[go: up one dir, main page]

JPS61174341A - Method for refining slime produced by electrolysis of copper - Google Patents

Method for refining slime produced by electrolysis of copper

Info

Publication number
JPS61174341A
JPS61174341A JP60014839A JP1483985A JPS61174341A JP S61174341 A JPS61174341 A JP S61174341A JP 60014839 A JP60014839 A JP 60014839A JP 1483985 A JP1483985 A JP 1483985A JP S61174341 A JPS61174341 A JP S61174341A
Authority
JP
Japan
Prior art keywords
slag
slime
lead
flux
electrolytic slime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60014839A
Other languages
Japanese (ja)
Other versions
JPS6348929B2 (en
Inventor
Takeyoshi Shibazaki
武義 柴崎
Hiromi Mochida
裕美 持田
Katsuji Tomaki
東槙 勝至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60014839A priority Critical patent/JPS61174341A/en
Publication of JPS61174341A publication Critical patent/JPS61174341A/en
Publication of JPS6348929B2 publication Critical patent/JPS6348929B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain high-grade rich lead in a high yield by adding a siliceous flux, a lime-base flux and a small amount of a carbonaceous reducing agent to slime produced by the electrolysis of copper and by melting them by heating to transfer base metals in the slime into formed slag. CONSTITUTION:A siliceous flux, a lime-base flux and a carbonaceous reducing agent such as coke are added to slime produced by the electrolysis of copper and roasted. The amount of the reducing agent added is 1-4% of the amount of the slime. They are melted by heating to transfer most of base metals in the slime into formed slag. After the reduction is finished, the formed slag is separated and solidified. By this method, slag having a high lead content and rich lead having a high silver content are obtd. in high yields. The rich lead is sent to the next silver separating stage.

Description

【発明の詳細な説明】 (産業分野) 本発明は銅電解スライムに石灰、珪砂等のフラツクス及
びコークス、石炭等の還元剤を添加して加熱、溶解させ
、鉛、ア/チモン、ビスマス等の大部分なスラグ化する
とともに銀含有量の高い貴鉛を生成せしめる銅電解スラ
イムの製錬法に関する。
Detailed Description of the Invention (Industrial Field) The present invention involves adding fluxes such as lime, silica sand, etc. and reducing agents such as coke and coal to copper electrolytic slime, heating and dissolving the mixture, and removing lead, aluminum, bismuth, etc. This invention relates to a method for smelting copper electrolytic slime, which turns most of it into slag and produces noble lead with a high silver content.

(従来技術とその問題点) 銅電解スライムには、金、銀等の貴金属のほかに、銅、
セレン、テルル、鉛、アンチモン、ビスマス、砒素2等
が含まれている。これらの中で、銅は空気酸化を行ない
つつ、硫酸浸出するか、あるいは酸化焙焼後、硫酸浸出
を行なって除去される。これを、電解工程で生成したま
まのスライムと区別して脱銅スライムとよぶこともある
が、以下、単に銅電解スライムをスライムとよぶ。
(Prior art and its problems) In addition to precious metals such as gold and silver, copper electrolytic slime also contains copper,
Contains selenium, tellurium, lead, antimony, bismuth, arsenic 2, etc. Among these, copper is removed by leaching with sulfuric acid while performing air oxidation, or by leaching with sulfuric acid after oxidative roasting. This is sometimes referred to as decoppered slime to distinguish it from the slime produced in the electrolytic process, but hereinafter copper electrolytic slime will be simply referred to as slime.

銅電解スライムの処理工程は様々の異なる方式が提案さ
れているが、一般的方法としては次の如きものである。
Although various different methods have been proposed for the treatment process of copper electrolytic slime, the following is a general method.

(1)酸化焙焼又は硫酸化焙焼を行ってセレンを揮発除
去する工程、 (2)フラックス及び還元剤を加えて加熱溶解し、鉛、
アンチモン、ビスマスを含むスラグト、金。
(1) Performing oxidation roasting or sulfation roasting to volatilize and remove selenium, (2) Adding flux and a reducing agent and heating and dissolving the lead,
Slagt, gold containing antimony and bismuth.

銀を含む黄鉛とを生成せしめる工程、 (3)更に、貴鉛中の鉛、セレ/、テルル、銅等を酸化
除去しDor; metal  と呼ばれる粗銀を生成
せしめる工程、の組合せよりなるものである。
(3) Further, a step of oxidizing and removing lead, cerium, tellurium, copper, etc. in the noble lead to produce crude silver called metal. It is.

これらの工程中で第2工程ではスラグへの賃金属の損失
を最小にするためには、できるだけ多量の還元剤を用い
て完全に還元させることが望ましいが、このようにする
と、スライム中の鉛の大部分が還元され、貴鉛の銀品位
が著しく低下するので不適である。
In the second step of these processes, it is desirable to use as much reducing agent as possible to achieve complete reduction in order to minimize the loss of lead metals to the slag. It is unsuitable because most of the precious lead is reduced and the silver quality of the precious lead is significantly reduced.

