[go: up one dir, main page]

JPS61174773A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS61174773A
JPS61174773A JP60017802A JP1780285A JPS61174773A JP S61174773 A JPS61174773 A JP S61174773A JP 60017802 A JP60017802 A JP 60017802A JP 1780285 A JP1780285 A JP 1780285A JP S61174773 A JPS61174773 A JP S61174773A
Authority
JP
Japan
Prior art keywords
thin film
semi
gate
metal thin
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60017802A
Other languages
Japanese (ja)
Other versions
JPH0322696B2 (en
Inventor
Yasuharu Nakajima
康晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60017802A priority Critical patent/JPS61174773A/en
Publication of JPS61174773A publication Critical patent/JPS61174773A/en
Publication of JPH0322696B2 publication Critical patent/JPH0322696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • H10D30/6738Schottky barrier electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/675Group III-V materials, Group II-VI materials, Group IV-VI materials, selenium or tellurium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/64Electrodes comprising a Schottky barrier to a semiconductor

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form the junction between an operating layer and a gate electrode stably and with good reproducibility, by forming the metal thin film of a high melting point gate on the surface of a semi-insulating substrate, and thereafter forming the operating layer through the metal thin film. CONSTITUTION:A WSi thin film 3a is formed on an semi-insulating GaAs 1. A resist mask 8 is applied. Si ions are implanted and an (n) layer 2 is formed. The resist 8 is removed, and a W gate 3b is formed. Si ions are implanted through the thin film 3a, and an n<+> source and a drain 4 and 5 are formed. Then, with the gate pattern 3b as a mask, the thin film 3a is etched away. SiO2 9 is applied and electrodes 6 and 7 are attached. In this method, contamination of impurities and contamination due to oxidation or resist in the surface of the substrate 1 are conspicuously decreased, a threshold voltage becomes uniform and the junction between the operating layer and the gate electrode can be formed stably with good reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電界効果トランジスタの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a field effect transistor.

〔従来の技術〕[Conventional technology]

従来例によるこの種の電界効果2トランジスタの製造方
法につき、こ−では砒化ガリウム電界効果トランジスタ
(以下r GaAs−FETJ と呼ぶ)を例にとり、
その主要段階の製造工程を第2図(A)ないしくC)に
示す。
Regarding the conventional manufacturing method of this type of field effect transistor, a gallium arsenide field effect transistor (hereinafter referred to as rGaAs-FETJ) will be taken as an example.
The main stages of the manufacturing process are shown in FIGS. 2(A) to C).

すなわち、この従来例方法においては、まず同図(A)
に示すように、半絶縁性GaAs基板(以下「半絶縁性
基板」と呼ぶ)1の主面部に、所定の電子濃度を有する
n形GaAs動作R(以下「n形動作層」と呼ぶ)2を
イオン注入法により形成させ、かつこのn形動作層2の
表面所要部分に、写真製版技術などで、タングステンシ
リサイド(WSi)などの高融点金属薄膜によるゲート
電極3を選択的に形成する。ついで同図(B)に示すよ
うに、前記ゲート電極3をマスクとするイオン注入法に
よって、 n形動作層2の表面から、半絶縁性基板lの
一部に達するように、このn形動作層2よりも電子濃度
の高いソース領域4およびドレイン領域5を形成し、そ
の後、これらのソース領域4およびドレイン領域5の一
部表面上に、前記と同様に写真製版技術などで、それぞ
れソース電極6およびドレイン電極7を選択的に形成し
て、目的とするGaAs−FETを構成するのである。
That is, in this conventional method, first
As shown in , an n-type GaAs operating layer R (hereinafter referred to as "n-type operating layer") 2 having a predetermined electron concentration is formed on the main surface of a semi-insulating GaAs substrate (hereinafter referred to as "semi-insulating substrate") 1. is formed by ion implantation, and a gate electrode 3 made of a high melting point metal thin film such as tungsten silicide (WSi) is selectively formed on a required portion of the surface of this n-type active layer 2 by photolithography or the like. Next, as shown in FIG. 2B, by ion implantation using the gate electrode 3 as a mask, this n-type operation layer is implanted from the surface of the n-type operation layer 2 to a part of the semi-insulating substrate l. A source region 4 and a drain region 5 having a higher electron concentration than the layer 2 are formed, and then a source electrode is formed on a part of the surface of the source region 4 and drain region 5 by photolithography or the like in the same manner as described above. 6 and drain electrode 7 are selectively formed to form the intended GaAs-FET.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら前記従来例方法によって構成されたGaA
s−FETでは、動作層とゲート電極との界面が保護さ
れておらず、このため動作層が不純物により汚染、酸化
され、あるいはレジストにより汚染されることがあって
、しきい値電圧などのFET特性にばらつきを生ずる慣
れがあるなどの欠点を有している。
However, GaA formed by the conventional method
In an s-FET, the interface between the active layer and the gate electrode is not protected, and as a result, the active layer may be contaminated with impurities, oxidized, or contaminated with resist, and the FET's threshold voltage, etc. It has drawbacks such as the habit of causing variations in characteristics.

