JPS6117322B2 - - Google Patents
Info
- Publication number
- JPS6117322B2 JPS6117322B2 JP56190201A JP19020181A JPS6117322B2 JP S6117322 B2 JPS6117322 B2 JP S6117322B2 JP 56190201 A JP56190201 A JP 56190201A JP 19020181 A JP19020181 A JP 19020181A JP S6117322 B2 JPS6117322 B2 JP S6117322B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- tio
- oxides
- barium
- samarium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は結晶粒径がきわめて微細でかつ寿命の
長い誘電体磁器組成物に関する。
従来高誘電率誘電体磁器組成物として、チタン
酸バリウムにシフターとしてチタン酸ストロンチ
ウム、錫酸バリウム、錫酸カルシウム、ジルコン
酸バリウム等を添加し、そのキユーリー点を室温
付近に移動させ用いている。しかしながら、その
結晶粒径は5μm以上で大きく、積層コンデンサ
などのように電界強度の大きい製品には不適当で
ある。すなわち、結晶粒径が大きい場合には結晶
粒子1個あたりにかかる電界強度は大きくなり、
そのため破壊電圧は低くなり、粒界に集まるボイ
ドの欠陥も増加し、寿命も短くなり、従つて信頼
性が低下するという欠点があつた。
本発明者らは上記の従来の組成物の欠点を解決
し、結晶粒径が5μm未満のきわめて微細で寿命
の長い誘電体磁器組成物を提供すべく検討した結
果、前記シフターに代えてチタン酸バリウムに酸
化サマリウムを添加すると、得られた誘電体磁器
組成物の結晶粒子が微細化することを見出し、本
発明に到達した。すなわち、本発明の基本的な要
旨とするところは、BaO39.0〜53.3mol%と
Sm2O31.0〜1.7mol%とTiO245.0〜60.0mol%とか
らなることを特徴とする誘電体磁器組成物、にあ
る。
本発明はさらに、上記BaO39.0〜53.3mol%、
Sm2O31.0〜1.7mol%、TiO245.0〜60.0mol%から
なる基本的な構成にCaO1.0〜10.0mol%を加えた
構成とすることができる。
本発明の組成物は上記構成によつて、実施例に
示すように、結晶粒径はきわめて微細であるの
で、積層コンデンサなどのように電界強度の大き
い製品には最適である。すなわち、結晶粒径が微
細であるので結晶粒子1個あたりにかかる電界強
度が小さくなり、それによつて破壊電圧が高くな
り、寿命はのびて信頼性が向上する。また、本発
明の組成物は誘電率が高くかつ誘電正接が低く、
十分実用的であることは実施例が示す通りであ
る。
このように、本発明の組成物の結晶粒径が微細
であるのは、上記組成となるように配合された原
料配合物を焼成する際に液相を生じ、それによつ
て焼結温度を低くし、結晶の過度の成長を抑制す
るためである。
本発明の組成物の組成において、酸化サマリウ
ムの量が1.0mol%未満であると、誘電正接が高く
なり、1.7mol%を越えると、キユーリー点が移動
しすぎて実用性に乏しくなる。酸化チタンの量が
45.0mol%未満では焼結困難となり、60.0mol%を
越えると巨大結晶が発生し、素地溶着が起こる。
酸化バリウムの量が39.0mol%未満では巨大結晶
が発生し、素地溶着が起こり、53.3mol%を越え
ると焼結困難となる。また、酸化カルシウムは磁
器化を促進するとともにシフターとしての効果も
有するもので、もろ量が1.0mol%未満では添加効
果なく、10.0mol%を越えると、結晶粒径が大き
くなる。
本発明はさらに、上記バリウム、サマリウムお
よびチタンの酸化物、またはバリウム、サマリウ
ム、チタンおよびカルシウムの酸化物よりなる主
成分に対し、マンガン、クロム、鉄、ニツケルお
よびコバルトの酸化物からなる群の中から選ばれ
た少くとも1種を、それぞれMnO2、Cr2O3、
FeO、NiOおよびCoOに換算して該主成分の0.05
〜0.6重量%添加せしめた構成とすることができ
る。これら添加剤は磁器の焼結性の向上および誘
電正接の改善の効果を有するものであり、その添
加量が0.05重量%未満では添加効果なく、0.6重
量%を越えると誘電率が低下する。
本発明の組成物は、例えば、焼結後に本発明の
組成物の組成になるように秤取された原料配合物
をボールミルで湿式混合・粉砕し、得られた混
合・粉砕物を脱水・乾燥後、所定の形状に加圧成
形して焼成することにより得ることができる。こ
の場合、原料として使用するバリウム化合物は
BaCO3、BaC2O4、サマリウム化合物はSm2O3、
Sm2(C2O4)3、チタン化合物はTiO2、Ti
(C2O4)2、カルシウム化合物はCaCO3、CaOが好
適であり、かつ添加剤の原料としてはMnCO3、
MnO2、Cr2O3、CrO3、FeO、Fe2O3、NiO、
NiO2、CoO、Co2O3が好適である。
次に、本発明を実施例によつてさらに具体的に
説明するが、本発明はその要旨を越えない限り以
下の実施例に限定されるものではない。
実施例 1
原料としてそれぞれ試薬1級のBaCO3、Sm2O3
およびTiO2を、焼成後に第1表に示す主成分配
合比になるように秤取し、ボールミル中で20時間
湿式混合・粉砕し、脱水・乾燥後、成形圧力
3ton/cm2で直径16mm厚さ0.6mmの円板に加圧成形
し、この成形物を第1表に示す焼成温度1320〜
1390℃で1時間焼成し試料番号1〜5を得た。
これら試料の結晶粒径は光学顕微鏡により倍率
400で観察し、誘電率および誘電正接は試料の両
面に銀電極を焼き付け、YHPデジタルXCRメー
タモデル4274Aを使用し、測定温度25℃、測定電
圧1.0Vrms、測定周波数1.0KHzによる測定により
求めた。
これら物性の測定結果を第1表に示す。