その結果、第3工程では多量の鉛を酸化してスラグ(密
陀)として分離しなくてはならないから反応時間が長く
なり、しかも生成したスラグ中にはなお高濃度の金、銀
が含まれている。従って再処理を行なう必要があり、全
体としてのプロセスの効率的運用を阻害することになる
As a result, in the third step, a large amount of lead has to be oxidized and separated as slag, which lengthens the reaction time, and the resulting slag still contains high concentrations of gold and silver. ing. Therefore, reprocessing is necessary, which impedes the efficient operation of the process as a whole.

上記プロセスの効率的運用を可能ならしめる改善策の一
つとして、浮遊選鉱によるスライム中の硫酸鉛の分離方
法が提案されているC特開昭49−123428号公報
)。この方法はスライムの鉛含有量が高い場合にはかな
シ有効な方法で、鉛含有量の約iを、硫酸鉛を主成分と
する尾鉱(tailing)  として、分離すること
ができる。しかしながら、スライムの鉛含有量がそれほ
ど多くない場合はあまり有効ではない。
As one of the improvement measures to enable efficient operation of the above process, a method for separating lead sulfate from slime by flotation has been proposed (Japanese Patent Application Laid-open No. 123428/1982). This method is very effective when the lead content of the slime is high, and approximately i of the lead content can be separated as tailings mainly composed of lead sulfate. However, it is not very effective if the lead content of the slime is not very high.

また、上記スライム中の鉛をalkylena ami
neたとえばdiethylene triamine
 によって浸出する方法(米国特許/164.283.
224号明細書)や酢酸塩によって浸出する方法(特開
昭57−149.437号公報)等が提案されている。
In addition, the lead in the slime was removed by alkylena ami.
For example, diethylene triamine
(U.S. Patent/164.283.
224) and a method of leaching with acetate (Japanese Unexamined Patent Publication No. 149.437/1983), etc. have been proposed.

これら湿式プロセスによる処理では、鉛を炭酸塩その他
の化合物として回収できる利点がある反面、試薬。
These wet processes have the advantage of recovering lead as carbonates and other compounds;

ロス、洗浄水の処理等によるコストが大きいという問題
点をかかえている。
This method has the problem of large costs due to loss and treatment of washing water.

更に、未焙焼スライムにソーダ灰等のフラックスな加え
て非還元性雰囲気で加熱浴等し、鉛等をスラグ化し、セ
レン、テルル、銀等を含む貴鉛を生成する方法も提案さ
れている(特公昭57−23735号公報)。
Furthermore, a method has also been proposed in which a flux such as soda ash is added to the unroasted slime and the slime is heated in a non-reducing atmosphere to turn lead into slag and produce noble lead containing selenium, tellurium, silver, etc. (Special Publication No. 57-23735).

この方法は、従来のスライムを焙焼してセレンを除去し
てから処理する方法に比し、貴鉛には多量のセレンが含
まれているため、これを酸化除去するための、ソーダ灰
及びチリ硝石等の試薬の使用量が大で、かつ反応時間も
また長くなる。スライムの溶解工程でソーダ系フラック
スを用いるの    ゛で炉の耐火材の消耗も相当大き
いという問題点がある。
Compared to the conventional method of roasting slime to remove selenium, this method uses soda ash and The amount of reagents such as saltpeter used is large, and the reaction time is also long. The problem with using soda-based flux in the slime melting process is that the refractory material in the furnace is consumed considerably.

(発明の目的) 本発明の目的は、上記の従来技術の問題点を解決し、銅
電解スライムより高品位の貴鉛を高収率で得ることを可
能ならしめる銅電解スライムの製錬法な提供するにある
(Object of the Invention) The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for smelting copper electrolytic slime that makes it possible to obtain noble lead of higher quality than copper electrolytic slime in a higher yield. It is on offer.

(発明の構成) すなわち、本発明によれば、基本的には、銅電解スライ
ムを脱銅しあるいは脱銅後、更に脱セレン焙焼を行ない
、これにフラツクス及び還元剤を加え、次いで加熱、溶
解せしめてなる銅電解スライムの製錬法において、該銅
電解スライムに、シリカ質フラックスとライム質フラッ
クスよりなる72ツクスと該銅電解スライムの1〜4チ
範囲の炭素質物質よりなる還元剤とを加えて加熱して該
銅電解スライムを溶解させ、該銅電解スライム中のベー
スメタルの実質的彦大部分なスラグ中に移行させるとと
もに高鉛品位のスラグと高銀品位の黄鉛とを生成せしめ
ることを特徴とする銅電解スライムの製錬法、が得られ
る。
(Structure of the Invention) That is, according to the present invention, basically, the copper electrolytic slime is decoppered or after decoppered, further roasted to remove selenium, flux and a reducing agent are added thereto, and then heated, In the method for smelting copper electrolytic slime, the copper electrolytic slime is added with a reducing agent consisting of 72x consisting of siliceous flux and lime flux and a carbonaceous substance in the range of 1 to 4 times of the copper electrolytic slime. is added and heated to melt the copper electrolytic slime and transfer a substantial portion of the base metal in the copper electrolytic slime into slag, producing high lead grade slag and high silver grade yellow lead. A method for smelting copper electrolytic slime is obtained.

