JPS61175000A - Method for fermenting methane - Google Patents
Method for fermenting methaneInfo
- Publication number
- JPS61175000A JPS61175000A JP60016328A JP1632885A JPS61175000A JP S61175000 A JPS61175000 A JP S61175000A JP 60016328 A JP60016328 A JP 60016328A JP 1632885 A JP1632885 A JP 1632885A JP S61175000 A JPS61175000 A JP S61175000A
- Authority
- JP
- Japan
- Prior art keywords
- methane
- fermentation
- temp
- medium
- bacterium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Treatment Of Sludge (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】 に関するものである。[Detailed description of the invention] It is related to.
更に詳細には、本発明は、新規分離菌であるメタノコツ
カス属に属する非海洋性低温発酵性菌を用いて、エネル
ギーを節減した低温域でメタン発酵せしめる方法に関す
るものである。More specifically, the present invention relates to a method of carrying out methane fermentation in a low temperature range while saving energy using a newly isolated non-marine low-temperature fermenting bacterium belonging to the genus Methanococcus.
一般に、メタン発酵法は20世紀初期より都市下水汚泥
の処理法ギーの節減と生成したメタンを回収することか
ら注目されるようになってきた。すなわち、産業廃水処
理の観点からは、嫌気性発酵であるため、好気性処理法
と比較して所要動力の少ないこと、余剰汚泥があまり出
ないことなどの利点がある。また、未利用廃棄物等から
メタンをエネルギー源として回収できるとの観点から研
究も盛んに行われてきている。In general, methane fermentation has attracted attention since the early 20th century because it is a treatment method for urban sewage sludge, saves on ghee, and recovers the methane produced. That is, from the viewpoint of industrial wastewater treatment, since it is an anaerobic fermentation method, it has advantages such as requiring less power and producing less surplus sludge than an aerobic treatment method. Furthermore, research is being actively conducted from the perspective of recovering methane from unused waste as an energy source.
従来、メタン発酵は高温(50〜55℃)発酵法及び中
温(30〜40℃)発酵法で行われている。しかし、中
温発酵法でも発酵槽を加温しなければならないし、特に
寒い北海道などでは、発酵適温まで加温するエネルギー
をかなり必要としているように、その加温エネルギーは
、寒冷地におけるメタン発酵法を困難にしているのであ
る。Conventionally, methane fermentation has been carried out using a high temperature (50 to 55°C) fermentation method and a medium temperature (30 to 40°C) fermentation method. However, even with the medium-temperature fermentation method, the fermenter must be heated, and in particularly cold regions such as Hokkaido, a considerable amount of energy is required to heat it to the appropriate temperature for fermentation. This makes it difficult.
本発明者らは、寒冷地におけるメタン発酵を可能とする
ために、低温発酵性菌を求めて鋭意探索したところ,全
(新規で、新種と認められる非海洋性低温発酵性菌を4
株単離することに成功したのである。In order to enable methane fermentation in cold regions, the present inventors conducted an intensive search for low-temperature-fermenting bacteria, and found that all (4) non-marine low-temperature-fermenting bacteria, which are new and recognized as new species, were found.
They succeeded in isolating the strain.
本発明は、ここに単離された非海洋性低温発酵性菌によ
って完成されたもので.メタノコツカス属に属する非海
洋性低温発酵性菌を培養することを特徴とするメタン発
酵法である。The present invention was completed using the non-marine cold-fermenting bacteria isolated here. This is a methane fermentation method characterized by culturing non-marine cold-fermenting bacteria belonging to the genus Methanococcus.
