JPS61169838A - Reversible organic optical memory material and its production - Google Patents
Reversible organic optical memory material and its productionInfo
- Publication number
- JPS61169838A JPS61169838A JP60010401A JP1040185A JPS61169838A JP S61169838 A JPS61169838 A JP S61169838A JP 60010401 A JP60010401 A JP 60010401A JP 1040185 A JP1040185 A JP 1040185A JP S61169838 A JPS61169838 A JP S61169838A
- Authority
- JP
- Japan
- Prior art keywords
- anthracene
- clathrate compound
- compound
- reversible
- cyclodextrin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002441 reversible effect Effects 0.000 title claims abstract description 27
- 239000000463 material Substances 0.000 title claims abstract description 26
- 230000015654 memory Effects 0.000 title claims abstract description 21
- 230000003287 optical effect Effects 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229920005989 resin Polymers 0.000 claims abstract description 48
- 239000011347 resin Substances 0.000 claims abstract description 48
- 150000001875 compounds Chemical class 0.000 claims abstract description 47
- 239000000539 dimer Substances 0.000 claims abstract description 36
- 229920000858 Cyclodextrin Polymers 0.000 claims abstract description 19
- 239000011230 binding agent Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 claims abstract description 8
- 229940080345 gamma-cyclodextrin Drugs 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 claims abstract description 8
- 239000012736 aqueous medium Substances 0.000 claims abstract description 7
- 150000001454 anthracenes Chemical class 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 26
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 abstract description 24
- 238000011907 photodimerization Methods 0.000 abstract description 6
- 230000004044 response Effects 0.000 abstract description 5
- 239000000178 monomer Substances 0.000 description 30
- 239000000243 solution Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000003860 storage Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- -1 potassium 2-anthracene sulfonate Chemical compound 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000007539 photo-oxidation reaction Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- RZRJYURCNBXIST-UHFFFAOYSA-N 2-anthroic acid Chemical compound C1=CC=CC2=CC3=CC(C(=O)O)=CC=C3C=C21 RZRJYURCNBXIST-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- YCSBALJAGZKWFF-UHFFFAOYSA-N anthracen-2-amine Chemical compound C1=CC=CC2=CC3=CC(N)=CC=C3C=C21 YCSBALJAGZKWFF-UHFFFAOYSA-N 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- IPQGOTUZADECCY-UHFFFAOYSA-N anthracene-2-sulfonic acid Chemical compound C1=CC=CC2=CC3=CC(S(=O)(=O)O)=CC=C3C=C21 IPQGOTUZADECCY-UHFFFAOYSA-N 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical class OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2531—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/254—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
Landscapes
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は可逆的有機光メモリー材料及びその製造方法に
関するものである。さらに詳しくいえば、本発明け、ホ
トクロミック比合物として可逆的光二量化反応によるホ
トクロミズムを示す、アントラセン騨導体とr−シクロ
デキストリンとの包接化合物を用いた1元情報の誉き込
み、読み出し及び消去の繰り返しが可能な可逆的光応答
性を示す有s元メモリー材料、及びこのもの全効率よく
製造する方法に関するものでめる。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a reversible organic photomemory material and a method for producing the same. More specifically, the present invention incorporates one-element information using an inclusion compound of an anthracene anchor conductor and r-cyclodextrin, which exhibits photochromism due to a reversible photodimerization reaction as a photochromic compound. The present invention relates to an organic memory material exhibiting reversible photoresponsiveness that allows repeated reading and erasing, and a method for manufacturing the same with full efficiency.
従来の技術
ホトクロミック!?肩する有機化合物については、これ
まで植々研究されておシ、またこれ管用いた元メモリー
材料も数多く提案されている(%開昭56−14948
9号公報、特開昭58−37078号公報)oしかしな
がら、有機ホトクロミック化合物は反応速度が遅い、繰
シ返し再現性や記録の保存安定性に欠けるなどの多くの
問題がめるため。Conventional technology photochromic! ? Many organic compounds have been studied so far, and many memory materials using them have also been proposed (1986-14948).
(No. 9, Japanese Unexamined Patent Publication No. 58-37078) However, organic photochromic compounds have many problems such as slow reaction rate, lack of repeatability and storage stability of records.
これを用いた元メモリー材料Fitだ実用化されていな
い。The original memory material using this material, Fit, has not been put to practical use.