本発明ではさらに、上記の基本的構成に加えて、生成し
た該スラグを固化かつ微粉砕し、これを浮遊選鉱して該
スラグ中の金、銀、セレ/、テルルを濃縮した精鉱とし
て回収し、この精鉱を上記溶解工種に繰り返すことによ
って、高銀品位の貴鉛を高収率で得ることを可能ならし
めるものである。
In addition to the above-mentioned basic configuration, the present invention further includes solidifying and pulverizing the generated slag, flotating it, and recovering it as a concentrate in which gold, silver, ceres/tellurium in the slag is concentrated. However, by repeating this concentrate in the above-mentioned melting process, it becomes possible to obtain noble lead with high silver grade at a high yield.

次に、本発明をさらに詳述する。Next, the present invention will be explained in further detail.

銅電解スライムには通常1〜3係のテルルと10〜50
係のセレ/が含れている。セレンの含有率が低い場合に
は脱セレンのための焙焼をしないで直接加熱、溶解させ
ることもできるが、セレンの含有率が高い場仝にはまず
該スライムの酸化焙焼または硫酸化焙焼によって含有セ
レンを除去した方が後の工程の操作が容易となる。この
焙焼はいかなる方法によって行なってもよいが、特公昭
49−30328号公報に記載された焙焼方法を例にと
って述べると、次の通りである。
Copper electrolytic slime usually contains 1 to 3 parts of tellurium and 10 to 50 parts of tellurium.
Contains the person in charge. If the selenium content is low, it is possible to directly heat and melt without roasting to remove selenium, but if the selenium content is high, the slime must first be oxidized or sulfated roasted. Removing the selenium contained by calcination makes it easier to operate in subsequent steps. This roasting may be carried out by any method, but the roasting method described in Japanese Patent Publication No. 49-30328 will be described as follows.

この焙焼炉としてはいわゆるショートロータリファーネ
スが用いられている。このファーネスは予め炉温を昇温
し、15t!解スライムを装入しつつ温度を800〜9
00℃に保持し、かつ炉を回転させながら焙焼を行なう
。スライムのlチャー奔分の装入が終ってから、なお5
Hr程度す5焼を行ない、含有セレンの80〜90俤を
揮発させる。
A so-called short rotary furnace is used as this roasting furnace. This furnace has a preheated furnace temperature of 15 tons! While charging the dissolved slime, raise the temperature to 800-9.
Roasting is carried out while maintaining the temperature at 00°C and rotating the furnace. After charging one char of slime, there are still 5
Burning is performed for about 5 hours to volatilize 80 to 90 tons of selenium contained.

揮発したセレンは該セレンな含む排ガスを力性ソーダ水
溶液でスクラビングして回収する。
The volatilized selenium is recovered by scrubbing the selenium-containing exhaust gas with an aqueous sodium hydroxide solution.

この段階で炉内の+1!i焼スライムは約900℃に保
持されているので、煙灰、密陀等の工程内#返し物、石
灰石及び珪p等よりなるフラックス及び少量のコークス
を追加装入して1)00℃〜1250℃に加熱、溶解さ
せる。溶解を促進するために、炉の回転は引続き行なう
。これら装入物が完全に溶解し、還元反応が完了すると
、炉の回転を停止し、スラグと黄鉛をセットリングによ
って分離し、炉を傾転してスラグはスラグレードルに抜
出して固化させ、黄鉛は貴鉛レードルに抜出して次の分
銀工程に送る。
+1 in the furnace at this stage! Since the i-grilled slime is maintained at about 900°C, additionally charged in-process materials such as smoke ashes, slag, etc., flux made of limestone, silica, etc., and a small amount of coke are added to heat the slime to a temperature of 1) 00°C to 1250°C. Heat to ℃ to dissolve. The furnace continues to rotate to promote melting. When these charges are completely melted and the reduction reaction is completed, the rotation of the furnace is stopped, the slag and yellow lead are separated by a settling ring, the furnace is tilted, and the slag is extracted into a slag ladle and solidified. The yellow lead is extracted into a precious lead ladle and sent to the next silvering process.

上記スライムを加熱、溶解させる際、ソーダ質フランク
スな用いる方法と鉄−シリケートベスラグな生成させる
方法があるが、前者ではスラグの侵食性が大で、炉材の
寿命が短いという欠点があり、後者では鉄を加えるため
、スラグの生成量が多いという欠点があった。
When heating and melting the slime, there are two methods: using soda flax and producing iron-silicate base slag, but the former method has the drawbacks that the slag is highly corrosive and the life of the furnace material is short. The latter method had the disadvantage of producing a large amount of slag due to the addition of iron.