代牢 シ々ソ塁Mア’)n,%1”ア憤葺ア桑ス苗夫1
アC寸メ々ノl、=−ラム・カリアノ(Methano
genium Cariaci )か知られているたけ
であるか、この菌は海洋性メタン細菌であって、食塩濃
度1.596以」ニないと生育てきない。しかし、産業
廃水処理、未利用廃棄物からのエネルギー回収を目的と
してメタン発酵を行う場合、食塩を必要としない非海洋
性のメタン細菌でなければならない。Dai prison Shishiso Rui M a')n,%1"A wrathful a Kuwa Su Naeo 1
A C Dimensions = - Ram Kagliano (Methano)
This bacterium, known as Genium Cariaci, is a marine methane bacterium that cannot grow unless the salt concentration is 1.596" or higher. However, when performing methane fermentation for the purpose of industrial wastewater treatment or energy recovery from unused waste, non-marine methane bacteria that do not require salt must be used.
本発明者らは、20〜25℃でも効率よ(メタンを生産
できる非海洋性のメタン細菌取得を目的として、北海道
地方の原野、沼地、湿原などからメタン細菌の分離検索
を行い、非海洋性低温発酵性面を4株分離することに成
功したのであるか、これら4株はすべて球菌であって、
メタノフッカス(Methanococcus)属に属
すものと認められるものである。これら4株は、メタン
細菌8−G(微工研菌寄 第7873号)、メタン細菌
8−M(微工研菌寄第7874号)、メタン細菌8−P
(微工研菌寄 第7875号)、メタン細菌16−11
−L (微工研菌寄 第7876号)として微工研に寄
託さねている。次に、これら菌株の菌学的性質を示す。The present inventors isolated and searched for methane bacteria from fields, swamps, wetlands, etc. in the Hokkaido region with the aim of obtaining non-marine methane bacteria that can produce methane efficiently even at 20 to 25 degrees Celsius. We may have succeeded in isolating four strains that are fermentable at low temperatures, as these four strains are all cocci.
It is recognized as belonging to the genus Methanococcus. These four strains are Methanobacteria 8-G (Feikoken Bacteria No. 7873), Methanobacteria 8-M (Feikoken Bacteria No. 7874), and Methanobacteria 8-P.
(Feikoken Bacteria No. 7875), Methane Bacteria 16-11
-L (February Institute of Fine Arts and Science Deposit No. 7876). Next, the mycological properties of these strains will be shown.
なお、ここて用いた基本培地は次に示す組成を有し、こ
の培地を用い、気相を水素/炭酸(80%/20%)2
気圧にして、試験管内(培地15mA)で培養し、各試
験を行った。The basic medium used here has the following composition, and using this medium, the gas phase is hydrogen/carbonic acid (80%/20%) 2
Each test was performed by culturing in a test tube (medium 15 mA) under atmospheric pressure.
明細書の浄書(内容に変更なし)
θ1θ
表 基礎培地(リッター当り)
ミネラル 1” (Mineral 1”) (
ml) 50ミネラル 2ゝ’ (Mineral
2″)) (ml) 50トレース ミネラル”
(ml) 10(Trace m1ne
rals”)
トレース ビタミンa+ (all) 1
0(Trace vitamins”)
硫酸第一鉄 (FeSOa−7HzO) (g)
0.002炭酸水素ナト1功ム (NaHCOs)
(g ) 5.0酵母エキス (Yeast ext
ract ) (g) 2.0トリプチケース
(Trypticase) (g) 2.OL−シ
スティン塩酸塩 (g) 0.5(L−C
ysteine hydrochloride −Hz
O)硫化ナトリウム (NatS* 9HzO)
(g) 0.5む。Copy of specification (no changes to the contents) θ1θ Table Basal medium (per liter) Mineral 1” (Mineral 1”) (
ml) 50 Mineral 2' (Mineral
2″)) (ml) 50 trace minerals”
(ml) 10 (Trace m1ne
rals”) trace vitamin a+ (all) 1
0 (Trace vitamins) Ferrous sulfate (FeSOa-7HzO) (g)
0.002 sodium bicarbonate (NaHCOs)
(g) 5.0 Yeast Extract
ract) (g) 2.0 tripty case
(Trypticase) (g) 2. OL-cystine hydrochloride (g) 0.5 (L-C
ysteine hydrochloride -Hz
O) Sodium sulfide (NatS* 9HzO)
(g) 0.5 mm.
