[go: up one dir, main page]

JPS61174423A - Production of flameproofed fiber - Google Patents

Production of flameproofed fiber

Info

Publication number
JPS61174423A
JPS61174423A JP1176985A JP1176985A JPS61174423A JP S61174423 A JPS61174423 A JP S61174423A JP 1176985 A JP1176985 A JP 1176985A JP 1176985 A JP1176985 A JP 1176985A JP S61174423 A JPS61174423 A JP S61174423A
Authority
JP
Japan
Prior art keywords
fiber bundle
oxidizing atmosphere
flame
heating
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1176985A
Other languages
Japanese (ja)
Inventor
Hideyuki Ariyasu
秀之 有安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1176985A priority Critical patent/JPS61174423A/en
Publication of JPS61174423A publication Critical patent/JPS61174423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は耐炎化繊維束の製造法に関するものである。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for producing a flame-resistant fiber bundle.

〈従来の技術〉 本発明における耐炎化繊維とは、空気雰囲気下において
マツチの炎にさらしても、着火したり、又は、溶融した
りしない繊維のことを言う。
<Prior Art> The flame-resistant fiber in the present invention refers to a fiber that does not catch fire or melt even when exposed to a pine flame in an air atmosphere.

このような耐炎化繊維、すなわちポリアクリロニトリル
繊維、セルロース繊維、ピッチ系繊維、リグニン系繊維
等の有機重合体繊維を酸化性雰囲気中で加熱して得られ
る耐炎化繊維は、現在その耐炎性、耐熱性等の特性を有
し、消防服、防火用品、断熱材など幅広い用途に利用さ
れつつある。
Such flame-resistant fibers, which are obtained by heating organic polymer fibers such as polyacrylonitrile fibers, cellulose fibers, pitch-based fibers, and lignin-based fibers, in an oxidizing atmosphere are currently known for their flame resistance and heat resistance. Due to its unique properties, it is being used in a wide range of applications, including firefighting uniforms, fire prevention products, and insulation materials.

有機重合体繊維、例えばポリアクリロニトリル繊維から
耐炎化繊維を得るには、その繊維を酸化性雰囲気中で2
00〜400℃に加熱焼成することにより達成される。
To obtain flame-resistant fibers from organic polymer fibers, such as polyacrylonitrile fibers, the fibers are heated in an oxidizing atmosphere for 2 hours.
This is achieved by heating and firing at a temperature of 00 to 400°C.

この時用いられる酸化性雰囲気としては、空気、酸化窒
素、亜硫酸ガス、ハロゲン化物、水蒸気等があげられる
が、一般的にはその経済性からもっばら空気が使用され
ている。
Examples of the oxidizing atmosphere used at this time include air, nitrogen oxide, sulfur dioxide gas, halides, water vapor, etc., but air is generally used the most due to its economical efficiency.

従来、耐炎化繊維は炭素製品の中間製品として知られて
おり、その製造方法に関しては種々の提案が為されてい
る。例えばドイツ公開公報2.026,019の方法に
見られる酸化性雰囲気炉を用いる方法がある。装置の概
略を第1図に示す。第1図において有機重合体繊維束1
は酸化性雰囲気炉2中をガイドローラ4に案内されなが
ら多数凹か2中を通って熱処理される。
Conventionally, flame-resistant fibers have been known as intermediate products for carbon products, and various proposals have been made regarding methods for producing them. For example, there is a method using an oxidizing atmosphere furnace, as shown in the method of German Publication No. 2.026,019. A schematic diagram of the apparatus is shown in FIG. In Fig. 1, organic polymer fiber bundle 1
is guided by guide rollers 4 in an oxidizing atmosphere furnace 2, passes through a large number of concave holes 2, and is heat-treated.