本発明の基本的工程、すなわち銅電解スライムの溶解並
びに高鉛品位のスラグと高銀品位の黄鉛との生成を含む
工程では、鉛のスラグ化を助長するため、シリケートベ
ースのフラックスを添加する。その際、スラグ生成量を
少なくするため、スクラップ鉄は添加しない。すなわち
、従来法ではスラグ中の鉛は25〜30%の範囲であっ
たが、本発明方法ではスラグ中の鉛を35〜45チまで
高めるため、還元剤の添加量は最小限とする。即ち焙焼
スライムに対し1〜4重景チの範囲のコークスまたは石
炭添加量が必要である。還元剤の添加量が1重量%未溝
では添加の効果が著しく低下し、4重量係を越えると、
効果の向上は最早見られず、コスト的に不利となる。鉛
以外の主要なスラグ成分はシリカ(SiOx)とライム
(Cab)であるが、スラグ組成として、Si0.8〜
15 L4゜CaO1〜3チの範囲である。スライム中
には若干1のSiOが含まれているため、フラックス添
加量は上記スラグな生成するに足る量とすればよ一ゝO Pb約204. SiO約2.5係のスライムではコー
クスの添加量3チ、珪砂1チ9石灰石5.4チで上記目
標組成のスラグが得られる。この時、得られる貴鉛中の
銀は50〜6(lである。スラグ中のPblと貴鉛中の
Ag%は*1図に例示するように、正の相関があり、高
鉛品位のスラグな生成すれば、貴鉛中の鋏品位は高めら
れる。但し、それと同時にスラグへの係の損失も増加す
る。第2図には釦のスラグ/貴鉛間の分配比と貴鉛の銀
品位との関係を概念的に示す。
In the basic process of the present invention, which involves melting copper electrolytic slime and producing high lead grade slag and high silver grade yellow lead, a silicate-based flux is added to promote lead slagging. . At this time, scrap iron is not added in order to reduce the amount of slag produced. That is, in the conventional method, the lead content in the slag was in the range of 25 to 30%, but in the method of the present invention, the amount of the reducing agent added is minimized in order to increase the lead content in the slag to 35 to 45%. That is, it is necessary to add coke or coal in an amount of 1 to 4 times the roasted slime. If the amount of reducing agent added is 1% by weight, the effect of addition will be significantly reduced, and if it exceeds 4% by weight,
No improvement in effectiveness can be seen anymore, and it becomes disadvantageous in terms of cost. The main slag components other than lead are silica (SiOx) and lime (Cab), but the slag composition is Si0.8~
15L4°CaO ranges from 1 to 3 degrees. Since the slime contains a small amount of SiO, the amount of flux added should be enough to produce the above-mentioned slag. In the case of a slime containing about 2.5 parts of SiO, a slag having the above target composition can be obtained by adding 3 parts of coke, 1 part of silica sand, 9 parts of limestone, and 5.4 parts. At this time, the amount of silver in the noble lead obtained is 50 to 6 (l). There is a positive correlation between Pbl in the slag and Ag% in the noble lead as shown in Figure 1, and If slag is generated, the quality of the scissors in noble lead will be improved.However, at the same time, the loss of bond to slag will also increase.Figure 2 shows the distribution ratio between button slag/precious lead and silver in noble lead. Conceptually shows the relationship with dignity.

貴鉛は次の分銀工程で処理し、粗銀とする。貴鉛の組成
は上述の銀50〜60%以外の成分としては鉛4〜10
%、セレン10〜15チ、テルル1(1〜20憾、銅5
〜6チである。銀品位40チ稈度の貴鉛では鉛が約20
〜25チであるのに対し高銀黄鉛中の鉛は著しく低く溶
解工程における鉛のスラグ化がそれだけ高められている
ことを示す。分銀工程で酸化すべき鉛の量が少ないため
、分銀工程も反応時間が短縮される。
Precious lead is processed in the next silver separation process to become coarse silver. The composition of noble lead is 4-10% lead other than the above 50-60% silver.
%, selenium 10-15%, tellurium 1(1-20%, copper 5%)
~6chi. In noble lead with a silver grade of 40 cm, the lead content is approximately 20 cm.
The lead content in high-silver yellow lead is significantly lower than that of ~25%, indicating that the slagging of lead during the melting process is increased accordingly. Since the amount of lead to be oxidized during the silver separation process is small, the reaction time of the silver separation process is also shortened.