The present invention relates to a dielectric ceramic composition having extremely fine grain size and long life. Conventionally, high dielectric constant dielectric ceramic compositions have been used by adding strontium titanate, barium stannate, calcium stannate, barium zirconate, etc. as shifters to barium titanate to shift its Curie point to around room temperature. However, its crystal grain size is large at 5 μm or more, making it unsuitable for products with large electric field strengths such as multilayer capacitors. In other words, when the crystal grain size is large, the electric field strength applied to each crystal grain becomes large,
As a result, the breakdown voltage is low, the number of void defects that gather at grain boundaries is increased, the life is shortened, and the reliability is lowered. The present inventors have studied to solve the drawbacks of the conventional compositions described above and provide a dielectric ceramic composition that is extremely fine with a crystal grain size of less than 5 μm and has a long lifespan. The inventors have discovered that when samarium oxide is added to barium, the crystal grains of the resulting dielectric ceramic composition become finer, and the present invention has been achieved. That is, the basic gist of the present invention is that BaO39.0-53.3mol%
A dielectric ceramic composition comprising 1.0 to 1.7 mol% of Sm 2 O 3 and 45.0 to 60.0 mol% of TiO 2 . The present invention further provides the above BaO39.0 to 53.3 mol%,
It can be configured by adding 1.0 to 10.0 mol% of CaO to the basic composition of 1.0 to 1.7 mol% of Sm 2 O 3 and 45.0 to 60.0 mol% of TiO 2 . Due to the above-mentioned structure, the composition of the present invention has an extremely fine crystal grain size, as shown in the examples, and is therefore optimal for products with large electric field strengths such as multilayer capacitors. That is, since the crystal grain size is fine, the electric field strength applied to each crystal grain is reduced, thereby increasing the breakdown voltage, extending the life, and improving reliability. Further, the composition of the present invention has a high dielectric constant and a low dielectric loss tangent,
As the examples show, it is sufficiently practical. As described above, the reason why the crystal grain size of the composition of the present invention is fine is that a liquid phase is generated when the raw material mixture blended to have the above composition is fired, thereby lowering the sintering temperature. This is to suppress excessive growth of crystals. In the composition of the composition of the present invention, if the amount of samarium oxide is less than 1.0 mol%, the dielectric loss tangent will be high, and if it exceeds 1.7 mol%, the Curie point will shift too much, making it impractical. The amount of titanium oxide
If it is less than 45.0 mol%, sintering becomes difficult, and if it exceeds 60.0 mol%, giant crystals will occur and welding to the substrate will occur.