ところで、近年、可逆的光二量化反応に基づくホトクロ
ミズムは、特に記録保存性に優れたメモリーへの応用が
可能として注目されており([Appl、 Opt、
J第11巻、533ページ、1972年)。By the way, in recent years, photochromism based on a reversible photodimerization reaction has been attracting attention as it can be applied to memories with particularly excellent storage stability ([Appl, Opt.
J Vol. 11, p. 533, 1972).
その実用化のために1例えば2分子の直線縮合環芳香族
1ヒ合物をシクロファン型の共有結合で連結して1反応
速度を高めたものが提案されている(「テトラヘドロン
・レターズ(TstrahedronLetts、 )
J 、 IN 23巻、197ページ、1982年)
。In order to put it into practical use, it has been proposed that, for example, two molecules of a linearly condensed ring aromatic compound are linked with a cyclophane-type covalent bond to increase the reaction rate (``Tetrahedron Letters''). Tstrahedron Letts, )
J, IN vol. 23, p. 197, 1982)
.
しか1.なから、このようなシクロファン型の化合物は
、一般に、生成二量体の環のひずみのためK。Only 1. Therefore, such cyclophane-type compounds generally have K due to distortion of the ring of the formed dimer.
逆反応で開環重合を起しやすく、またこのひずみを緩和
した分子設計では逆反応速度が遅くなるなどの欠点ft
有するために、実用的にはまだ満足しうるものとはいえ
ない。Disadvantages such as ring-opening polymerization easily occurring in reverse reaction, and molecular design that relaxes this strain slows down the reverse reaction rateft
Therefore, it cannot be said to be practically satisfactory.
発明が解決しようとする問題点
本発明の目的は、このような事情のもとで1元応答速度
、繰り返し貴男性、記録の保存安定性が極めて優れ、実
用上容易に利用しうる有機光メモリー材料管提供するこ
とにある。Problems to be Solved by the Invention Under these circumstances, the purpose of the present invention is to provide an organic optical memory which has extremely excellent one-dimensional response speed, repeatability, and storage stability, and which can be easily used in practice. The material is to provide pipes.
問題点を解決するための手段
本発明者らは、先に、水溶液中においてr−シクロデキ
ストリンがアントラセン銹導体の光二量化反応を著しく
促進する効果をもつことを見出し2−アントラセンスル
ホン酸カリウム壇とr−シクロデキストリンは、率に水
に混合溶解するのみで、ゲスト:ホス)−2:1の安定
な包接化合物を形成し、この溶液に適当な波長の単色光
を照射することによって、ジアントラセン型の可逆的三
量化反応が極めて効率よく生じ、それに伴う可逆的なホ
トクロミズムが観測されている。Means for Solving the Problems The present inventors have previously found that r-cyclodextrin has the effect of significantly promoting the photodimerization reaction of anthracene conductor in an aqueous solution, and has developed a combination of potassium 2-anthracene sulfonate and potassium 2-anthracene sulfonate. r-Cyclodextrin forms a stable clathrate compound with a guest:phos) ratio of 2:1 by simply mixing and dissolving it in water, and by irradiating this solution with monochromatic light of an appropriate wavelength, Anthracene-type reversible trimerization reactions occur extremely efficiently, and associated reversible photochromism has been observed.
本発明者らは、このようなアントラセン酵導体とr−シ
クロデキストリンとの包接化合物がもつ性質に着目し、
さらに研究を進め九結来、この包接化合物は、バインダ
ー樹脂中に分散させることKよっても、水溶液中と全く
同様に返応速度の速い可逆的ホトクロミズムを実現しう
ろこと、及び該包接化合物は、r−シクロテキストリン
のもつ酸素に対する優れた防謹効果によって、致命的な
光酸化反応が防止されるため、ホトクロミズムの繰シ返
し安定性及び材料の保存安定性の向上も併せもつこと、
したがって、このような性質をもつ該包接化合物管バイ
ンダー樹脂中に分散させることによシ、前記目的を達成
しうろことを見出し。The present inventors focused on the properties of such an inclusion compound of anthracene fermentation conductor and r-cyclodextrin, and
Further research has shown that even by dispersing this clathrate compound in a binder resin, it can achieve reversible photochromism with a fast response rate just like in an aqueous solution, and that the clathrate compound The compound prevents fatal photo-oxidation reactions due to r-cyclotextrin's excellent protective effect against oxygen, which also improves the cyclic stability of photochromism and the storage stability of the material. thing,
Therefore, it has been found that the above object can be achieved by dispersing the clathrate compound having such properties in a pipe binder resin.
この知見に基づいて本発明を完成するに至った。Based on this knowledge, we have completed the present invention.