スラグは、鉛の品位が高められた結果、生成率は従来の
Pb25%のスラグな生成する場合に比し、65〜70
%にすぎない。その反面、銀等の含有率は若干高く、A
 g O,5〜3 %、  S e O,5〜1.5チ
、’l’el〜4チ程度である。なお、従来法に比し、
スラグ生成量が少ないので、これらの含有量はそれほど
増加しているわけではないので、そのまま鉛製錬工程に
送ることもできる。
As a result of the improved lead quality, the slag production rate is 65 to 70% higher than the conventional 25% Pb slag production.
It is only %. On the other hand, the content of silver etc. is slightly high,
g O, 5 to 3%, S e O, 5 to 1.5 %, and 'l'el to 4 %. Furthermore, compared to the conventional method,
Since the amount of slag produced is small, these contents do not increase significantly, so it can be sent as is to the lead smelting process.

次に、本発明方法の基本的工程につづく工程では、即ち
基本的工程で生成した高鉛品位のスラグと高鉛品位の貴
鉛を有用化する工程では、スラグな固化、微粉砕し、浮
遊選鉱により、金、゛銀、セレン、テルルを精鉱として
濃縮回収し、それらをさらに前記溶解工程に繰返し、ス
ライムと同時処理することにより、上記成分の収率な高
めることができる。粉砕スラグの粒度は細かい方が選鉱
成績が良いが、−xooミクロ7程度でも充分である。
Next, in the process following the basic process of the method of the present invention, that is, in the process of making useful the high lead grade slag and high lead grade precious lead produced in the basic process, the slag is solidified, pulverized, and suspended. By concentrating and recovering gold, silver, selenium, and tellurium as concentrates through ore beneficiation, repeating the above-mentioned melting process and treating them simultaneously with slime, the yield of the above components can be increased. The finer the particle size of the pulverized slag, the better the beneficiation result, but -xoo micro 7 or so is sufficient.

スラリー1)1度1o o −20og/43.  P
H8−10で、起泡剤としてはパイン油、捕収剤として
はたとえば、日本香料薬品株式会社製のDTP−8等を
用いて処理した。1例ではA u O,07fA、Ag
2.2係、5eO17%%Te1.8%、Pb44%の
スラグの場合ではAu+Ag1O〜15係の精鉱がスラ
グの約151得られ、ティリングはAu(0,001%
、Ag0.3〜0.35%、Se0.13%、Ta0.
55%程度まで低下した。収率はAu)99チ、Ag約
90チ、Se85%、Te751程度である。
Slurry 1) 1 degree 1o o -20og/43. P
H8-10, pine oil was used as a foaming agent, and DTP-8 manufactured by Nippon Koyaku Yakuhin Co., Ltd., for example, was used as a collecting agent. In one case, A u O, 07fA, Ag
In the case of slag with ratio 2.2, 17% 5eO, 1.8% Te, and 44% Pb, approximately 151 concentrates of Au+Ag1O~15 are obtained from the slag, and tilling is Au (0,001%).
, Ag0.3-0.35%, Se0.13%, Ta0.
It decreased to about 55%. The yield is approximately 99% Au, approximately 90% Ag, 85% Se, and 751% Te.

上記パイン油及びDTP−8(商品名)は次のごときも
のである。パイン油の主成分はターピネオールでその構
造式は ?H3 である。一方、DTP−8の主成分はジチオフォスフェ
ートでその構造式は である。ティリングへの鉛の移行率は約904であり、
このティリングは鉛製錬に送り、鉛及び残留する少量の
金、銀をさらに回収することができる。精鉱はスライム
の溶解工程に繰り返す。
The above pine oil and DTP-8 (trade name) are as follows. The main component of pine oil is terpineol, and what is its structural formula? It is H3. On the other hand, the main component of DTP-8 is dithiophosphate, and its structural formula is. The lead migration rate to tilling is about 904,
This tilling can be sent to a lead smelter to further recover the lead and small amounts of remaining gold and silver. The concentrate is repeated in the slime melting process.

次に、本発明を実施例によってより具体的に説明するが
、本発明の範囲は以下の実施例によって限定されるもの
ではない。
Next, the present invention will be explained in more detail with reference to examples, but the scope of the present invention is not limited by the following examples.

実施例1 第1表に示すスライムA3.2t、スライムB22tを
900℃で酸化焙焼してセレンを除去しく推定除去率8
5チ)、次いで第1表に示す工程内繰返物及びコークス
160 kg、石灰石240II、珪r1p45kgを
追加装入し、炉を回転させつつ、1)50〜1200@
GK昇温して溶解させた。約10時間で溶解し、反応も
終了したので、約1時間静置し、スラグ、貴鉛をそれぞ
れ抜き出した。これら産出物品位は第1表に示す。産出
物量は推定値を第2表に併記した。該スラグ中のpbは
42%、sbは約41、Biは約1.5%であった。−
万、該貴鉛は常法に従って分銀工程で処理したが、処理
時間は従来のAg40%の貴鉛の場合の約60優に短縮
された。また、密陀、分銀工程煙灰等の生成量は従来法
に比し、密陀+ソーダスラグは従来法の約60チ、また
煙灰は従来法の約30係に減少した。
Example 1 3.2 tons of slime A and 22 tons of slime B shown in Table 1 were oxidized and roasted at 900°C to remove selenium.Estimated removal rate: 8
5 h), then additionally charged the in-process repeated materials shown in Table 1, 160 kg of coke, 240 II limestone, and 45 kg of silica, and while rotating the furnace, 1) 50 to 1200 @
GK was heated and dissolved. The solution was dissolved in about 10 hours and the reaction was completed, so it was left to stand for about 1 hour and the slag and noble lead were extracted. The quality of these products is shown in Table 1. The estimated amount of production is also listed in Table 2. The slag had a pb content of 42%, a sb content of about 41%, and a Bi content of about 1.5%. −
The precious lead was treated in a silver separation process according to a conventional method, and the treatment time was shortened by about 60% compared to the conventional case of noble lead containing 40% Ag. In addition, the amount of dust and soda slag generated during the silver separation process was reduced to about 60 parts in the conventional method, and about 30 parts in the conventional method.