When the amount of barium oxide is less than 39.0 mol%, giant crystals are generated and welding to the base material occurs, and when it exceeds 53.3 mol%, sintering becomes difficult. In addition, calcium oxide promotes porcelain formation and also has the effect of a shifter. If the amount is less than 1.0 mol%, there is no effect of addition, and if it exceeds 10.0 mol%, the crystal grain size increases. The present invention further provides that the main components consisting of oxides of barium, samarium and titanium or oxides of barium, samarium, titanium and calcium are selected from among the group consisting of oxides of manganese, chromium, iron, nickel and cobalt. At least one selected from MnO 2 , Cr 2 O 3 ,
0.05 of the main components in terms of FeO, NiO and CoO
It is possible to have a structure in which 0.6% by weight is added. These additives have the effect of improving the sinterability and dielectric loss tangent of porcelain, and if the amount added is less than 0.05% by weight, there is no effect, and if it exceeds 0.6% by weight, the dielectric constant decreases. The composition of the present invention can be produced by, for example, wet-mixing and pulverizing a weighed raw material mixture in a ball mill so that it has the composition of the composition of the present invention after sintering, and dehydrating and drying the resulting mixed and pulverized product. Thereafter, it can be obtained by pressure molding into a predetermined shape and firing. In this case, the barium compound used as a raw material is
BaCO 3 , BaC 2 O 4 , samarium compound Sm 2 O 3 ,
Sm 2 (C 2 O 4 ) 3 , titanium compounds are TiO 2 , Ti
(C 2 O 4 ) 2 , calcium compounds are preferably CaCO 3 and CaO, and raw materials for additives include MnCO 3 ,
MnO2 , Cr2O3 , CrO3 , FeO, Fe2O3 , NiO ,
NiO 2 , CoO and Co 2 O 3 are preferred. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 BaCO 3 and Sm 2 O 3 , each of grade 1 reagent, were used as raw materials.
After firing, the TiO 2 and TiO 2 were weighed so that the main component composition ratio shown in Table 1 was obtained, wet mixed and crushed in a ball mill for 20 hours, dehydrated and dried, and the molding pressure
Pressure molded at 3 ton/cm 2 into a disc with a diameter of 16 mm and a thickness of 0.6 mm, and the molded product was fired at a temperature of 1320 to 1320 as shown in Table 1.
After baking at 1390°C for 1 hour, samples Nos. 1 to 5 were obtained. The grain size of these samples was determined using an optical microscope.
400, and the dielectric constant and dielectric loss tangent were determined by baking silver electrodes on both sides of the sample and using YHP digital XCR meter model 4274A at a measurement temperature of 25°C, a measurement voltage of 1.0Vrms, and a measurement frequency of 1.0KHz. The measurement results of these physical properties are shown in Table 1.
【表】
得られた試料はいずれも第1表が示すように、
結晶粒径3.0μm以下で、かつ実用的な誘電率お
よび誘電正接を有する誘電体磁器組成物であり、
積層コンデンサのごとき電界強度の大きい製品に
は最適なものである。
実施例 2
原料として試薬1級のBaC2O4、Sm2
(C2O4)3、Ti(C2O4)2およびCaCO3を、焼成後に
第2表に示す主成分配合比になるように秤取し、
実施例1と同様に処理して試料番号6〜8を得
た。
これらの試料の結晶粒径、誘電率および誘電正
接の測定方法は実施例1の場合と同一であり、そ
の測定結果を第2表に示す。[Table] As shown in Table 1, all the samples obtained were as follows:
A dielectric ceramic composition having a crystal grain size of 3.0 μm or less and a practical dielectric constant and dielectric loss tangent,
It is ideal for products with large electric field strengths such as multilayer capacitors. Example 2 First grade reagent BaC 2 O 4 and Sm 2 as raw materials
(C 2 O 4 ) 3 , Ti(C 2 O 4 ) 2 and CaCO 3 were weighed out so as to have the main component composition ratio shown in Table 2 after firing,
Sample numbers 6 to 8 were obtained by processing in the same manner as in Example 1. The methods for measuring the crystal grain size, dielectric constant, and dielectric loss tangent of these samples were the same as in Example 1, and the measurement results are shown in Table 2.
【表】
第2表が示すように、酸化カルシウムの添加に
より焼成温度を低下させることができた。
実施例 3
原料としてそれぞれ試薬1級のBaCO3、
Sm2O3、およびTiO2を用い、これに添加剤マン
ガン、クロム、鉄、ニツケルおよびコバルトの酸
化物の原料としてそれぞれ試薬1級のMnCO3、
Cr2O3、FeO、NiOおよびCoOを添加したほかは
実施例1の場合と同様に処理して試料番号9〜15
を得た。
これらの試料の結晶粒径、誘電率および誘電正
接の測定方法は実施例1の場合と同一であり、そ
の測定結果を第3表に示す。[Table] As shown in Table 2, the addition of calcium oxide made it possible to lower the firing temperature. Example 3 Reagent grade 1 BaCO 3 as raw materials,
Sm 2 O 3 and TiO 2 are used, and MnCO 3 , which is a first-class reagent, is used as a raw material for the additives manganese, chromium, iron, nickel, and cobalt, respectively.