すなわち5本発明は、一般式
(式中のRi親水性置換基である)
で示されるアントラセン窮導体とr−シクロテキストリ
ンとの包接化合物をバインダー樹脂中に分散させて成る
可逆的有機光メモリー材料、及び前記一般式(11で示
されるアントラセンvj尋体とγ−シクロテキストリン
とを水性媒体中に溶解して。That is, 5 the present invention provides a reversible organic light comprising a clathrate compound of an anthracene impurant and r-cyclotextrin represented by the general formula (in which Ri is a hydrophilic substituent) dispersed in a binder resin. A memory material, anthracene represented by the general formula (11) and γ-cyclotextrin are dissolved in an aqueous medium.
これらの包接fヒ合物を形成させたのち、これに元を照
射して該包接化合物中のアントラセン誘導体を二量体し
1次いでこの溶液にバインダー樹脂を溶解させたのち、
このものt製膜し、所望ならば。After forming these clathrate compounds, this is irradiated with a source to dimerize the anthracene derivative in the clathrate compounds, and then a binder resin is dissolved in this solution.
This can be coated if desired.
さらにこの樹脂膜に元を照射するか、又は咳樹脂膜を加
熱することにより、樹脂膜中に分散する該包接化合物中
のアントラセン誘導体の二量体を解重合させることKよ
って、前記の可逆的有機光メモリー材料ヲ製造する方法
を提供するものでらる@本発明において用いるアントラ
セン誘導体は。Further, by irradiating this resin film with a source or heating the cough resin film, the dimer of the anthracene derivative in the clathrate compound dispersed in the resin film is depolymerized. The anthracene derivative used in the present invention provides a method for producing organic optical memory materials.
前記−録式(1)で示される親水性置換基を有するもの
であり、この置換基とじ又は、例えばスルホン酸基又は
その堰、カルボキシル基又はその場、アミン基などを挙
けることができるし、また該アントラセン誘導体の具体
例としては、2−アントラセンスルホン酸又はその場、
2−アントラセンカルボン酸又はその塩、2−アミノア
ントラセンなどを挙けることができる。It has a hydrophilic substituent represented by the above-mentioned formula (1), and examples of this substituent include a sulfonic acid group or its weir, a carboxyl group or its in situ, an amine group, etc. , and specific examples of the anthracene derivatives include 2-anthracene sulfonic acid or in situ,
Examples include 2-anthracenecarboxylic acid or a salt thereof, 2-aminoanthracene, and the like.
これらのアントラセン誘導体は水に溶解しやす(、また
1元照射によってr 4+4 ]壊化性加体である二量
体を形成し、この二量体は短仮長元の照射又は加熱によ
り元の単量体に復元する性質を有している。さらに、該
アントラセン誘導体は。These anthracene derivatives are easily soluble in water (and upon single-element irradiation, they form dimers that are degradable adducts (r 4+4 ), and this dimer can be converted to the original form by irradiation or heating of short pseudomorphic elements. The anthracene derivative has the property of being restored to a monomer.
水性溶液中において、r−シクロテキストリンに接する
と、その置換基を水相に残した1Lアントラセン核部分
が該シクロデキストリンの空洞内に入り込んで安定な包
接化合物を形成する。この包接化合物の安定性は、1位
置換体よりも、本発明で用いる2位鮒換体の万がはるか
に大きく、他方、9位置換体は、置換基による立体障害
が大きくて、シクロデキストリンに包接されない。When in contact with r-cyclotextrin in an aqueous solution, the 1L anthracene core moiety, leaving its substituents in the aqueous phase, enters the cavity of the cyclodextrin to form a stable clathrate. The stability of the clathrate compound used in the present invention is much greater than that of the clathrate substituted at the 1-position.On the other hand, the 9-position compound has greater steric hindrance due to the substituent, and is therefore encapsulated in cyclodextrin. Not touched.
本発明においては、前記アントラセン誘導体と包接化合
物を形成するシクロテキストリンとして。In the present invention, as cyclotextrin that forms an inclusion compound with the anthracene derivative.
r型のものが用いられる。このγ−シクロテキストリン
は、水性媒体中に前記のアントラセン誘導体とともに混
合溶解するだけで、ただちに、ゲスト:ホスト−2:
1の包接化合物を形成する。他方、α及びβ−シクロデ
キストリンは、いずれも9洞半径が小さいため、このよ
うな包接能力を有さない。An r type is used. By simply mixing and dissolving this γ-cyclotextrin together with the anthracene derivative in an aqueous medium, the guest: host-2:
Forms a clathrate compound of 1. On the other hand, α- and β-cyclodextrins do not have such an inclusion ability because they both have a small nine-antrum radius.