しかしながら、ポリアクリロニトリル繊維を空気中で酸
化処理する場合発熱反応が生ずるため、その繊維束を酸
化性雰囲気炉を用いて処理する場合、繊維束の厚みが大
きくなると発生した熱が繊維束外部へ放出されにくくな
り内部に蓄積され、その為、暴走反応が起こり繊維束の
切断が生じてしまう。従って、暴走反応を防ぐ為には繊
維束のso、 oooデニール程度の繊維束を50mm
も広げな53−21,396に示された、加熱体表面に
断続的に接触させる方法がある。これは、固体−固体間
の伝熱が、気体−固体間よりもはるかに大きいという自
然原理を利用し、酸化性雰囲気炉では難しい暴走反応の
抑制を容易にし、かつ、酸化反応速度の向上を実現せん
とする方法である。この方法を用いれば厚みの大きい繊
維束を用いて耐炎化繊維を製造することが、−見、可能
であるかの様に見える。しかしながら、この方法の欠点
は、繊維束の厚みが大きくなると、その厚み方向に反応
斑を生ずることである。加熱体表面に接触する繊維束表
面部は速やかに酸化反応が進行するが、加熱体表面に接
触しない繊維束内部は酸化反応の速度が表面部に比べて
小さくなっているためである。本発明者らの検討では、
厚み方向に反応斑の発現しない繊維束の幅は、ポリアク
リロニトリル繊維束の場合、so、 oooデニールに
おいて45mm以上、厚みで表示すると0.2mm以下
必要であった。又、この反応斑を解消する他の方法とし
ては、例えば第2図に示す様な複数の加熱ローラ群3を
用い、有機重合体繊維束1をガイドローラ4を経て供給
することにより多段温度処理を行うことも可能であるが
、品質上問題のない製品を製造する為には長時間を必要
とし、工業的には不利である。
However, when polyacrylonitrile fibers are oxidized in air, an exothermic reaction occurs, so when the fiber bundle is treated in an oxidizing atmosphere furnace, the heat generated is released to the outside of the fiber bundle as the thickness of the fiber bundle increases. The fibers become difficult to absorb and accumulate inside, resulting in a runaway reaction and breakage of the fiber bundle. Therefore, in order to prevent a runaway reaction, the fiber bundle with a so or ooo denier should be
There is a method of making intermittent contact with the surface of a heating element, as shown in No. 53-21, 396. This utilizes the natural principle that heat transfer between solids and solids is much larger than that between gases and solids, making it easier to suppress runaway reactions that are difficult in oxidizing atmosphere furnaces, and also improve the oxidation reaction rate. This is the method we are trying to achieve. Using this method, it appears possible to produce flame-resistant fibers using thick fiber bundles. However, a drawback of this method is that when the thickness of the fiber bundle increases, reaction spots occur in the thickness direction. This is because the oxidation reaction rapidly progresses on the surface of the fiber bundle that contacts the surface of the heating element, but the rate of oxidation reaction inside the fiber bundle that does not contact the surface of the heating element is lower than that on the surface. In our study,
In the case of polyacrylonitrile fiber bundles, the width of the fiber bundle without causing reaction spots in the thickness direction was required to be 45 mm or more in so and ooo deniers, and 0.2 mm or less in terms of thickness. In addition, as another method for eliminating this reaction spot, for example, using a plurality of heating roller groups 3 as shown in FIG. Although it is possible to do this, it requires a long time to produce a product with no quality problems, which is disadvantageous from an industrial perspective.

〈発明が解決しようとする問題点〉 上述した様に、従来技術によって有機重合体繊維束を酸
化処理する際には、その繊維束の厚みに限界があり、従
って、耐炎化繊維束の生産性を向上さ♂ることは不可能
である。又従来技術においては、厚みの大きい有機重合
体繊維束を酸化処理する際に、暴走反応を防ぎ、酸化反
応斑を起こすことなく、かつ、短時間に耐炎化繊維を製
造することは出来ないという問題点を有する。
<Problems to be Solved by the Invention> As mentioned above, when organic polymer fiber bundles are oxidized using conventional techniques, there is a limit to the thickness of the fiber bundles, and therefore the productivity of flame-resistant fiber bundles is limited. It is impossible to improve ♂. Furthermore, in the conventional technology, when oxidizing thick organic polymer fiber bundles, it is impossible to prevent runaway reactions and produce flame-resistant fibers in a short time without causing oxidation reaction spots. There are problems.

本発明は上述した従来技術の有する問題点を解決して、
厚みの大きい有機重合体繊維束を幅を広げることなくそ
のまま酸化反応に給しても、暴走反応が生ずることなく
、又、酸化反応斑を起こさず、かつ、短時間のうちに耐
炎化繊維束に転換することのできる高生産性の耐炎化繊
維の製造方法を提供することを目的とする。
The present invention solves the problems of the prior art described above, and
Even if a thick organic polymer fiber bundle is directly fed to the oxidation reaction without expanding its width, a runaway reaction will not occur, oxidation reaction spots will not occur, and the fiber bundle will be flame-resistant in a short time. The purpose of the present invention is to provide a highly productive method for producing flame-resistant fibers that can be converted into flame-resistant fibers.

〈問題点を解決するための手段〉 本発明の目的は、有機重合体繊維束を酸化処理し耐炎化
繊維を得るに際し、その繊維束を酸化性雰囲気中で20
0〜350°Cの加熱体に接触させて熱処理した後、2
00〜350℃の酸化性雰囲気中で熱処理することを特
徴とする耐炎化繊維の製造法(以下第1製造法という)
によって達成される。
<Means for Solving the Problems> An object of the present invention is to oxidize an organic polymer fiber bundle to obtain a flame-resistant fiber, by oxidizing the fiber bundle for 20 minutes in an oxidizing atmosphere.
After heat treatment by contacting with a heating element at 0 to 350°C, 2
A method for producing flame-resistant fibers characterized by heat treatment in an oxidizing atmosphere at 00 to 350°C (hereinafter referred to as the first production method)
achieved by.