(Contaings 6g of Ktl(PO,、
per 1iter of distt−明細書の浄書
(内容に変更なし)
+1ed water、)
11) I A蒸溜水中に以下の物質をg単位で含む。(Containings 6g of Ktl(PO,,
per 1 iter of distt-Engraving of specification (no change in content) +1ed water, ) 11) IA Distilled water contains the following substances in grams.
リン酸2水素カリウム6;硫酸アンモニウム6;塩化ナ
トリウム12;硫酸マグネシウム2.6;塩化カルシウ
ム0.16
(Contaings+ in graIIsper
1iter of distilledwater:
KHzPOa+6; (NH4)!SO4,6; Na
C1,12;Mg504−7820.2.6. CaC
1,−2H,O,0,16)cl 11蒸溜水中に以下
の物質をg単位で含む。Potassium dihydrogen phosphate 6; ammonium sulfate 6; sodium chloride 12; magnesium sulfate 2.6; calcium chloride 0.16 (Containings+ in graIIsper
1 iter of distilled water:
KHzPOa+6; (NH4)! SO4,6; Na
C1,12; Mg504-7820.2.6. CaC
1,-2H,O,0,16) cl 11 Distilled water contains the following substances in grams.
体数化カリウムでpH7,0にする)
ニトリロトリ酢酸1.5;硫酸マグネシウム3.0;硫
酸マンガン0.5;塩化ナトリウム1.0:硫酸鉄0.
1; 硫酸コバルト又は塩化コバル) 0.1;塩化
カルシウム0.1;硝酸アニン0.1;硫酸銅0.01
;硫酸カリウムアルミニウム0.01; ホウ酸0.
01;モリブデン酸ナトリウム0.01 。Adjust the pH to 7.0 with potassium chloride) Nitrilotriacetic acid 1.5; Magnesium sulfate 3.0; Manganese sulfate 0.5; Sodium chloride 1.0: Iron sulfate 0.
1; cobalt sulfate or cobal chloride) 0.1; calcium chloride 0.1; anine nitrate 0.1; copper sulfate 0.01
; Potassium aluminum sulfate 0.01; Boric acid 0.01;
01; Sodium molybdate 0.01.
(Contaings、 in grams per
1iter of distilledwater(p
Hto 7.Owith KOH): n1trilo
triace枦1.5; Mg5Oa’7HzO,3,
0; Mn5Oa’2HzO,0,5; NaC1゜1
.0; FeSO44HzO,0,1; Co50a
or CoC1g、0.1;明細書の浄書(内容に変更
なし)
CaC1z’2HzO+0.1: ZnSO4,0,1
; CuSO4”5Hz0,0.01AIK(SO4)
z、0.01; HJOi+0.Of; NazMOO
n・2HzO。(Containings, in grams per
1 iter of distilled water (p
Hto7. Owith KOH): n1trilo
triace 1.5; Mg5Oa'7HzO,3,
0; Mn5Oa'2HzO,0,5; NaC1゜1
.. 0; FeSO44HzO,0,1; Co50a
or CoC1g, 0.1; engraving of specification (no change in content) CaC1z'2HzO+0.1: ZnSO4,0,1
;CuSO4”5Hz0,0.01AIK(SO4)
z, 0.01; HJOi+0. Of; NazMOO
n・2HzO.
o、oi > 4)蒸溜水lIl中に以下の物質を■単位で含む。o, oi> 4) Distilled water contains the following substances in units of ■.