このr−シクロテキストリンと前記アントラセン誘導体
の包接化合物を含む水性溶液に元を照射することによっ
て、該アントラセン94体の〔4+4〕壌化付加体であ
る二量体が惨めて効率よく生成する。この際の党二景化
反応の速度は、該シクロデキストリンが存在しない場合
の約10倍径度速い。これは、シクロデキストリン1分
子の空洞内に包接された2分子のアントラセン94体の
芳香積面が壌比付加反応金起こすのに都合の良いサンド
イッチ状に重なった立体配置11.′?−とるためと考
えられる。By irradiating an aqueous solution containing the clathrate compound of r-cyclotextrin and the anthracene derivative, a dimer, which is a [4+4] amylated adduct of the anthracene 94, is produced with poor efficiency. . The rate of reaction at this time is about 10 times faster than when the cyclodextrin is not present. This is a steric configuration in which the aromatic surfaces of 94 anthracene molecules, which are clathrated within the cavity of one molecule of cyclodextrin, overlap in a sandwich shape that is convenient for the addition reaction to occur. ′? -It is thought to be for taking.
このような光照射により生成したアントラセン誘導体の
二を体も、r−シクロデキストリンと安定な包接化合物
を形成し、この二量体はγ−シクロデキストリンに包接
されたまま、短改長元照射によって元の単量体にゆ元す
る。The dimeric anthracene derivative produced by such light irradiation also forms a stable inclusion compound with r-cyclodextrin, and this dimer remains clathrated with γ-cyclodextrin and is converted into a short modified compound. The original monomer is decomposed by irradiation.
注目すべきことは、このよりなr−シクロテキストリン
の空洞内におけるアントラセン誘導体の高効率元二童比
反応及び逆反応が、41g脂マトリックス中でも、水性
溶液中と全く同様に起こるということであり1本発明は
このような性質を利用してなされたものである。What is noteworthy is that the highly efficient and reverse reactions of anthracene derivatives within the cavity of this solid r-cyclotextrin occur in exactly the same way in the 41g fat matrix as in aqueous solution. 1 The present invention has been made by taking advantage of such properties.
本発明において1元メモリー材料を構成するのに用いる
バインダー樹脂と(ては1例えばポリビニルアルコール
、ポリビニルピロリドン、ポリアクリル酸、ポリメタク
リル酸、ポリアクリルアミド、ポリオキシエチレン、水
溶性ナイロン、水溶性ポリウレタンなどの水溶性樹脂が
好ましく挙けられる。これらの樹脂はそれぞれ単独で用
いてもよいし、2a1以上組み合わせて用いてもよい。In the present invention, the binder resin used to constitute the one-component memory material (for example, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide, polyoxyethylene, water-soluble nylon, water-soluble polyurethane, etc.) Water-soluble resins are preferably mentioned. These resins may be used alone or in combination of 2a1 or more.
次に1本発明の元メモリー材料の好適な製造方法の1例
について説明すると、まず、水性媒体中に、所要量のア
ントラセン誘導体とr−シクロデキストリンとを20〜
30℃の温度1通常は室温で溶解して、それらの包接f
し合物音形成させたのち、この溶液に1例えばキセノン
灯などを用いて波長350〜400 nmの元を照射し
、販包接化合物中のアントラセン94体を二tfヒする
0この際、アントラセン誘導体とr−シクロテキストリ
ンとの好ましい割合は5モル比で1:1ないし1:20
の範囲であり、またγ−シクロテキストリンは、水性媒
体100重景宜景り、0.5〜3重量部の範囲で用いる
のが好ましい。次いで、該溶液に。Next, one example of a preferred method for producing the base memory material of the present invention will be described. First, the required amount of anthracene derivative and r-cyclodextrin are added to an aqueous medium for 20 to 20 minutes.
A temperature of 30°C 1 Usually melts at room temperature, and their inclusion f
After forming a compound sound, this solution is irradiated with a source with a wavelength of 350 to 400 nm using, for example, a xenon lamp, and 94 anthracenes in the commercially available clathrate compound are irradiated with 2TF. and r-cyclotextrin in a 5 molar ratio of 1:1 to 1:20.
It is preferable to use γ-cyclotextrin in an amount of 0.5 to 3 parts by weight per 100 parts by weight of the aqueous medium. Then into the solution.