実施例2 第1表に示す原料を焙焼し、繰は物とコークス80kg
2石灰石240kg、珪砂40ゆを追加装入して加熱溶
解した。産出物の組成を第2表に示す。
Example 2 The raw materials shown in Table 1 were roasted, and 80 kg of recycled material and coke were produced.
2. 240 kg of limestone and 40 ml of silica sand were additionally charged and heated and melted. The composition of the output is shown in Table 2.

第2表 産出物組成(実施例2) 黄鉛はさらに分銀工程で処理した。スラグは固化し、浮
遊選鉱処理した。粉砕粒度は一100ミクロン80チ、
スラリー濃度160g々、PH8〜10、起泡剤として
パイン油、捕集剤としてDTP−8を用いて浮選した結
果を第3表に示す。
Table 2 Product Composition (Example 2) The yellow lead was further processed in a silver separation process. The slag was solidified and subjected to flotation treatment. The grinding particle size is 1100 microns and 80 inches.
Table 3 shows the results of flotation using slurry concentration of 160 g, pH of 8 to 10, pine oil as a foaming agent, and DTP-8 as a collection agent.

精鉱の生成量は処理スラグ量の約15チであり、かつ該
スライム溶解工程に繰返されるティリングへの鉛の移行
率は約90憾であり、該精鉱は鉛友錬に送られる。金、
銀は90チ以上分離されるので、スライム工程における
収率は極めて高い。アンチモン、ビスマスのティリング
への移行率は鉛とほぼ同様で85〜90係であった。
The amount of concentrate produced is about 15 times the amount of treated slag, and the transfer rate of lead to the tilling that is repeated in the slime melting process is about 90 times, and the concentrate is sent to lead smelting. Money,
Since more than 90 silver is separated, the yield in the slime process is extremely high. The transfer rate of antimony and bismuth to tilling was almost the same as that of lead, and was 85 to 90.

第3表 スラグの浮遊選鉱処理成績 (発明の効果) 本発明は上記構成をとることによって、次の効果を奏す
ることができる。
Table 3 Slag Flotation Treatment Results (Effects of the Invention) By adopting the above configuration, the present invention can achieve the following effects.

(1)  シリケートベースのスラグな生成することに
ヨリ、スライム中の鉛、アンチモノ、ビスムスの大部分
をスラグ化することができ、そのため貴鉛中の銀品位が
向上し、後処理工程の能率が著しく向上する。また、密
陀等の分銀工程中間物の生成量は著しく減少するので、
スライム溶解工程の負荷も低下する。
(1) Most of the lead, antimono, and bismuth in the slime can be converted into slag, which improves the quality of silver in noble lead and improves the efficiency of the post-processing process. Significantly improved. In addition, the amount of intermediates produced in the dividing process such as Mitsuda is significantly reduced, so
The load on the slime melting process is also reduced.

(2)  ライム質フラックスを併用することにより、
比較的低い温度で操業できる。ソーダ系フラックスを用
いる場合に問題となるスラグによる煉瓦の侵食はシリカ
質およびライム質フラックスを併用しているため、大幅
に緩和され、炉の寿命が長くなり、稼動率が高められる
(2) By using lime quality flux in combination,
Can operate at relatively low temperatures. The corrosion of bricks by slag, which is a problem when using soda-based flux, is significantly alleviated because silica-based and lime-based fluxes are used together, extending the life of the furnace and increasing its operating rate.

(31スラグの鉛品位を35〜45チまで高めることが
できるため、従来の該スラグの鉛品位25チ程度の場合
に比べて、スラグの生成量は65〜70チに減少する。
(Since the lead quality of the 31 slag can be increased to 35 to 45 inches, the amount of slag produced is reduced to 65 to 70 inches compared to the conventional case where the lead quality of the slag is about 25 inches.

このため、スラグの再処理コストが低減される。Therefore, the cost of reprocessing the slag is reduced.