ビオチン2; 葉酸2iピリドキシ塩酸塩10: チ
アミン塩酸塩5;リボフラビン5;ニコチン酸5;Dし
一パントテン酸カルシウム5;ビタミンBl!0.1;
p−アミノ安息香酸5:リボ酸5゜(Contai
ngs、in milligralls per
1iter ofdistilled water:
biotin、2; folic acid、2;p
yridoxine hydrochloride+1
0; thiallIine hydro−chlor
ide、5; riboflavin、5; n1co
tinic acid、5;DL−calcium p
antothenate、5Hvitamine Bl
!10.1:p−asinobenzoic acid
、5; 1ipoic acid、5 )メタン細菌8
−Gの菌学的性質は次の通りである。Biotin 2; Folic acid 2i Pyridoxy hydrochloride 10: Thiamine hydrochloride 5; Riboflavin 5; Nicotinic acid 5; Calcium monopantothenate 5; Vitamin Bl! 0.1;
p-Aminobenzoic acid 5: Riboic acid 5° (Contai
ngs, in milligralls per
1 iter of still water:
biotin, 2; folic acid, 2; p
yridoxine hydrochloride+1
0; thiallIine hydro-chlor
ide, 5; riboflavin, 5; n1co
tinic acid, 5; DL-calcium p
antothenate, 5Hvitamine Bl
! 10.1: p-asinobenzoic acid
, 5; 1 ipoic acid, 5) Methanobacterium 8
The mycological properties of -G are as follows.
a1球菌であり、大きさは06〜1.3μである。It is a1 coccus, and the size is 06-1.3μ.
b、ペン毛なし。運動性なし。b. No pen hair. No motility.
c、pH依存性は、pH7〜8が最適で、pH5,5以
下では生育しない。また、pH9以上では生育しない。c. pH dependence is optimal at pH 7 to 8, and does not grow below pH 5.5. Moreover, it does not grow at pH 9 or higher.
d、水素及び二酸化炭素を生育及びメタン生成に必要と
する。d. Requires hydrogen and carbon dioxide for growth and methane production.
酢酸などは生育に必要としない。気相を窒素/二酸化炭
魚80%/20%)°にすると、培地中に蟻酸、酢酸な
どがあってもメタンを生成せず、また生育もしない。Acetic acid is not required for growth. When the gas phase is set to 80%/20% nitrogen/carbon dioxide, methane will not be produced and no growth will occur even if formic acid, acetic acid, etc. are present in the medium.
e、基本培地における10〜40℃の各温度における1
ケ月の培養におけるメタン発生量は第1図に示される。e, 1 at each temperature from 10 to 40 °C in the basal medium
Figure 1 shows the amount of methane generated during the cultivation of Kagetsu.
30℃が最適温度で、20〜40℃でメタン発酵が可能
である。The optimal temperature is 30°C, and methane fermentation is possible at 20-40°C.
[1木下株の培養液に350 nm付近の光を照射する
と青白色の蛍光を発し、4201m付近の光を照射する
と黄緑色の蛍光を発する。[When the culture solution of Kinoshita strain 1 is irradiated with light around 350 nm, it emits blue-white fluorescence, and when it is irradiated with light around 4201 m, it emits yellow-green fluorescence.
g、 培地中にバンコマイシン100μg / me
入れても、これらの菌株は生育阻害、メタン生成阻害共
におこらない。g, vancomycin 100 μg/me in the medium
Even when added, these strains do not inhibit growth or methane production.
h、一般嫌気性菌用培地のAC培地(Difco社製)
、チオグリコレート培地等で生育しない。h, AC medium for general anaerobic bacteria (manufactured by Difco)
, does not grow on thioglycolate medium, etc.
次に、メタン細菌8−Mの菌学的性質を示す。Next, the mycological properties of Methanobacterium 8-M will be shown.
a1球菌であり、大きさは06〜1.2μである。It is a1 coccus, and the size is 06-1.2μ.
b、ペン毛なし。運動性なし。b. No pen hair. No motility.
c、 pH依存性は、pH7〜8か最適で、pH5,
5では生育しな%)。c. pH dependence is optimal at pH 7 to 8, pH 5,
5, it will not grow (%).