前記の樹脂の中から選ばれた少なくとも1種をバインダ
ー樹脂として、包接化合物100重量部当り50〜20
0重量部加えて溶解したのち、この溶液を1例えば石英
ガラス板などの支持俸上に塗布して製膜することにより
1本発明の元メモリー材料が得られる。このものは、必
要ならば、ブチラール樹脂、アクリル系樹脂、塩化ビニ
リデン樹脂などの疎水性樹脂を用いて保S膜を形成させ
てもよい。本発明においては、さらに、所望に応じ、こ
のようにして得られた。アントラセン訴導体の二量体と
r−シクロテキストリンとの包接化合物か分散された樹
脂膜に、270〜290 nmの短波長の元を照射する
か、又は該樹脂膜を150℃以上の温度で加熱すること
によシ、該二量体を解重合させて単量体の包接化合物に
変換させてもよい。At least one selected from the above resins is used as a binder resin, and the amount is 50 to 20% per 100 parts by weight of the clathrate compound.
After adding 0 parts by weight and dissolving the solution, the original memory material of the present invention can be obtained by coating this solution on a support layer such as a quartz glass plate to form a film. If necessary, a hydrophobic resin such as butyral resin, acrylic resin, or vinylidene chloride resin may be used to form an S-retaining film. In the present invention, furthermore, it can be obtained in this manner as desired. A resin film in which a clathrate compound of anthracene dimer and r-cyclotextrin is dispersed is irradiated with a short wavelength light of 270 to 290 nm, or the resin film is heated to a temperature of 150°C or higher. The dimer may be depolymerized and converted into a monomeric clathrate by heating at .
このような製造過程で肝要なことは、バインダー樹脂中
に分散させる場合、包接1ヒ合物として二量体の包接化
合物を用いることにある。これは。What is important in such a manufacturing process is to use a dimeric clathrate compound as the clathrate compound when dispersing it in a binder resin. this is.
単量体の包接化合物を用いると、単量体の一部がγ−シ
クロテキストリン分子から樹脂?ffんだ溶液中に溶は
出て、良好な元メモリー材料が得られにくいからである
。このような現象は、二量体の包接化合物では起こらず
、該二量体けγ−シクロテキストリン分子に包接された
まま樹脂中に均一に分散する。単量体と二量体のこのよ
うな相異は。When using monomer clathrate compounds, some of the monomers are converted from γ-cyclotextrin molecules to resin? This is because the solution leaks into the FF solution, making it difficult to obtain a good original memory material. Such a phenomenon does not occur with a dimeric clathrate compound, and the dimer is uniformly dispersed in the resin while being clathrated with γ-cyclotextrin molecules. This is the difference between monomers and dimers.
化合物としての極性の違いや構造上のかさ高さの違いに
よる包接化合物の安定性の差異によるものと考えられる
。This is thought to be due to differences in stability of the clathrate compounds due to differences in polarity as compounds and differences in structural bulkiness.
このように、二量体の包接化合物として、いったん樹脂
膜中に分散すれば、短披長元照射によって生成する単量
体は、溶液中とは異なり、γ−シクロデキストリン分子
から樹脂マトリックス中へfI!出することなく、包接
化合物として安定に存在する。In this way, once dispersed in the resin film as a dimeric clathrate, the monomer generated by short-length element irradiation will be transferred from the γ-cyclodextrin molecules into the resin matrix, unlike in a solution. To fI! It exists stably as an inclusion compound without being released.
ところで、r−シクロテキストリンを加えずに、二量体
のみを樹脂中に分散させた場合に汀、単量体と二量体の
可逆的相互変換は認められない0これは、樹脂マトリッ
クス中といえども、短波長光照射による二量体の解裂で
生じた単量体がエネルギー的に安定な位置へ動き、二量
体生成に都合のよい配置からずれて、再び二量体を生じ
ることが不可能となるためと考えられる。最初から単量
体を分散した場合も、二量体を生成することができない
◇これに対して、r−シクロテキストリンに包接された
状態では、ゲスト分子の自由な動きが制限されるために
、可逆的な元反応が進行する。By the way, when only the dimer is dispersed in the resin without adding r-cyclotextrin, no reversible interconversion of the monomer and dimer is observed. However, the monomers generated by the dissociation of dimers by short-wavelength light irradiation move to energetically stable positions, deviate from the configuration favorable for dimer formation, and form dimers again. This is thought to be because it becomes impossible. Dimers cannot be generated even if the monomer is dispersed from the beginning ◇On the other hand, when the guest molecule is included in r-cyclotextrin, the free movement of the guest molecule is restricted. Then, a reversible original reaction proceeds.