本発明の前述の目的は前記200〜350℃の酸化雰囲
気中での熱処理に続けて有機重合体繊維束をさらに酸化
性雰囲気中で250〜400℃の加熱体に接触させて熱
処理することを特徴とする耐炎化繊維の製造法(以下第
2製造法という)によって達成される。この第2製造法
においては第1製造法に付加して加熱体との接触による
熱処理を行うので、より短時間で耐炎化繊維を製造する
ことができる。
The above-mentioned object of the present invention is characterized in that, following the heat treatment in an oxidizing atmosphere at 200-350°C, the organic polymer fiber bundle is further heat-treated by contacting with a heating element at 250-400°C in an oxidizing atmosphere. This is achieved by the method for producing flame-resistant fibers (hereinafter referred to as the second production method). In this second production method, in addition to the first production method, heat treatment by contact with a heating body is performed, so that flame-resistant fibers can be produced in a shorter time.

本発明において、有機重合体繊維束とは、ポリアクリロ
ニトリル、セルロース、ピッチ、リグニン等の有機重合
体からなる繊維束のことを言う。
In the present invention, the organic polymer fiber bundle refers to a fiber bundle made of an organic polymer such as polyacrylonitrile, cellulose, pitch, or lignin.

繊維束のトークルデニール、および、幅は特に限定され
るものではない。好ましくは、例えばポリアクリロニト
リル繊維の場合、市販の繊維束と同程度の大きさ、幅で
あり、100,000〜1,000,000デニール、
幅10〜50cmが良い。より好ましくは、300.0
00〜600.000デニール、幅15〜30cmが良
い。
The torque denier and width of the fiber bundle are not particularly limited. Preferably, for example, in the case of polyacrylonitrile fibers, the size and width are comparable to commercially available fiber bundles, and the denier is 100,000 to 1,000,000.
A width of 10 to 50 cm is good. More preferably 300.0
00~600.000 denier and width 15~30cm are good.

本発明における酸化性雰囲気とは、酸素、窒素酸化物、
硫黄酸化物、ハロゲン化物、水蒸気等を含む気体雰囲気
のことを言う。一般的にはその経済性、簡便さから空気
が適している。
The oxidizing atmosphere in the present invention refers to oxygen, nitrogen oxides,
A gaseous atmosphere containing sulfur oxides, halides, water vapor, etc. Generally, air is suitable because of its economy and simplicity.

本発明における加熱体としては、従来公知である加熱ロ
ーラ、加熱板など種々のものが考えられ特に限定はされ
ない。−例としては第2図に示される加熱ローラ3の群
がある。加熱体温度は、酸化反応の進行が速やかであり
、かつ、反応時に繊維同志の接癒着等が生じない温度が
使用され、それは、200〜350℃で実現される。加
熱体温度が200℃以下であると酸化反応が非常に遅く
、又、350°C以上であると接癒着の発現が顕著にな
る。
The heating body in the present invention may be various conventionally known heating rollers, heating plates, etc., and is not particularly limited. - An example is the group of heating rollers 3 shown in FIG. The temperature of the heating element is a temperature at which the oxidation reaction proceeds rapidly and at which adhesion and adhesion of fibers do not occur during the reaction, which is achieved at 200 to 350°C. If the temperature of the heating element is below 200°C, the oxidation reaction will be very slow, and if it is above 350°C, the occurrence of adhesion will become noticeable.

好ましい加熱体の温度範囲は220〜320℃、より好
ましくは240℃〜300℃である。又、第2図の様な
加熱ローラ群を用いる場合は、温度を多段化しても良い
The preferred temperature range of the heating body is 220 to 320°C, more preferably 240 to 300°C. Further, when using a group of heating rollers as shown in FIG. 2, the temperature may be set in multiple stages.