Samples Nos. 9 to 15 were prepared in the same manner as in Example 1 except that Cr 2 O 3 , FeO, NiO, and CoO were added.
I got it. The methods for measuring the crystal grain size, dielectric constant, and dielectric loss tangent of these samples were the same as in Example 1, and the measurement results are shown in Table 3.
【表】【table】
【表】
第3表が示すように、マンガン、クロム、鉄、
ニツケルおよびコバルトの酸化物の添加により、
焼成温度および誘電正接を低下させることができ
た。
実施例 4
酸化カルシウムの原料としてCaCO3に替えて
CaOを用い、また添加剤のマンガン、クロム、
鉄、ニツケルおよびコバルトの酸化物の原料とし
て、それぞれ試薬1級のMnO2、CrO3、Fe2O3、
NiO2およびCo2O3を添加したほかは実施例2の場
合と同様に処理して試料番号16〜22を得た。これ
らの試料の結晶粒径、誘電率および誘電正接の測
定方法は実施例1の場合と同一であり、その測定
結果を4表に示す。
第4表が示すように、マンガン、クロム、鉄、
ニツケルおよびコバルトの酸化物を添加すること
により、焼成温度および誘電正接を低下させるこ
とができる。[Table] As shown in Table 3, manganese, chromium, iron,
With the addition of nickel and cobalt oxides,
It was possible to lower the firing temperature and dielectric loss tangent. Example 4 Substituting CaCO 3 as raw material for calcium oxide
Using CaO, the additives manganese, chromium,
As raw materials for iron, nickel, and cobalt oxides, primary reagents MnO 2 , CrO 3 , Fe 2 O 3 ,
Samples Nos. 16 to 22 were obtained in the same manner as in Example 2 except that NiO 2 and Co 2 O 3 were added. The methods for measuring the crystal grain size, dielectric constant, and dielectric loss tangent of these samples were the same as in Example 1, and the measurement results are shown in Table 4. As Table 4 shows, manganese, chromium, iron,
By adding nickel and cobalt oxides, the firing temperature and dielectric loss tangent can be lowered.
Claims (1)
をそれぞれBaO、Sm2O3およびTiO2に換算し
て、BaO39.0乃至53.3mol%とSm2O31.0乃至
1.7mol%とTiO245.0乃至60.0mol%とからなるこ
とを特徴とする誘電体磁器組成物。 2 バリウム、サマリウム、チタンおよびカルシ
ウムの酸化物をそれぞれBaO、Sm2O3、TiO2お
よびCaOに換算して、BaO39.0乃至53.3mol%と
Sm2O31.0乃至1.7mol%とTiO245.0乃至60.0mol%
とCaO1.0乃至10.0mol%とからなることを特徴と
する誘電体磁器組成物。 3 バリウム、サマリウムおよびチタンの酸化物
をそれぞれBaO、Sm2O3およびTiO2に換算し
て、BaO39.0乃至53.3mol%とSm2O31.0乃至
1.7mol%とTiO245.0乃至60.0mol%とからなる主
成分に、マンガン、クロム、鉄、ニツケルおよび
コバルトの酸化物からなる群の中から選ばれた少
くとも1種を、それぞれMnO2、Cr2O3、FeO、
NiOおよびCoOに換算して、該主成分の0.05乃至
0.6重量%添加してなることを特徴とする誘電体
磁器組成物。 4 バリウム、サマリウム、チタンおよびカルシ
ウムの酸化物をそれぞれBaO、Sm2O3、TiO2お
よびCaOに換算して、BaO39.0乃至53.3mol%と
Sm2O31.0乃至1.7mol%とTiO245.0乃至60.0mol%
とCaO1.0乃至10.0mol%とからなる主成分に、マ
ンガン、クロム、鉄、ニツケルおよびコバルトの
酸化物からなる群の中から選ばれた少くとも1種
を、それぞれMnO2、Cr2O3、FeO、NiOおよび
CoOに換算して、該主成分の0.05乃至0.6重量%
添加してなることを特徴とする誘電体磁器組成
物。[Claims] 1. Barium, samarium, and titanium oxides are converted into BaO, Sm 2 O 3 and TiO 2, respectively, and BaO39.0 to 53.3 mol% and Sm 2 O 3 1.0 to 53.3 mol%.