また、pH9以上では生育しない。Moreover, it does not grow at pH 9 or higher.
d、水素及び二酸化炭素を生育及びメタン生成に必要と
する。d. Requires hydrogen and carbon dioxide for growth and methane production.
酢酸などは生育に必要としない。気相を窒素/二酸化炭
素(80%/20%)にすると、培地中に蟻酸、酢酸な
どがあってもメタンを生成せず、また生育もしない。Acetic acid is not required for growth. If the gas phase is nitrogen/carbon dioxide (80%/20%), methane will not be produced and no growth will occur even if formic acid, acetic acid, etc. are present in the medium.
e、基本培地における10〜40℃の各温度における1
ケ月の培養におけるメタン発生量は第2図に示される。e, 1 at each temperature from 10 to 40 °C in the basal medium
Figure 2 shows the amount of methane generated during the cultivation of Kagetsu.
30℃が最適温度で、20〜40℃でメタン発酵が可能
である。The optimal temperature is 30°C, and methane fermentation is possible at 20-40°C.
f1本菌株の培養液に350 nm付近の光を照射する
と青白色の蛍光を発し、42Onm付近の光を照射する
と黄緑色の蛍光を発する。When the culture solution of the f1 strain is irradiated with light around 350 nm, it emits blue-white fluorescence, and when it is irradiated with light around 42 Onm, it emits yellow-green fluorescence.
g、培地中にパンコマインン100μg/−人れても、
これらの菌株は生育阻害、メタン生成阻害共におこらな
い。g, even if 100 μg/- of pancomine was added to the medium,
These strains do not inhibit growth or methane production.
h、一般嫌気性菌用培地のAC培地(Difco社製)
、チオグリコレート培地等で生育しない。h, AC medium for general anaerobic bacteria (manufactured by Difco)
, does not grow on thioglycolate medium, etc.
1、給体嫌気性菌である。1. It is a feeding anaerobe.
j、−#−メチルブチレイト、コエンザイムMなど要求
しなl、V次に、メタン細菌8−Pの菌学的性質を示す
。j, -#-Methylbutyrate, coenzyme M, etc. l, V Next, the mycological properties of methane bacterium 8-P will be shown.
a1球菌であり、大きさは0.6〜1.5μである。It is a1 coccus and has a size of 0.6 to 1.5μ.
b、ペン毛なし。運動性なし。b. No pen hair. No motility.
c、 pH依存性は、pH7〜8が最適で、pH5,
5以下では生育しない。また、pH9以上では生育しな
い。c. pH dependence is optimal between pH 7 and 8; pH 5,
It will not grow below 5. Moreover, it does not grow at pH 9 or higher.
d、水素及び二酸化炭素を生育及びメタン生成に必要と
する。d. Requires hydrogen and carbon dioxide for growth and methane production.
酢酸などは生育に必要としない。気相を窒素/二酸化炭
素(8096/20%)にすると、培地中に蟻酸、酢酸
などがあってもメタンを生成せず、また生育もしない。Acetic acid is not required for growth. When the gas phase is nitrogen/carbon dioxide (8096/20%), no methane is produced and no growth occurs even if formic acid, acetic acid, etc. are present in the medium.
におけるメタン発生量は第3図に示される。30℃が最
適温度で、20〜40℃でメタン発酵か可能である。The amount of methane generated is shown in Figure 3. The optimal temperature is 30°C, and methane fermentation is possible at 20-40°C.
f1本菌株の培養液に350nm付近の光を照射すると
青白色の蛍光を発し、4201m付近の光を照射すると
黄緑色の蛍光を発する。When the culture solution of the f1 strain is irradiated with light around 350 nm, it emits blue-white fluorescence, and when it is irradiated with light around 4201 m, it emits yellow-green fluorescence.
g、培地中にバンコマイシン100μg /d入れても
、これらの菌株は生育阻害、メタン生成阻害共におこら
ない。g. Even when 100 μg/d of vancomycin was added to the medium, these strains did not inhibit growth or methane production.