本発明法によると、有機重合体繊維束を酸化性雰囲気中
で加熱体を用いである程度酸化させた後酸化性雰囲気で
さらに加熱酸化させ、耐炎化繊維を製造することができ
る。加熱体で達成する酸化の程度は後段の酸化性雰囲気
における加熱処理において暴走反応を起こし難い程度に
する必要がある。例えばポリアクリロニトリル繊維の場
合、酸化の度合をC,Iで表わすと、加熱体に接触する
繊維束表面部と、表面に露出しない繊維束内部の平均C
0■を0.2以上にすれば良い。好ましくは、0.30
以上0.42以下が良い。トータル500.000デニ
ール、幅20cm、厚み5mmのポリアクリロニトリル
繊維束を第2図の様な加熱ローラ3の群で熱処理する場
合、加熱ローラ3上ではその繊維束は幅20cm、厚み
0.5 m mとなる。この場合、当然、短時間の加熱
ローラ処理では、繊維束表面部と内部に酸化炎が出るが
、その両者の平均C,Iが0.2以上になるまで加熱ロ
ーラ処理を加えてやれば良い。
According to the method of the present invention, a flame-resistant fiber can be produced by oxidizing an organic polymer fiber bundle to some extent in an oxidizing atmosphere using a heating element and then further heating and oxidizing it in an oxidizing atmosphere. The degree of oxidation achieved by the heating element must be such that runaway reactions are unlikely to occur during the subsequent heat treatment in an oxidizing atmosphere. For example, in the case of polyacrylonitrile fibers, if the degree of oxidation is expressed as C, I, the average C of the surface area of the fiber bundle that comes into contact with the heating element and the inside of the fiber bundle that is not exposed to the surface.
It is sufficient to set 0■ to 0.2 or more. Preferably 0.30
A value of 0.42 or less is preferable. When a polyacrylonitrile fiber bundle with a total of 500.000 deniers, a width of 20 cm, and a thickness of 5 mm is heat-treated by a group of heating rollers 3 as shown in FIG. 2, the fiber bundle on the heating rollers 3 has a width of 20 cm and a thickness of 0.5 m. m. In this case, oxidizing flame will naturally appear on the surface and inside of the fiber bundle if the heated roller treatment is carried out for a short time, but the heated roller treatment should be continued until the average C and I of both are 0.2 or more. .

ここで言うC,Iとは、Cabonization I
ndexの略号であり、次の様にして求められる〔内円
ら、すなわち、試料を入射X線を軸として回転させなか
らxlt3測定を行い得られたX線散乱強度曲線の2θ
=17°の散乱強度IIと、2θ=25.5゜の散乱強
度I2 (いずれも空気散乱の値をさし引いた値)から
次式を用いて算出される。
C and I mentioned here are Cabonization I
It is an abbreviation for ndex, and is determined as follows [inner circle, 2θ of the X-ray scattering intensity curve obtained by performing xlt3 measurement without rotating the sample around the incident X-ray axis.
It is calculated from the scattering intensity II at =17° and the scattering intensity I2 at 2θ=25.5° (both values are values obtained by subtracting the value of air scattering) using the following equation.

■2 本発明における耐炎化繊維のC,Iは0.5以上である
(2) C and I of the flame-resistant fiber in the present invention are 0.5 or more.

加熱体処理時の有機重合体繊維束の幅と厚みは特に限定
されない。工業上、幅は通常用いられる有機重合体繊維
の幅をそのまま用いれば良く、又厚みに関しては成り行
き、すなわちトークルデニールに基づき幅から必然的に
定められる厚さで良い。実用上好ましくは、幅50cm
以下、厚み0.3mm以上、5mm以下が良い。
The width and thickness of the organic polymer fiber bundle during heating body treatment are not particularly limited. Industrially, the width of organic polymer fibers commonly used may be used as is, and the thickness may be determined as desired, that is, the thickness necessarily determined from the width based on the torque denier. Practically preferred width is 50cm
Below, the thickness is preferably 0.3 mm or more and 5 mm or less.

加熱体により熱処理された有機重合体繊維束は、次に酸
化性雰囲気下で熱処理されるが、その繊維束を前以って
加熱体処理する理由は、前段である程度酸化させること
によりその繊維にある程度の耐熱性を付与し、後段の酸
化性雰囲気下での熱処理における暴走反応の可能性を減
少させるためである。従って、加熱体熱処理後の繊維束
に反応斑が存在してもかまわない。この反応斑は酸化性
雰囲気による加熱によって短時間に改善することができ
るからである。後段の酸化性雰囲気加熱の存在意義は、
前段の酸化反応座を解消し、実質の酸化度を進行させ、
かつ、短時間に品質良好な耐炎化繊維を造り出すことに
ある。従って、前段加熱体による熱処理と、後段の酸化
性雰囲気による熱処理とは一体のものであり、前段、又
は、後段のいずれか一方が欠けると、従来技術の様に本
発明の目的を達成することは不可能である。又、前段、
後段の順序が入れ換っても暴走反応を防いだり、反応斑
を解消することは不可能となる。
The organic polymer fiber bundle that has been heat-treated with a heating element is then heat-treated in an oxidizing atmosphere. This is to impart a certain degree of heat resistance and reduce the possibility of runaway reactions during subsequent heat treatment in an oxidizing atmosphere. Therefore, it does not matter if there are reaction spots in the fiber bundle after the heating body heat treatment. This is because these reaction spots can be improved in a short time by heating in an oxidizing atmosphere. The significance of the latter heating in an oxidizing atmosphere is that
Eliminates the oxidation reaction site in the previous stage and advances the actual oxidation degree,
Moreover, the purpose is to produce flame-resistant fibers of good quality in a short time. Therefore, the heat treatment by the first-stage heating element and the second-stage heat treatment by the oxidizing atmosphere are integrated, and if either the first stage or the second stage is missing, the object of the present invention cannot be achieved as in the prior art. is not possible. Also, the first part,
Even if the order of the subsequent stages is changed, it is impossible to prevent runaway reactions or eliminate reaction spots.