この発明は従来例方法のこのような欠点を改善しようと
するもので、半絶縁性基板の表面がレジストなどに直接
触れずに、かつ不純物による汚染とか酸化を受けない状
態で、動作層とゲート電極との接合を安定にかつ再現性
良く形成し得るようにした電界効果トランジスタの製造
方法を提供することを目的とする。
This invention is an attempt to improve these shortcomings of the conventional method, and the active layer and the gate are bonded together without the surface of the semi-insulating substrate directly touching the resist or the like and without being contaminated by impurities or oxidized. It is an object of the present invention to provide a method for manufacturing a field effect transistor that can form a bond with an electrode stably and with good reproducibility.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、この発明方法は。 In order to achieve the above object, the present invention method.

半絶縁性基板主面部に、まず高融点ゲート金属薄膜を形
成させ、この高融点ゲート金属薄膜を通したイオン注入
法によって、動作層を形成するようにしたものである。
First, a high melting point gate metal thin film is formed on the principal surface of a semi-insulating substrate, and an ion implantation method is applied through this high melting point gate metal thin film to form an active layer.

〔作   用〕[For production]

従ってこの発明方法においては、半絶縁性基板の表面に
、高融点ゲート金属薄膜を形成したのちに、この高融点
ゲート金属薄膜を通して動作層を形成するから、基板表
面に対する不純物の汚染。
Therefore, in the method of this invention, after forming a high melting point gate metal thin film on the surface of a semi-insulating substrate, the active layer is formed through this high melting point gate metal thin film, so that there is no contamination of the substrate surface with impurities.

酸化とか、あるいはレジストによる汚染などを顕著に低
減でき、これによってGaAs−FETのしきい値電圧
などの特性が変化せず、併せて動作層とゲート電極との
接合を安定にかつ再現性良く形成し得るのである。
Oxidation and contamination caused by resist can be significantly reduced, and as a result, characteristics such as the threshold voltage of the GaAs-FET do not change, and the junction between the active layer and the gate electrode can be formed stably and with good reproducibility. It is possible.

〔実 施 例〕〔Example〕

以下この発明に係る電界効果トランジスタの製造方法の
一実施例につき、第1図(A)ないしCG)を参照して
詳細に説明する。
Hereinafter, one embodiment of the method for manufacturing a field effect transistor according to the present invention will be described in detail with reference to FIGS. 1(A) to CG).

第1図(A)ないしCG)はこの実施例方法を工程順に
示すそれぞれ断面図であり、この実施例方法においては
、まず同図(A)に示すように、半絶縁性基板lの主面
上にあって、同主面の表面を保護してイオン注入可能な
厚さのタングステンシリサイド(WSi)などの高融点
ゲート金属薄膜(以下「ゲート金属薄膜」と呼ぶ) 3
aを形成し、ついで同図(B)に示すように、このゲー
ト金属薄膜3aの所要部分上に、写真製版技術によりフ
ォトレジスト膜8を形成し、かつまた同図(C)に示す
ように、このフォトレジストH8をマスクとして、シリ
コン(Si)などのイオンを、矢印の方向から前記半絶
縁性基板1の主面部に対し、ゲート金属薄W!43aを
通して注入し、所定電子濃度のn形動作暦2を形成する
FIGS. 1(A) to CG) are cross-sectional views showing the method of this embodiment in the order of steps. In this method, first, as shown in FIG. 1(A), A high melting point gate metal thin film (hereinafter referred to as "gate metal thin film") such as tungsten silicide (WSi) that is on the top and has a thickness that allows ion implantation while protecting the surface of the main surface.
Then, as shown in the figure (B), a photoresist film 8 is formed on the required portions of the gate metal thin film 3a by photolithography, and as shown in the figure (C). Using this photoresist H8 as a mask, ions such as silicon (Si) are applied to the main surface of the semi-insulating substrate 1 from the direction of the arrow. 43a to form an n-type operation pattern 2 with a predetermined electron concentration.