(4)スラグへの金、銀、セレン、テルルの損失は従来
法に比してやや増加する傾向が認められるが、スラグを
固化、微粉砕し、浮遊選鉱処理を行なうことにより、こ
れら成分の75係〜99チを精鉱として濃縮回収するこ
とができる。ティリングへの鉛の移行率は約90%であ
り、上記浮選精鉱をスライム溶解工程で混合処理しても
、スラグ生成量の増加はわずかである。
(4) Although the loss of gold, silver, selenium, and tellurium to slag tends to increase slightly compared to conventional methods, by solidifying and pulverizing the slag and performing flotation treatment, 75% of these components can be removed. 99% can be concentrated and recovered as concentrate. The transfer rate of lead to tilling is about 90%, and even if the flotation concentrate is mixed in the slime melting process, the amount of slag produced is only slightly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラグの鉛品位と貴鉛の銀品位の関係を示す図
、第2図は銀のスラグと黄鉛への分配比を示す図である
FIG. 1 is a diagram showing the relationship between the lead quality of slag and the silver quality of noble lead, and FIG. 2 is a diagram showing the distribution ratio of silver to slag and yellow lead.

Claims (6)

【特許請求の範囲】[Claims] (1)銅電解スライムを脱銅しあるいは脱銅後、更に脱
セレン焙焼を行ない、これにフラツクス及び還元剤を加
え、次いで加熱、溶解せしめてなる銅電解スライムの製
錬法において、該銅電解スライムに、シリカ質フラツク
スとライム質フラツクスよりなるフラツクスと該銅電解
スライムの1〜4%範囲の炭素質物質よりなる還元剤と
を加えて加熱して該銅電解スライムを溶解させ、該銅電
解スライム中のベースメタルの実質的な大部分をスラグ
中に移行させるとともに高鉛品位のスラグと高銀品位の
貴鉛とを生成せしめることを特徴とする銅電解スライム
の製錬法。
(1) In a method for smelting copper electrolytic slime, the copper electrolytic slime is decoppered or after decoppering, further roasted to remove selenium, flux and a reducing agent are added thereto, and then heated and melted. A flux consisting of a siliceous flux and a lime flux and a reducing agent consisting of a carbonaceous substance in the range of 1 to 4% of the copper electrolytic slime are added to the electrolytic slime and heated to dissolve the copper electrolytic slime, and the copper electrolytic slime is dissolved. A method for smelting copper electrolytic slime, which is characterized by transferring substantially most of the base metal in electrolytic slime into slag, and producing high lead grade slag and high silver grade noble lead.
(2)銅電解スライムを脱銅し、あるいは脱銅後更に脱
セレン焙焼を行ない、これにフラツクス及び還元剤を加
えて溶解せしめる銅電解スライムの製錬法において、該
銅電解スライムに、シリカ質フラツクスとライム質フラ
ツクスよりなるフラツクスと該銅電解スライムの1〜4
%範囲の炭素質物質よりなる還元剤とを加えて加熱して
該銅電解スライムを溶解させ、該銅電解スライム中のベ
ースメタルの実質的な大部分をスラグ中に移行させると
ともに高鉛品位のスラグと高銀品位の貴鉛とを生成せし
め、次いで該スラグを固化、微粉砕し、金、銀、セレン
、テルルを精鉱として濃縮、回収するとともに該ベース
メタルをテイリングとし、該精鉱を上記銅電解スライム
溶解工程で再処理することを特徴とする銅電解スライム
の製錬法。
(2) In the smelting method of copper electrolytic slime, which removes copper from the copper electrolytic slime or further roasts it to remove selenium after decoppering and dissolves it by adding flux and a reducing agent, silica 1 to 4 of the flux consisting of a lime flux and a lime flux, and the copper electrolytic slime.
% of the carbonaceous material and heated to dissolve the copper electrolytic slime, transferring a substantial majority of the base metal in the copper electrolytic slime into the slag, and adding a high lead grade to the slag. Slag and noble lead with high silver grade are generated, and then the slag is solidified and finely pulverized, gold, silver, selenium, and tellurium are concentrated and recovered as concentrate, the base metal is used as tailing, and the concentrate is A method for smelting copper electrolytic slime, which is characterized in that it is reprocessed in the copper electrolytic slime melting process described above.
(3)前記シリカ質フラツクスは珪砂または珪石である
特許請求の範囲(1)または(2)に記載の方法。
(3) The method according to claim (1) or (2), wherein the siliceous flux is silica sand or silica stone.
(4)前記ライム質フラツクスは石灰石または生石灰で
ある特許請求の範囲(1)または(2)に記載の方法。
(4) The method according to claim (1) or (2), wherein the lime flux is limestone or quicklime.
(5)前記ベースメタルは鉛、アンチモンおよびビスマ
ス中の少なくとも一種である特許請求の範囲(1)また
は(2)に記載の方法。
(5) The method according to claim (1) or (2), wherein the base metal is at least one of lead, antimony, and bismuth.
(6)前記炭素質物質はコークスまたは石炭である特許
請求の範囲(1)または(2)に記載の方法。
(6) The method according to claim (1) or (2), wherein the carbonaceous material is coke or coal.
JP60014839A 1985-01-29 1985-01-29 Method for refining slime produced by electrolysis of copper Granted JPS61174341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014839A JPS61174341A (en) 1985-01-29 1985-01-29 Method for refining slime produced by electrolysis of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014839A JPS61174341A (en) 1985-01-29 1985-01-29 Method for refining slime produced by electrolysis of copper