本発明における後段の酸化性雰囲気による加熱は、従来
公知である第1図に示す様なトンネル型炉、ネットコン
ベア一式炉などで行えばよく、特に限定されるものでは
ない。酸化性雰囲気による加熱に供給される有機重合体
繊維束の幅は特に限定されないが、実用上、前段の加熱
体処理時の幅と同一であるのが好ましい。加熱温度は、
酸化反応を速やかに進行させる為、下限としては200
℃を必要とし、一方接癒着を防ぎ、かつ、ある程度は酸
化反応が進行してはいるもののまだ暴走反応の可能性が
残されている為、上限は350℃にするのか良い。好ま
しくは、210〜300℃、より好ましくは、220〜
280“Cが良い。又、温度は多段化して与えても良い
The heating in the oxidizing atmosphere in the latter stage of the present invention may be performed in a conventionally known tunnel furnace or net conveyor set furnace as shown in FIG. 1, and is not particularly limited. Although the width of the organic polymer fiber bundle supplied for heating in an oxidizing atmosphere is not particularly limited, it is practically preferred that the width is the same as the width at the time of the heating body treatment in the previous stage. The heating temperature is
In order to allow the oxidation reaction to proceed quickly, the lower limit is 200
℃, while adhesion is prevented, and although the oxidation reaction has progressed to some extent, there is still a possibility of a runaway reaction, so it is better to set the upper limit to 350℃. Preferably 210-300°C, more preferably 220-300°C
280"C is preferable. Also, the temperature may be applied in multiple stages.

さらに、本発明者らは、いったん酸化性雰囲気加熱で反
応斑を解消させると、2度と反応斑が発現しないことを
見い出した。そこで、鋭意検討した結果、加熱体による
酸化反応が固体−固体間の伝熱により、酸化性雰囲気に
よる加熱による酸化反応より速くなることを利用して、
前記200〜350℃の酸化雰囲気中での熱処理(以下
第2段熱処理という)に続けて有機重合体繊維束をさら
に酸化性雰囲気中で250〜400°Cの加熱体に接触
させて熱処理(以下第3段熱処理という)することを特
徴とする前述の第2製造法に到達した。
Furthermore, the present inventors have discovered that once the reaction spots are eliminated by heating in an oxidizing atmosphere, the reaction spots never appear again. Therefore, as a result of extensive research, we found that the oxidation reaction caused by a heating element is faster than the oxidation reaction caused by heating in an oxidizing atmosphere due to heat transfer between solids.
Following the heat treatment in an oxidizing atmosphere at 200 to 350°C (hereinafter referred to as second stage heat treatment), the organic polymer fiber bundle is further heat treated in an oxidizing atmosphere by contacting with a heating element at 250 to 400°C (hereinafter referred to as second stage heat treatment). The above-mentioned second manufacturing method, which is characterized by a third stage heat treatment, has been achieved.

第2製造法における処理される有機重合体繊維束の条件
、使用する加熱体、最初の加熱体接触による熱処理(以
下第1段熱処理という)の熱処理条件は前記第1製造法
に準じて行えばよい。第2段熱処理の酸化性雰囲気炉加
熱も、使用する装置、酸化性雰囲気、有機重合体繊維束
の幅、厚み、および、温度範囲条件は前記第1製造法の
条件に準じて定めればよいが、雰囲気加熱により達成さ
れる到達酸化度が、ポリアクリロニトリル繊維の場合、
C,Iで0.42以上、好ましくは0.42以上0.4
8以下になるように条件を定めるとよい。この程度のC
,Iになると、第1段の加熱体による反応斑は解消され
る。
The conditions of the organic polymer fiber bundle to be treated in the second production method, the heating body used, and the heat treatment conditions of the first heat treatment by contact with the heating body (hereinafter referred to as the first stage heat treatment) are carried out in accordance with the first production method. good. For the oxidizing atmosphere furnace heating in the second stage heat treatment, the equipment to be used, the oxidizing atmosphere, the width and thickness of the organic polymer fiber bundle, and the temperature range conditions may be determined according to the conditions of the first manufacturing method. However, in the case of polyacrylonitrile fibers, the degree of oxidation achieved by atmospheric heating is
C, I is 0.42 or more, preferably 0.42 or more 0.4
It is advisable to set the conditions so that the value is 8 or less. This level of C
, I, the reaction spots caused by the first stage heating element are eliminated.