h、一般嫌気性菌用培地のAC@′地(Di f co
社製)、チオグリコレート培地等で生育しない。h, General anaerobic bacteria culture medium AC@' (Di f co
(manufactured by S.A.), does not grow on thioglycollate medium, etc.
a1球菌であり、大きさは04〜1,2μである。It is a1 coccus, and the size is 04-1.2μ.
b、ペン毛なし。運動性なし。b. No pen hair. No motility.
c、 p)(依存性は、pH7〜8が最適で、pH5
,5以下では生育しない。また、pH9以上では生育し
ない。c, p) (dependency is optimal at pH 7-8, pH 5
, 5 or less, it will not grow. Moreover, it does not grow at pH 9 or higher.
d、水素及び二酸化炭素を生育及びメタン生成に必要と
する。d. Requires hydrogen and carbon dioxide for growth and methane production.
酢酸などは生育に必要としない。気相を窒素/二酸化炭
素(80%/20%)にすると、培地中に蟻酸、酢酸な
どがあってもメ々ンルt1:劣娃ず すたル育れ1−な
い〜e、基本培地における10〜40℃の各温度におけ
る1ケ月の培養におけるメタン発生量は第4図に示され
る。30℃が最適温度で、20〜40℃でメタン発酵が
可能である。Acetic acid is not required for growth. If the gas phase is nitrogen/carbon dioxide (80%/20%), even if there is formic acid, acetic acid, etc. in the medium, it will not grow properly. The amount of methane generated during one month of culture at each temperature of 10 to 40°C is shown in Figure 4. The optimal temperature is 30°C, and methane fermentation is possible at 20-40°C.
f8本菌株の培養液に350nm付近の光を照射すると
青白色の蛍光を発し、420 nm付近の光を照射する
と黄緑色の蛍光を発する。When the culture solution of f8 strain is irradiated with light around 350 nm, it emits blue-white fluorescence, and when it is irradiated with light around 420 nm, it emits yellow-green fluorescence.
g、 培地中にパンコマイレン100μ株は生育阻害
、メタン生成阻害共におこらない。g. Pancomyrene 100μ strain does not inhibit growth or methane production in the medium.
h.一般嫌気性菌用培地のAC培地( Di fco社
製)、チオグリコレート培地等て生育しない。h. It does not grow on general anaerobic bacteria media such as AC medium (manufactured by Difco) and thioglycollate medium.
1、絶対嫌気性菌である。1. It is an obligate anaerobic bacterium.
・オブ・デターミネイティブ・バクテリオロジー第8版
により求めると、いずれも球菌であり、メタン生成菌で
あるところから、メタノコツカス属に属すことは明らか
と認められる。しかし、現在、メタノコツカス属に属す
る菌株としてはメタノコブカス・バンニレイ(Meth
anococcus vannielii)、メタノコ
ツカス・ボルタ(Methanococcus vol
tae )の2種があるが、両種とも生育最適温度が
32℃から40℃にあり、そして20〜25℃における
メタン発酵かほとんど不可能であるのに対し5本発明に
おける単離菌株は、いずれも30℃付近lこ生育最適温
度かあり、かつ、20〜25℃におけるメタン発酵が可
能である点で全く相違し、メタノコツカス属に属する新
種と認められるものである。According to the 8th edition of Determinative Bacteriology, both are cocci and methanogens, so it is clear that they belong to the genus Methanococcus. However, currently, the only bacterial strain belonging to the genus Methanococcus is Methanococcus vannirei (Meth
anococcus vannielii), Methanococcus volta (Methanococcus vol.
tae), but the optimum growth temperature for both species is between 32°C and 40°C, and methane fermentation is almost impossible at 20-25°C. They are completely different in that both have an optimum growth temperature of around 30°C and are capable of methane fermentation at 20 to 25°C, and are recognized as new species belonging to the genus Methanococcus.