A dielectric ceramic composition comprising 1.7 mol% of TiO 2 and 45.0 to 60.0 mol% of TiO 2 . 2 The oxides of barium, samarium, titanium and calcium are converted into BaO, Sm 2 O 3 , TiO 2 and CaO, respectively, and are calculated as BaO39.0 to 53.3 mol%.
Sm 2 O 3 1.0 to 1.7 mol% and TiO 2 45.0 to 60.0 mol%
and 1.0 to 10.0 mol% of CaO. 3 Barium, samarium, and titanium oxides are converted into BaO, Sm 2 O 3 and TiO 2 respectively, and BaO is 39.0 to 53.3 mol% and Sm 2 O 3 is 1.0 to 53.3 mol%.
The main components are 1.7 mol% of TiO 2 and 45.0 to 60.0 mol% of TiO 2 , and at least one selected from the group consisting of oxides of manganese, chromium, iron, nickel and cobalt, respectively. 2O3 , FeO,
0.05 to 0.05 of the main component in terms of NiO and CoO
A dielectric ceramic composition characterized by adding 0.6% by weight. 4 Barium, samarium, titanium, and calcium oxides are converted into BaO, Sm 2 O 3 , TiO 2 and CaO, respectively, and are calculated as BaO39.0 to 53.3 mol%.
Sm 2 O 3 1.0 to 1.7 mol% and TiO 2 45.0 to 60.0 mol%
and 1.0 to 10.0 mol% of CaO, and at least one selected from the group consisting of oxides of manganese, chromium, iron, nickel and cobalt, respectively, and MnO 2 and Cr 2 O 3 . , FeO, NiO and
0.05 to 0.6% by weight of the main component in terms of CoO
A dielectric ceramic composition characterized in that it is made by adding an additive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56190201A JPS5893103A (en) | 1981-11-27 | 1981-11-27 | Dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56190201A JPS5893103A (en) | 1981-11-27 | 1981-11-27 | Dielectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5893103A JPS5893103A (en) | 1983-06-02 |
JPS6117322B2 true JPS6117322B2 (en) | 1986-05-07 |
Family
ID=16254130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56190201A Granted JPS5893103A (en) | 1981-11-27 | 1981-11-27 | Dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5893103A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361319U (en) * | 1986-10-11 | 1988-04-23 | ||
JPS63100312U (en) * | 1986-12-22 | 1988-06-29 | ||
JPS6456311U (en) * | 1987-10-03 | 1989-04-07 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625509A (en) * | 1985-06-29 | 1987-01-12 | 太陽誘電株式会社 | Dielectric ceramic composition |
-
1981
- 1981-11-27 JP JP56190201A patent/JPS5893103A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361319U (en) * | 1986-10-11 | 1988-04-23 | ||
JPS63100312U (en) * | 1986-12-22 | 1988-06-29 | ||
JPS6456311U (en) * | 1987-10-03 | 1989-04-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS5893103A (en) | 1983-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4626396A (en) | Method of manufacturing low temperature sintered ceramic materials for use in solid dielectric capacitors of the like | |
US4610968A (en) | Low temperature sintered ceramic material for use in solid dielectric capacitors or the like, and method of manufacture | |
JPH08109064A (en) | Dielectric ceramic composition for microwave | |
US4716134A (en) | Dielectric ceramic composition | |
JPH0283256A (en) | Dielectric material porcelain composition | |
JPS58106702A (en) | Dielectric porcelain composition | |
JPS6117322B2 (en) | ||
JPS63103861A (en) | Non-reductive dielectric ceramic composition | |
JPS597665B2 (en) | High dielectric constant porcelain composition | |
US5254278A (en) | Lead titanate based piezoelectric ceramic material | |
JPH06338221A (en) | Dielectric ceramic composition for high frequency | |
JP2621478B2 (en) | High dielectric constant porcelain composition | |
JPS6217806B2 (en) | ||
KR0165557B1 (en) | Ceramic composition | |
JP2615636B2 (en) | Dielectric porcelain composition | |
JP2568565B2 (en) | Dielectric porcelain composition | |
JPS63182255A (en) | piezoelectric ceramic composition | |
JPH01315904A (en) | Dielectric porcelain and manufacture thereof | |
JPH05298922A (en) | Dielectric ceramic for microwave | |
JP2568566B2 (en) | Dielectric porcelain composition | |
JPS6019606B2 (en) | dielectric porcelain composition | |
JPH05279110A (en) | Ceramic composition | |
JPS6137218B2 (en) | ||
JPS62297260A (en) | High permittivity ceramic composition | |
JPS63193401A (en) | Dielectric ceramic composition |