酸化性雰囲気により加熱処理された有機重合体繊維束は
さらに第3段熱処理で酸化性雰囲気下で加熱された加熱
体に供給される。この時の加熱体の温度は、反応を速や
かに進行させる為、下限250℃、該繊維束の接癒着を
防止する為上限400℃に設定される。第3段熱処理時
の繊維束の幅、厚みには特に限定はないが、実用上、第
2段熱処理の酸化性雰囲気加熱に付される幅が好ましく
、又、厚みに関しては成り行きで良い。ただし幅50c
m以下、厚み0.3 m m以上、5mm以下で行うと
よい。
The organic polymer fiber bundle heat-treated in an oxidizing atmosphere is further supplied to a heating element heated in an oxidizing atmosphere in a third stage heat treatment. The temperature of the heating element at this time is set at a lower limit of 250° C. to allow the reaction to proceed rapidly, and an upper limit of 400° C. to prevent adhesion of the fiber bundle. There are no particular limitations on the width and thickness of the fiber bundle during the third-stage heat treatment, but for practical purposes, the width that is subjected to the oxidizing atmosphere heating in the second-stage heat treatment is preferred, and the thickness may be determined as desired. However, the width is 50cm
The thickness is preferably 0.3 mm or more and 5 mm or less.

〈実施例〉 以下実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.

実施例1 アクリロニトリル974%含むポリアクリロニトリル繊
維の幅20cm、トータル560,000デニールの糸
束を第3図に示す様な加熱ローラ3の群と、トンネル型
酸化雰囲気炉2からなる連続酸化反応装置を用いて耐炎
化繊維を得た。酸化性雰囲気には空気を用いた。
Example 1 A continuous oxidation reaction apparatus consisting of a group of heating rollers 3 and a tunnel-type oxidizing atmosphere furnace 2 as shown in FIG. A flame-resistant fiber was obtained using the method. Air was used as the oxidizing atmosphere.

加熱ローラの表面温度は280℃に保った。加熱ローラ
表面上の繊維束幅20cm厚みは0.5mmであった。
The surface temperature of the heating roller was maintained at 280°C. The width of the fiber bundle on the surface of the heating roller was 20 cm and the thickness was 0.5 mm.

加熱ローラ処理後の繊維束には、表面部C,IO,36
、内部0.27と斑が見られたが、平均のC,Iは0.
33であった。加熱ローラ上の滞在時間は5分であった
The fiber bundle after the heating roller treatment has surface portions C, IO, 36
, internal 0.27 and spots were seen, but the average C and I were 0.
It was 33. The residence time on the heated roller was 5 minutes.

酸化雰囲気炉処理は、温度250℃、滞在時間24分、
繊維束幅20cmの条件で行った。
The oxidizing atmosphere furnace treatment was performed at a temperature of 250°C and a residence time of 24 minutes.
The test was conducted under the condition that the fiber bundle width was 20 cm.

得られた繊維束には反応斑はなくC,I=0.53で、
マツチの炎にさらしても着火しなかった。
The obtained fiber bundle had no reaction spots and C,I=0.53.
Even when exposed to pine flame, it did not catch fire.

叉巖爽又 実施例1と同様なポリアクリロニトリル繊維束を実施例
1と同じ連続酸化反応装置を用いて処理した。加熱ロー
ラの条件は実施例1と同様であるが、トンネル炉は温度
250℃、滞在時間8分、繊維束幅20cmで酸化処理
した。得られた繊維束には反応斑は全く認められなかっ
た。到達C,1は0.43であった。
Additionally, the same polyacrylonitrile fiber bundle as in Example 1 was treated using the same continuous oxidation reactor as in Example 1. The heating roller conditions were the same as in Example 1, but the tunnel furnace was oxidized at a temperature of 250° C., a residence time of 8 minutes, and a fiber bundle width of 20 cm. No reaction spots were observed in the obtained fiber bundle. The arrival C,1 was 0.43.