本発明におけるメタン発酵には、単離された4株、即ち
、メタン細菌8−G、メタン細菌8−M1メタン細菌8
−P、メタン細菌16−11−Lのいずれか1株もしく
は2株以上の混合菌、あるいは、1株又は2株以上を主
発酵菌として添加したメタン発酵菌群が使用される。For methane fermentation in the present invention, four strains were isolated, namely, Methanobacterium 8-G, Methanobacterium 8-M1, and Methanobacterium 8.
-P, methane bacteria 16-11-L, a mixture of two or more strains, or a group of methane-fermenting bacteria to which one or two or more strains are added as main fermentation bacteria is used.
種菌の嫌気培養には、先述の基礎培地又は各種食品加工
廃水等適宜使用される。また、メタン発酵には、各種食
品加工廃水、水道廃水等、有機質を含有する廃水であれ
ばいかなる廃水も2025℃程度で使用することができ
る。For the anaerobic culture of the inoculum, the above-mentioned basal medium or various food processing wastewaters are used as appropriate. Further, any wastewater containing organic matter, such as various food processing wastewaters and tap water wastewaters, can be used for methane fermentation at a temperature of about 2025°C.
次に、本発明の実施例を示す。Next, examples of the present invention will be shown.
実施例1
固形物含量5.68%の余剰汚泥をメタン発酵するため
に、通常の中温発酵の種培養液を用いた場合に比較して
、メタン細菌8−G、メタン細菌8−M、メタン細菌8
−P、メタン細菌16−11−Lを優占種とした種培養
液を1とし、中温発酵用種培養液を6の割合て行うと2
0℃では約4倍、25℃では約6倍、それぞれメタンガ
ス発生速度は増大した。Example 1 In order to perform methane fermentation on excess sludge with a solid content of 5.68%, compared to the case where a seed culture solution for normal meso-temperature fermentation was used, methane bacteria 8-G, methane bacteria 8-M, and methane Bacteria 8
-P, the seed culture solution with methane bacteria 16-11-L as the dominant species is 1 part, and the seed culture solution for medium temperature fermentation is 6 parts.
The methane gas generation rate increased approximately 4 times at 0°C and approximately 6 times at 25°C.
−G
(°C)
−M
8−P
(°C)
刀午口
16−1l−L
(C)
手続補正書σt0
1、事件の表示 昭和60年特許願第16328号2
、発明の名称 メタン発酵法
3、補正をする者
事件との関係 特許出願人゛
住所 東京都千代田区霞が関1丁目3番1号氏名 (1
14) 工鉗支柵張 等々力 達4、 ′4碇イ人ユ
rη12^、
7、補正の内容 「願書に最初に添付した明細書の第
4頁第1行目から第5頁第8行目の浄書・別紙のとおり
。
(内容に変更なし)」-G (°C) -M 8-P (°C) Togoguchi 16-1l-L (C) Procedural amendment σt0 1, Indication of case 1985 Patent Application No. 16328 2
, Title of the invention Methane fermentation method 3, Relationship with the person making the amendment Patent applicant Address 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo Name (1)
14) Todoroki Tatsu 4, '4 Ikari Ijinyu rη12^, 7. Contents of the amendment ``Page 4, line 1 to page 5, line 8 of the specification originally attached to the application. As shown in the engraving and attached sheet. (No changes to the content).”
Claims (2)
ン発酵法。(1) A methane fermentation method characterized by culturing non-marine cold-fermenting bacteria belonging to the genus Methanococcus.