次に同図(D)に示すように、前記フォトレジスト膜8
を除去した上で、前記n形動作層2に対応するゲート金
属薄1l13aの表面上に、タングステン(W) 、タ
ンタル(Ta)などのゲートパターン3bを形成し、ま
た同図(E)に示すように、このゲートパターン3bを
マスクにして、同様にシリコン(St)などのイオンを
、矢印の方向から前記半絶縁性基板1の主面部に対し、
ゲート金属薄膜3aを通して注入し、 n形動作層2よ
りも電子濃度の高いソース領域4およびドレイン領域5
を形成し、その後、同図CF)に示すように、前記ゲー
トパターン3bをマスクにして、ゲート金属薄膜3aを
エツチング除去する。
Next, as shown in the same figure (D), the photoresist film 8
After removing the n-type active layer 2, a gate pattern 3b made of tungsten (W), tantalum (Ta), etc. is formed on the surface of the gate metal thin layer 1113a corresponding to the n-type active layer 2, and a gate pattern 3b of tungsten (W) or tantalum (Ta) is formed as shown in FIG. Using this gate pattern 3b as a mask, ions such as silicon (St) are similarly applied to the main surface of the semi-insulating substrate 1 from the direction of the arrow.
Injected through the gate metal thin film 3a, the source region 4 and drain region 5 have higher electron concentration than the n-type operating layer 2.
Then, as shown in FIG. CF), the gate metal thin film 3a is removed by etching using the gate pattern 3b as a mask.

そして最後に同図CG)に示すように、前記半絶縁性基
板1およびゲートパターン3bの表面上に、酸化シリコ
ン(S102)膜、窒化シリコン(si3*、)膜など
の絶縁H8を形成したのち、前記ソース領域4およびド
レイン領域5の一部表面上に、それぞれソース電極8お
よびドレイン電極7を選択的に形成して、目的とするG
aAa−FEETを構成するのである。
Finally, as shown in CG in the figure, an insulating layer H8 such as a silicon oxide (S102) film or a silicon nitride (si3*, ) film is formed on the surfaces of the semi-insulating substrate 1 and the gate pattern 3b. , a source electrode 8 and a drain electrode 7 are selectively formed on a part of the surface of the source region 4 and drain region 5, respectively, to obtain a target G
This constitutes an aAa-FEET.

すなわち、この実施例方法においては、半絶縁性基板1
の表面に、ゲート金属薄膜3aを形成したのちに、この
ゲート金属薄膜3aを通して動作層を形成するために、
基板1の表面に対する不純物の汚染、酸化とか、あるい
はレジストによる汚染などを顕著に低減できる。
That is, in this embodiment method, the semi-insulating substrate 1
After forming a gate metal thin film 3a on the surface of the gate metal thin film 3a, in order to form an active layer through this gate metal thin film 3a,
Impurity contamination, oxidation, resist contamination, etc. on the surface of the substrate 1 can be significantly reduced.

なお、前記実施例方法においては、半絶縁性基板lに対
し、ゲート金属薄膜3aを通してソース領域4およびド
レイン領域5を形成する場合について述べたが、ゲート
パターン3bをマスクとして、ゲート金属薄膜3aをエ
ツチング除去したのちに、これらのソース領域48よび
ドレイン領域5を形成してもよく、またn形の動作層2
.ソース領域4゜ドレイン領域5を用いる場合について
述べたが、p形の場合についても同様である。
Incidentally, in the method of the above embodiment, a case was described in which the source region 4 and drain region 5 were formed through the gate metal thin film 3a on the semi-insulating substrate l, but the gate pattern 3b was used as a mask to form the gate metal thin film 3a. After removing the etching, the source region 48 and drain region 5 may be formed, and the n-type active layer 2 may be formed.
.. Although the case where the source region 4° and the drain region 5 are used has been described, the same applies to the p-type case.