この繊維束をさらに酸化性雰囲気として空気を用いて3
20℃に保った加熱ローラ群で3分間処理してやると、
C,I=0.54の全く斑のない耐炎化繊維束が得られ
た。
This fiber bundle is further heated using air as an oxidizing atmosphere.
When treated for 3 minutes with a group of heating rollers kept at 20℃,
A flame-resistant fiber bundle with C,I=0.54 and no spots was obtained.

比較例1 実施例1と同様なポリアクリロニトリル繊維束を20c
mの幅で、220°Cの温度で空気雰囲気下トンネル炉
に通糸した所、暴走反応が生じ糸束が切断した。
Comparative Example 1 The same polyacrylonitrile fiber bundle as in Example 1 was
When the yarn was passed through a tunnel furnace in an air atmosphere at a temperature of 220° C., a runaway reaction occurred and the yarn bundle was cut.

比較例2 実施例1と同様なポリアクリロニトリル繊維束を270
〜330℃の組み合わせからなる加熱ローラ群を用いて
空気雰囲気下で酸化処理した。この時、ローラ上の繊維
束幅20cm、厚みは0.5 m mであった。全く斑
のないC1I=0.53の耐炎化繊維束を得るには1時
間を要した。
Comparative Example 2 The same polyacrylonitrile fiber bundle as in Example 1 was
The oxidation treatment was carried out in an air atmosphere using a group of heating rollers at a temperature of ~330°C. At this time, the fiber bundle on the roller had a width of 20 cm and a thickness of 0.5 mm. It took one hour to obtain a flame-resistant fiber bundle with C1I=0.53 and no spots.

実施例3 石油残差を用いて紡糸したピンチ系繊維束のトータル2
0万D、幅80m0糸束を第3図に示す様な装置を用い
酸化処理した。酸化性雰囲気には空気を用いた。
Example 3 Total 2 of pinch fiber bundle spun using petroleum residue
A yarn bundle of 00,000 D and a width of 80 m0 was oxidized using an apparatus as shown in FIG. Air was used as the oxidizing atmosphere.

加熱ローラの表面温度は270℃に保った。加熱ローラ
上の繊維束の幅8cm、厚みは3.5 m mであった
。加熱ローラ処理後の繊維束には反応斑が見られた。
The surface temperature of the heating roller was maintained at 270°C. The fiber bundle on the heating roller had a width of 8 cm and a thickness of 3.5 mm. Reaction spots were observed in the fiber bundle after the heating roller treatment.

酸化雰囲気炉処理は、温度250℃、繊維束幅20cm
の条件で行った。得られた繊維束には反応斑はなく、マ
ツチの炎にさらしても溶融しない良好な耐炎化繊維束が
得られた。
The oxidizing atmosphere furnace treatment was performed at a temperature of 250°C and a fiber bundle width of 20cm.
It was conducted under the following conditions. The obtained fiber bundle had no reaction spots, and a good flame-resistant fiber bundle that did not melt even when exposed to a pine flame was obtained.

〈発明の効果〉 本発明の耐炎化繊維の製造法は前述のように構成されて
いるので、厚みの大きい有機重合体繊維束を幅を広げる
ことなくそのまま酸化反応に給することができる。又そ
の熱処理において、酸化反応斑を起こさずに且つ短時間
のうちに耐炎化繊維を製造することができる。
<Effects of the Invention> Since the method for producing flame-resistant fibers of the present invention is configured as described above, a thick organic polymer fiber bundle can be directly fed to the oxidation reaction without increasing its width. In addition, during the heat treatment, flame-resistant fibers can be produced in a short time without causing oxidation reaction spots.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸化雰囲気炉の断面図、第2図は一例と
して示す従来の加熱体酸化装置の断面図、第3図は、本
発明の実施に適した装置の1例を示す断面図である。 1・−繊維束、     2−酸化雰囲気炉、3−加熱
ローラ、    4−移送ローラ。
FIG. 1 is a cross-sectional view of a conventional oxidizing atmosphere furnace, FIG. 2 is a cross-sectional view of a conventional heating body oxidizer shown as an example, and FIG. 3 is a cross-sectional view showing an example of an apparatus suitable for carrying out the present invention. It is. 1.-Fiber bundle, 2-oxidizing atmosphere furnace, 3-heating roller, 4-transfer roller.