の範囲第1項記載のメタン発酵法。(2) The methane fermentation method according to claim 1, wherein the culture is efficiently carried out at 20 to 25°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60016328A JPS61175000A (en) | 1985-01-29 | 1985-01-29 | Method for fermenting methane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60016328A JPS61175000A (en) | 1985-01-29 | 1985-01-29 | Method for fermenting methane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61175000A true JPS61175000A (en) | 1986-08-06 |
JPH035240B2 JPH035240B2 (en) | 1991-01-25 |
Family
ID=11913380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60016328A Granted JPS61175000A (en) | 1985-01-29 | 1985-01-29 | Method for fermenting methane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61175000A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63214399A (en) * | 1987-02-27 | 1988-09-07 | Matsushita Electric Ind Co Ltd | Fermenting method for methane |
US5055406A (en) * | 1987-10-09 | 1991-10-08 | Research Development Corporation Of Japan | Extremely halophilic methanogenic archaebacteria |
JP2011033043A (en) * | 2009-07-29 | 2011-02-17 | Toyota Auto Body Co Ltd | Rotary device |
JP2015530873A (en) * | 2012-07-27 | 2015-10-29 | エフエフジーエフ・リミテッドFfgf Limited | Methane production |
-
1985
- 1985-01-29 JP JP60016328A patent/JPS61175000A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63214399A (en) * | 1987-02-27 | 1988-09-07 | Matsushita Electric Ind Co Ltd | Fermenting method for methane |
US5055406A (en) * | 1987-10-09 | 1991-10-08 | Research Development Corporation Of Japan | Extremely halophilic methanogenic archaebacteria |
US5350684A (en) * | 1987-10-09 | 1994-09-27 | Research Development Corporation Of Japan | Extremely halophilic methanogenic archaebacteria |
JP2011033043A (en) * | 2009-07-29 | 2011-02-17 | Toyota Auto Body Co Ltd | Rotary device |
JP2015530873A (en) * | 2012-07-27 | 2015-10-29 | エフエフジーエフ・リミテッドFfgf Limited | Methane production |
Also Published As
Publication number | Publication date |
---|---|
JPH035240B2 (en) | 1991-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Biohydrogen production from organic wastes | |
Sompong et al. | Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor | |
Wang et al. | Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: a mini review | |
Zhu et al. | Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis | |
Traore et al. | Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: interspecies hydrogen transfer in batch and continuous cultures | |
CN105420165B (en) | One plant of aerobic denitrifying bacteria and its application | |
Akroum-Amrouche et al. | Biohydrogen production by dark and photo-fermentation processes | |
CN105462874A (en) | Clostridium butyricum and application of clostridium butyricum in anaerobic fermentation hydrogen production | |
Fernández-Naveira et al. | Effect of salinity on C1-gas fermentation by Clostridium carboxidivorans producing acids and alcohols | |
Hu | Comparisons of biohydrogen production technologies and processes | |
US8183022B2 (en) | Use of ethanol plant by-products for yeast propagation | |
US3663370A (en) | Process for producing l-glutamic acid by fermentation | |
Kumar et al. | Improved hydrogen production from galactose via immobilized mixed consortia | |
Irfan et al. | Energy recovery from the carbon dioxide for green and sustainable environment using iron minerals as electron donor | |
CN101942486B (en) | Method for producing organic acid by monosodium glutamate fermentation waste thalli | |
CN110747149A (en) | Salt-tolerant methanogenic archaea and application thereof | |
JPS61175000A (en) | Method for fermenting methane | |
CN105112337B (en) | One Enterobacter cloacae and its application | |
US3859167A (en) | Microbial production of biotin | |
Zheng et al. | Influence of NaCl on hydrogen production from glucose by anaerobic cultures | |
CN110106125A (en) | A kind of method of efficiently and directionally concentration and separation hydrogenogen | |
CN116732111A (en) | Method for promoting conversion of waste biomass energy by adopting persulfate oxidation and sulfate reduction bacteria novel system | |
CN115181694A (en) | A moderately halophilic bacterium with high salinity wastewater assimilation and denitrification function and its application | |
KR100315662B1 (en) | Rhodopseudomonas palustris p4 and preparation for hydrogen by using the same | |
CN115093996B (en) | Ammonia-resistant methanogen and freeze-drying agent and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |