個の受光
面を備えていることを特徴とする位置変位測定装置。
A photodiode for position detection using a condensing lens that irradiates a light beam to generate a bright spot on the surface of the object to be measured and captures the reflected light from the bright spot at a constant angle with respect to the irradiation direction of the light beam. In a position displacement detection device that forms an image on the object to be measured and detects the position displacement of the object in a non-contact manner; the photodiode for position detection has a light receiving surface for position detection that receives the reflected light; two electrodes disposed on both sides of the surface for detecting the position of the reflected light; and an overrange region extending further outward from the two electrodes in which the reflected light moves outside the light receiving surface. A position displacement measuring device characterized by comprising two light receiving surfaces for detection.
JP21509985A 1985-09-30 1985-09-30 Measuring instrument for position displacement Granted JPS61180104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21509985A JPS61180104A (en) 1985-09-30 1985-09-30 Measuring instrument for position displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21509985A JPS61180104A (en) 1985-09-30 1985-09-30 Measuring instrument for position displacement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57034090A Division JPS58151507A (en) 1982-03-05 1982-03-05 Photodiode for position detection

Publications (2)

Publication Number Publication Date
JPS61180104A true JPS61180104A (en) 1986-08-12
JPH0371041B2 JPH0371041B2 (en) 1991-11-11

Family

ID=16666736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21509985A Granted JPS61180104A (en) 1985-09-30 1985-09-30 Measuring instrument for position displacement

Country Status (1)

Country Link
JP (1) JPS61180104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272517A (en) * 1990-06-13 1993-12-21 Matsushita Electric Industrial Co., Ltd. Height measurement apparatus using laser light beam
CN105932090A (en) * 2016-04-27 2016-09-07 河北大学 Thin-film-structure position sensitive detector based on lateral photovoltage effect
EP2434945B1 (en) * 2009-05-27 2018-12-19 Analog Devices, Inc. Multiuse optical sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272517A (en) * 1990-06-13 1993-12-21 Matsushita Electric Industrial Co., Ltd. Height measurement apparatus using laser light beam
EP2434945B1 (en) * 2009-05-27 2018-12-19 Analog Devices, Inc. Multiuse optical sensor
CN105932090A (en) * 2016-04-27 2016-09-07 河北大学 Thin-film-structure position sensitive detector based on lateral photovoltage effect

Also Published As

Publication number Publication date
JPH0371041B2 (en) 1991-11-11

Similar Documents

Publication Publication Date Title
KR920009799B1 (en) Space filter type speed measuring device
JP2007225565A (en) Optical ranging sensor
US3742223A (en) Wide angle lateral photo-detector means
Song et al. Design and performance analysis of laser displacement sensor based on position sensitive detector (PSD)
JPS61180104A (en) Measuring instrument for position displacement
JPS59762B2 (en) displacement measuring device
EP0312332B1 (en) Barometric meter
JPS629841B2 (en)
JPS61170605A (en) Detector for inclination of semiconductor wafer
US8803059B2 (en) Sensor for determination of the incidence angle of radiation and method for measurement the incidence angle using such a sensor
JPS62264678A (en) array type photodiode
JPH01156694A (en) Photoelectric switch
JPH02210209A (en) Tilt sensor
RU176265U1 (en) DEVICE FOR DETERMINING POSITION OF LIGHT SPOT
JP3123172B2 (en) A device that detects the position and intensity of light
CN118408495A (en) Circumferential identification signal generation method and device based on transverse photoelectric effect
JPH0476587B2 (en)
Shi et al. A Design of Signal Processing Circuit Based on the Duo-Lateral PSD
JPS6326504A (en) Two-division type semiconductor position detector
JP3311799B2 (en) Movement detector
JP2928061B2 (en) Displacement sensor
JPS63206682A (en) Photoelectric switch
JPH04363607A (en) Two-dimensional light position detector
JPH02154108A (en) Distance measuring instrument
JPH0690029B2 (en) Distance detector