Claims (1)

【特許請求の範囲】 1、有機重合体繊維束を酸化処理し耐炎化繊維を得るに
際し、該繊維束を酸化性雰囲気中で200〜350℃の
加熱体に接触させて熱処理した後、200〜350℃の
酸化性雰囲気中で熱処理することを特徴とする耐炎化繊
維の製造法。 2、有機重合体繊維束を酸化処理し耐炎化繊維を得るに
際し、該繊維束を酸化性雰囲気中で200〜350℃の
加熱体に接触させて熱処理した後、200〜350℃の
酸化性雰囲気中で熱処理し、さらに酸化性雰囲気中で2
50〜400℃の加熱体に接触させて熱処理することを
特徴とする耐炎化繊維の製造法。
[Claims] 1. When oxidizing an organic polymer fiber bundle to obtain a flame-resistant fiber, the fiber bundle is heat-treated by contacting with a heating element at 200 to 350°C in an oxidizing atmosphere, and then heated to 200 to 350°C. A method for producing flame-resistant fibers, characterized by heat treatment in an oxidizing atmosphere at 350°C. 2. When oxidizing an organic polymer fiber bundle to obtain a flame-resistant fiber, the fiber bundle is heat-treated in an oxidizing atmosphere by contacting with a heating element at a temperature of 200 to 350°C, and then heated in an oxidizing atmosphere of 200 to 350°C. heat treated in an oxidizing atmosphere, and further heated in an oxidizing atmosphere
A method for producing flame-resistant fibers, which comprises heat-treating the fibers by contacting them with a heating element at 50 to 400°C.
JP1176985A 1985-01-26 1985-01-26 Production of flameproofed fiber Pending JPS61174423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176985A JPS61174423A (en) 1985-01-26 1985-01-26 Production of flameproofed fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176985A JPS61174423A (en) 1985-01-26 1985-01-26 Production of flameproofed fiber

Publications (1)

Publication Number Publication Date
JPS61174423A true JPS61174423A (en) 1986-08-06

Family

ID=11787178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176985A Pending JPS61174423A (en) 1985-01-26 1985-01-26 Production of flameproofed fiber

Country Status (1)

Country Link
JP (1) JPS61174423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010035800A1 (en) * 2008-09-26 2012-02-23 独立行政法人国立高等専門学校機構 Water purification system and method for increasing dissolved oxygen concentration in water to be purified
JP2012255235A (en) * 2011-06-09 2012-12-27 Mitsubishi Rayon Co Ltd Method for producing flameproof fiber bundle
JP2013249570A (en) * 2012-06-04 2013-12-12 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
WO2014054196A1 (en) * 2012-10-03 2014-04-10 三菱レイヨン株式会社 Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
US9113685B2 (en) 2011-09-12 2015-08-25 Kazuo Iwai Shoulder strap slippage prevention device and shoulder bag using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010035800A1 (en) * 2008-09-26 2012-02-23 独立行政法人国立高等専門学校機構 Water purification system and method for increasing dissolved oxygen concentration in water to be purified
JP2012255235A (en) * 2011-06-09 2012-12-27 Mitsubishi Rayon Co Ltd Method for producing flameproof fiber bundle
US9113685B2 (en) 2011-09-12 2015-08-25 Kazuo Iwai Shoulder strap slippage prevention device and shoulder bag using same
JP2013249570A (en) * 2012-06-04 2013-12-12 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
WO2014054196A1 (en) * 2012-10-03 2014-04-10 三菱レイヨン株式会社 Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these

Similar Documents

Publication Publication Date Title
CA1094764A (en) Process and apparatus for producing carbon fibers
CA1095206A (en) Process for producing carbon fibers
US3539295A (en) Thermal stabilization and carbonization of acrylic fibrous materials
US3775520A (en) Carbonization/graphitization of poly-acrylonitrile fibers containing residual spinning solvent
JPS61174423A (en) Production of flameproofed fiber
CA1165518A (en) Process for the surface modification of carbon fibers
EP0125905B1 (en) Process for the stabilisation of acrylic fibres
US3592595A (en) Stabilization and carbonization of acrylic fibrous material
US4534920A (en) Process for producing carbonizable oxidized fibers and carbon fibers
US4574077A (en) Process for producing pitch based graphite fibers
US3677705A (en) Process for the carbonization of a stabilized acrylic fibrous material
EP0372931A3 (en) Continuous, ultrahigh modulus carbon fiber
US3914393A (en) Process for the conversion of stabilized acrylic fibers to carbon fibers
JPH026625A (en) Method for producing flame-resistant fibers
US3935301A (en) Process for producing carbon fibers from organic fibrous material
JPS61167023A (en) Method for producing flame-resistant fiber
JPS60252722A (en) Production of carbon fiber
JPH02191723A (en) Method for producing flame-resistant fiber
JPH04153327A (en) Method for producing flame-resistant fiber
JPS5853086B2 (en) Method for producing flame-resistant fibers
JP2628658B2 (en) Method and apparatus for infusibilizing pitch-based carbon fiber
JPH02169728A (en) Method for producing flame-resistant fibers
JPH01118623A (en) Provision of precursor fiber with flame resistance
JPH02154013A (en) Method for producing flame-resistant fibers
JPH01148817A (en) Production of carbon fiber