本発明におけるγ−シクロデキストリンの包接効果とし
ては、このような可逆的な光二量化反応の高効率比のみ
ならず、酸素に対する防欣効呆にも優れる点を挙げるこ
とができる。アントラセン誘導体は1反応系内に酸素が
存在すると、光酸化反応が容易に生じ、過酸化物やキノ
ンを不可逆的に生成する。したがって、この光酸化反応
を抑制することは、ftJ二量化量化反応るホトクロミ
ックス反応の繰り返し再現性を実親する上で、極めて重
畳である。本発明におけるr−シクロデキストリンに包
接されたアントラセン誘導体は、光酸化を受けず、可逆
的な光二量化反応のみが進行するため、空気雰囲気下に
おけるホトクロミックス反応の繰り返し再現性を実現し
うる0
また1本発明においては、前記したように、二量体から
単量体への解重合は、短波長光照射による以外に、15
0℃以上の温度に加熱することによっても起こる。この
際1通常着色物質の生成が認められることがあるが、r
−シクロテキストリンの存在によってその生成を著しく
抑えることができる。したがって、加熱による逆反応を
利用した可逆的ホトクロミックス反応を行わせしめるこ
とも可能である。しかも、加熱による二量体の解裂が、
常温よシはるかに高い温度でしか起こらないことは、こ
の元メモリー材料の熱安ず性及び記録の保存安定性の点
からも都合がよい。The inclusion effect of γ-cyclodextrin in the present invention includes not only the high efficiency ratio of such a reversible photodimerization reaction but also the excellent anti-oxidant effect against oxygen. When oxygen is present in the reaction system of anthracene derivatives, a photooxidation reaction easily occurs, irreversibly producing peroxides and quinones. Therefore, suppressing this photooxidation reaction is extremely important in improving the repeatability of the photochromics reaction, which is the ftJ dimerization reaction. The anthracene derivative clathrated with r-cyclodextrin in the present invention does not undergo photooxidation and only a reversible photodimerization reaction proceeds, making it possible to realize repeated reproducibility of the photochromics reaction in an air atmosphere. 0 In addition, in the present invention, as described above, the depolymerization from dimer to monomer can be carried out using 15
It can also be caused by heating to temperatures above 0°C. At this time, 1. Normally, the formation of colored substances may be observed, but r
- Its production can be significantly suppressed by the presence of cyclotextrin. Therefore, it is also possible to perform a reversible photochromics reaction using a reverse reaction by heating. Moreover, the cleavage of the dimer due to heating
The fact that this occurs only at temperatures much higher than room temperature is advantageous from the viewpoint of the thermal stability of the original memory material and the storage stability of the record.
このようにして得られた元メモリー材料は、樹脂膜中の
r−シクロテキストリンに包接されたアントラセン誘導
体の二量体とit体との間の分子レベルでの相互変換に
よって、情報の曹き込み。The original memory material obtained in this way is converted into information by interconversion at the molecular level between the dimer of the anthracene derivative clathrated with r-cyclotextrin in the resin film and the it form. Input.
読み出し及び消去が可能である。二量体と単葉体との間
の可逆的相互変換は、照射光の波長を選ぶことによって
行うことができる。すなわち、一般にアントラセン誘導
体の単量体における吸収領域は、二量体におけるそれよ
りも長波長側にあるので+ $を体のみが吸収する波長
の元を照射することによって、単葉体から二量体への反
応を選択的に行わぜることができ、−万、単量体の吸収
が比較的小さい@i波長の元を照射すること罠よって、
二量体から単量体への反応を優先的に起こすことができ
る0オた。単量体の方が二量体より4熱力学的に安定で
あるので、加熱によっても、二量体から単量体への反応
を起こすことができる0この熱反応の万が、前記の光反
応よりも反応の選択性が高い〇
このような二量体と単量体との相互変換として蓄えられ
た記憶情報は、吸光度あるいは屈折率の変化として読み
出すことができる。吸光度変化として読み出すためには
、書き込み用の照射光又は照射ビームよりも倣弱な測定
元金樹脂膜にあてて。It can be read and erased. Reversible interconversion between dimer and monomer can be achieved by choosing the wavelength of the irradiated light. In other words, the absorption region of the monomer of anthracene derivatives is generally on the longer wavelength side than that of the dimer, so by irradiating + $ at a wavelength that only the body absorbs, the monomer is converted into the dimer. The reaction can be carried out selectively, by irradiating the element at the wavelength where the absorption of the monomer is relatively small.