また、前記実施例方法では、半絶縁性GaAs基板の場
合について述べたが、必ずしもこれに限定されるもので
はなく、インジウム・リン(InP)などのその他の半
絶縁性半導体基板を用いる場合にも適用できることは勿
論である。
In addition, although the method of the embodiment described above is based on the case of a semi-insulating GaAs substrate, it is not necessarily limited to this, and may also be applied when using other semi-insulating semiconductor substrates such as indium phosphide (InP). Of course, it can be applied.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明方法によれば、当初の工程
で半絶縁性半導体基板の主面部、つまり表面上に、高融
点ゲート金属薄膜を形成するようにしたので、この半絶
縁性半導体基板の表面がレジストなどに触れて汚染され
たすせず、また不純物による汚染、酸化などを受ける惧
れもなく、従ってFETのしきい値電圧などの特性が変
化せず、併せて動作層とゲート電極との接合を安定にか
つ再現性良く形成し得るなどの特長を宥するものである
As detailed above, according to the method of the present invention, a high melting point gate metal thin film is formed on the main surface, that is, the surface, of a semi-insulating semiconductor substrate in the initial step, so that the semi-insulating semiconductor substrate There is no risk that the surface of the FET will be contaminated by contact with resist, etc., or that it will be contaminated by impurities or oxidized. Therefore, the characteristics such as the threshold voltage of the FET will not change, and the active layer and gate It has the advantage of being able to form a bond with an electrode stably and with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)ないしCG)はこの発明に係る電界効果ト
ランジスタの製造方法の一実施例を工程順に示すそれぞ
れ断面図であり、また第2図(A)ないしくC)は同上
従来例方法を工程順に示すそれぞれ断面図である。 l・・・・半絶縁性GaAs基板(半絶縁性の半導体基
板)、2・・・・n形GaAs動作層(動作層)、3a
・・・・高融点ゲート金属薄膜、3b・・・・ゲートパ
ターン、4・・・・ソース領域、5・・・・ドレイン領
域、6・・・・ソース電極、7・・・・ドレイン電極、
8・・・・フォトレジスト膜、9・・・・絶縁膜。 代理人  大  岩  増  雄 第1図 (B) (C) 第1図 (F) (G)
1(A) to CG) are cross-sectional views showing an embodiment of the method for manufacturing a field effect transistor according to the present invention in the order of steps, and FIGS. 2(A) to CG) are sectional views showing the conventional method as above. FIG. l... Semi-insulating GaAs substrate (semi-insulating semiconductor substrate), 2... n-type GaAs operating layer (active layer), 3a
...High melting point gate metal thin film, 3b... Gate pattern, 4... Source region, 5... Drain region, 6... Source electrode, 7... Drain electrode,
8... Photoresist film, 9... Insulating film. Agent Masuo Oiwa Figure 1 (B) (C) Figure 1 (F) (G)

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性半導体基板の主面上に、ゲート、ソース、ドレ
インの各領域、および動作層をそれぞれに形成する電界
効果トランジスタの製造方法において、前記半絶縁性半
導体基板の主面上に、まず高融点ゲート金属薄膜を形成
したのち、同半絶縁性半導体基板の所要部分に対し、こ
の高融点ゲート金属薄膜を通してイオン注入法により動
作層を選択的に形成する工程と、ついで前記高融点ゲー
ト金属薄膜を選択的にエッチングして、前記動作層上に
ゲート電極を形成する工程とを含むことを特徴とする電
界効果トランジスタの製造方法。
In a method for manufacturing a field effect transistor in which gate, source, and drain regions and an active layer are respectively formed on the main surface of a semi-insulating semiconductor substrate, first, a high After forming the melting point gate metal thin film, a step of selectively forming an active layer on a required portion of the semi-insulating semiconductor substrate by ion implantation through the high melting point gate metal thin film; selectively etching to form a gate electrode on the active layer.
JP60017802A 1985-01-30 1985-01-30 Manufacture of field effect transistor Granted JPS61174773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017802A JPS61174773A (en) 1985-01-30 1985-01-30 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017802A JPS61174773A (en) 1985-01-30 1985-01-30 Manufacture of field effect transistor

Publications (2)

Publication Number Publication Date
JPS61174773A true JPS61174773A (en) 1986-08-06
JPH0322696B2 JPH0322696B2 (en) 1991-03-27

Family

ID=11953848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017802A Granted JPS61174773A (en) 1985-01-30 1985-01-30 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS61174773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276566A (en) * 1986-08-27 1987-04-08 Toshiba Corp Method for manufacturing field effect transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276566A (en) * 1986-08-27 1987-04-08 Toshiba Corp Method for manufacturing field effect transistors

Also Published As

Publication number Publication date
JPH0322696B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
JP2778600B2 (en) Method for manufacturing semiconductor device
JPH022142A (en) Field effect transistor and its manufacturing method
JP2553699B2 (en) Method for manufacturing semiconductor device
JPH0787195B2 (en) Method of manufacturing Schottky gate field effect transistor
JPS61174773A (en) Manufacture of field effect transistor
KR0141197B1 (en) Method of contact hole in semiconductor device
JPH04291732A (en) Method for manufacturing field effect transistors
JP2817226B2 (en) Method for manufacturing semiconductor device
JP2893776B2 (en) Method for manufacturing semiconductor device
JPS6211516B2 (en)
JPS61231764A (en) semiconductor equipment
JP2526795B2 (en) MES type semiconductor device and manufacturing method thereof
JPH04127539A (en) Manufacture of semiconductor device
JPH01119071A (en) Compound semiconductor field-effect transistor
KR100250686B1 (en) Semiconductor device manufacturing method
JPH01253968A (en) Method of manufacturing field effect transistor
JPH028454B2 (en)
JPS61193487A (en) Field effect transistor
JPS61152080A (en) field effect transistor
JPS61294872A (en) Manufacture of field effect type transistor
JPH01161873A (en) Manufacture of semiconductor device
JPH04305976A (en) Semiconductor device
JPS62126631A (en) Formation of contact electrode
KR19980053674A (en) Manufacturing method of semiconductor device
JPH02181440A (en) Manufacture of field-effect transistor