Publications (2)

Publication Number Publication Date
JPS61174341A true JPS61174341A (en) 1986-08-06
JPS6348929B2 JPS6348929B2 (en) 1988-10-03

Family

ID=11872201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014839A Granted JPS61174341A (en) 1985-01-29 1985-01-29 Method for refining slime produced by electrolysis of copper

Country Status (1)

Country Link
JP (1) JPS61174341A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128451A (en) * 1991-10-30 1993-05-25 Mitsubishi Electric Corp Rotating head drum
WO2003074743A3 (en) * 2002-03-01 2007-10-18 Univ Mcgill Process for bismuth recovery from lead-bismuth dross
JP2008248304A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk METHOD FOR RECOVERING Sb AND Bi
CN102061395A (en) * 2010-12-10 2011-05-18 四会市鸿明贵金属有限公司 Smelting and separating method of noble lead
JP2018040021A (en) * 2016-09-05 2018-03-15 三菱マテリアル株式会社 Separation recovery method of tellurium
JP2019131838A (en) * 2018-01-29 2019-08-08 Jx金属株式会社 METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER
CN111363943A (en) * 2019-12-17 2020-07-03 湖北金洋冶金股份有限公司 Slag remover for secondary lead and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128451A (en) * 1991-10-30 1993-05-25 Mitsubishi Electric Corp Rotating head drum
WO2003074743A3 (en) * 2002-03-01 2007-10-18 Univ Mcgill Process for bismuth recovery from lead-bismuth dross
JP2008248304A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk METHOD FOR RECOVERING Sb AND Bi
CN102061395A (en) * 2010-12-10 2011-05-18 四会市鸿明贵金属有限公司 Smelting and separating method of noble lead
JP2018040021A (en) * 2016-09-05 2018-03-15 三菱マテリアル株式会社 Separation recovery method of tellurium
JP2019131838A (en) * 2018-01-29 2019-08-08 Jx金属株式会社 METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER
CN111363943A (en) * 2019-12-17 2020-07-03 湖北金洋冶金股份有限公司 Slag remover for secondary lead and application thereof

Also Published As

Publication number Publication date
JPS6348929B2 (en) 1988-10-03

Similar Documents

Publication Publication Date Title
CN106834707B (en) A kind of method that arsenic-containing material synthetical recovery and arsenic resource utilize
CN106756027A (en) A kind of method that Sb-Au ore and auriferous pyrite slag cooperate with melting concentration of valuable metals
JPS6056219B2 (en) Treatment of lead-copper-sulfur charges
CN106834720A (en) A kind of arsenic-containing smoke dust integrated treatment and the method for the solid arsenic mineral of regulation and control growth method synthesis
JPS61174341A (en) Method for refining slime produced by electrolysis of copper
CN106834709B (en) The method that a kind of comprehensive utilization of arsenic-containing smoke dust and precipitation transformation method synthesize solid arsenic mineral
EP0839919B1 (en) Process for treating of flue dusts from electric steelworks
CA1086073A (en) Electric smelting of lead sulphate residues
JPS61221338A (en) Metallurgical method
JPH01234A (en) Process for processing lead sulfide or lead sulfide-zinc ores and/or concentrates
JPS60187635A (en) Collection of metal valuables from substances containing tin and zinc
CN112143908B (en) Smelting process for treating complex gold ore
US4333762A (en) Low temperature, non-SO2 polluting, kettle process for the separation of antimony values from material containing sulfo-antimony compounds of copper
US11879164B2 (en) Method for the recovery of platinum group metals from catalysts comprising silicon carbide
CN106498186B (en) A kind of method that bismuth sulfide material reduction sulphur fixing roast directly produces bismuth metal
CN115747481B (en) A method for preparing crude silver from lead anode mud
US2639220A (en) Method of making copper sulfate
KR910005056B1 (en) Method for refining of au. ag
CN109266844B (en) Method for extracting copper from pyrite cinder in rotary kiln
RU2789641C1 (en) Antimony gold cathode sludge processing method
RU2110594C1 (en) Method of recovering precious metals from intermediate products
RU2654407C1 (en) Method for processing sulfide concentrates containing noble metals
CN109022811B (en) Method for extracting lead from pyrite cinder in rotary kiln
KR100679632B1 (en) Extraction of valuable metals from byproducts of antimony trioxide
RU2240367C1 (en) Method of recovering precious metals from gravitation concentrates

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term