It is possible to preferentially cause the reaction from dimer to monomer. Since monomers are thermodynamically more stable than dimers, the reaction from dimer to monomer can occur even by heating. High selectivity of reaction over reaction 〇 The memory information stored as such interconversion between dimer and monomer can be read out as a change in absorbance or refractive index. In order to read out changes in absorbance, it is applied to the measurement source gold resin film, which has a weaker pattern than the writing irradiation light or irradiation beam.
その透過光又は反射元?元電子増幅管で検知することに
よって行うことができる0また。油接率変化で読み出す
場合は、特に波長に対する制約はないが、単量体の吸収
する波長よシも長い波長の光を利用することが好ましい
。The transmitted light or the reflected source? 0 can also be done by detecting with an original electron amplifier tube. When reading by changing the oil contact ratio, there are no particular restrictions on the wavelength, but it is preferable to use light with a longer wavelength than the wavelength absorbed by the monomer.
発明の効果
本発明の可逆的有機光メモリー材料は、バインダー樹脂
中に、ホトクロミック化合物として、可逆的元二量比反
応によるホトクロミズム金示す。Effects of the Invention The reversible organic photomemory material of the present invention exhibits photochromic gold as a photochromic compound in a binder resin through a reversible mole ratio reaction.
アントラセン誌導体とγ−シクロテキストリンとの包接
化合物を分散させたものであって1元応答性、情報の書
き込みの可逆性、記録の保存性及び加工性などに優れた
特性?7f4しているので1元情報の記憶や記録材料と
して肩出である。It is a dispersion of an clathrate compound of anthracene conductor and γ-cyclotextrin, which has excellent properties such as one-way response, reversibility of information writing, record preservation, and processability. Since it is 7F4, it is useful as a storage and recording material for one-dimensional information.
実施例
次に実施例によって本発明?さらに詳細に説明する0
実施例1
2−アントラセンスルホン酸カリウム12qとr−シク
ロテキストリン−日埠岬?パイレックス製ナス型フラス
コ中で水lO−に溶解し、 soowキセノン灯で30
分間照射した0照射元はコーニング製3−73フイルタ
ー及び熱遮断用の水相全通した。次いで、得られた反応
液をyLM乾燥して無色の粉末を得た。このものは、高
速液体クロマトグラフィー及び°案外吸収スペクトルか
ら、二量体が定量的に生成していることが明らかとなっ
た。Examples Is the invention explained by examples? 0 Example 1 Potassium 2-anthracenesulfonate 12q and r-cyclotextrin-Hibori Misaki? Dissolved in water lO− in a Pyrex eggplant flask and heated under a sow xenon lamp for 30 min.
The irradiation source, which was irradiated for 0 minutes, was passed through a Corning 3-73 filter and a water phase for heat isolation. Next, the obtained reaction solution was dried using yLM to obtain a colorless powder. High performance liquid chromatography and unexpected absorption spectra revealed that a dimer was quantitatively produced in this product.
この乾燥粉本50岬を水1dK溶解したのち、ポリビニ
ルアルコール40JII?加えて溶解し、ホトクロミッ
ク樹脂液を得た。この溶液を石英ガラス板上に、110
00rpでスピン塗布した。得られたホトクロミック樹
脂膜の光応答性の評価?、 2に%Vキセノン灯を光源
とする照射分元元度t′l(JASCO−CRMFA
)で照射したのち1分元元度岨で吸収スペクトル変化を
測定する方法で行った。その結果。After dissolving this dry powder 50 Misaki in 1 dK of water, polyvinyl alcohol 40 JII? The resin was added and dissolved to obtain a photochromic resin liquid. This solution was placed on a quartz glass plate at 110
Spin coating was performed at 00 rpm. Evaluation of photoresponsiveness of the obtained photochromic resin film? , 2, the irradiation elemental degree t'l using a %V xenon lamp as a light source (JASCO-CRMFA
) and then measuring the change in the absorption spectrum for 1 minute. the result.
調節したままの樹脂膜の吸収スペクトルは300nmよ
シ短波長慣域の二量体に白米するもののみで。The absorption spectrum of the resin film as adjusted is only that of the dimer in the short wavelength customary region of 300 nm.
300〜400 nm領域の単量体の吸収は無祝しうろ
ことが明らかとなった。すなわち、まず280土10n
mの単色光照射により、単量体の吸収の出現が認められ
1次いで、380士10 nm元の照射によシ、この単
量体の吸収の消失がみられ九。量子収率は、二量体→単
量体の過程では、単量体の生成について1.0士0.1
.また単量体−二量体の過程では単1゛体の減少に関し
て0.8±0.1であシ、理論上の最大値2.00にに
近い値を示した@また。It became clear that the absorption of the monomer in the 300-400 nm region was unreliable. In other words, first 280 soil 10n
Upon irradiation with monochromatic light of 380 nm, the appearance of absorption of the monomer was observed.Next, upon irradiation with 380 nm and 10 nm, the absorption of this monomer was observed to disappear.9. In the process of dimer → monomer, the quantum yield is 1.0 to 0.1 for monomer production.
.. In addition, in the monomer-dimer process, the decrease in monomer was 0.8±0.1, which is close to the theoretical maximum value of 2.00.
二量体→単量体→二量体の1サイクルの繰り返し再現性
は95鳴以上を示した・なお、ここで用いた樹脂膜を暗
所で1か月間保存したのちも、全く同一の光応答性を示
した。添付図面は、このようにして得られた樹脂膜の常
温における吸収スペクトル図であって、■け光照射前、
■及び■はこの順序にそれぞれ上向き及び下向きの矢印
に相当する波長の元管照射した後のものである。The repeatability of one cycle of dimer → monomer → dimer showed over 95 sounds. Furthermore, even after the resin film used here was stored in the dark for one month, the exact same light It showed responsiveness. The attached drawing is an absorption spectrum diagram of the resin film obtained in this way at room temperature, and shows
(2) and (2) are the results after the original tube was irradiated with wavelengths corresponding to the upward and downward arrows, respectively, in this order.
実施例2
実施例1において2−アントラセンスルホン酸カリウム
の代シに、2−アントラセンカルボン酸を用いる以外は
、91.施例1と同じようにして光応答性を評価したと
ころ、はぼ同様の結果が得られたO
実施例3
実施例1と同様にして石英ガラス板上に樹脂膜を形成さ
せ1次いでこの樹脂膜’1170tl:で、5分間加熱
して、2−アントラセンスルホ/IIIIJウム単量体
の包接化合物が樹@膜中に分散して成る光メモリー材料
を作成した〇
この材料について、実施例1と同様にして光応答性を評
価したところ、まず38G±l Onm党の照射によシ
単量体の吸収が消失して二量体の吸収の出現がみられ1
次いで280±10 nmの単色光の照射によシ単量体
の吸収の出現がみられた。量子収率については、実施例
1&llぼ同様の結果が得られた・
比較例
2−アントラセンスルホン酸カリウム15WIgi水1
0sgtc溶解したのち、実施例1と同様にして。Example 2 91. Example 1 except that 2-anthracenecarboxylic acid was used instead of potassium 2-anthracenesulfonate. When the photoresponsiveness was evaluated in the same manner as in Example 1, similar results were obtained.Example 3 A resin film was formed on a quartz glass plate in the same manner as in Example 1, and then this resin was Film '1170tl: was heated for 5 minutes to create an optical memory material in which a clathrate compound of 2-anthracene sulfonium/IIIJium monomer was dispersed in the film. 〇 Regarding this material, Example 1 When the photoresponsiveness was evaluated in the same manner as above, it was found that upon irradiation with 38 G±l Onm, the absorption of the monomer disappeared and the absorption of the dimer appeared.
Then, upon irradiation with monochromatic light of 280±10 nm, absorption of the monomer was observed. Regarding the quantum yield, similar results were obtained in Example 1&ll. Comparative Example 2 - Potassium anthracene sulfonate 15WIgi water 1
After dissolving 0sgtc, the same procedure as in Example 1 was carried out.
光照射を2時間行った。次いでこの反応液?凍結乾燥し
て淡黄色粉末を得た。分析の結果、二量体が60%生成
していることが確認された0この乾燥粉末3qを水1−
に溶解し、これにポリビニルアルコール409を溶解し
たのち、この樹脂液を実施例1と同様にして石英ガラス
板上に塗布して樹脂膜管形成させた。このものについて
光応答性を評価したところ、単量体と二量体の可逆的相
互変換はほとんど認められなかった。Light irradiation was performed for 2 hours. Next is this reaction solution? Lyophilization gave a pale yellow powder. As a result of the analysis, it was confirmed that 60% dimer was produced. 3 q of this dry powder was mixed with 1 -
After dissolving polyvinyl alcohol 409 therein, this resin liquid was applied on a quartz glass plate in the same manner as in Example 1 to form a resin membrane tube. When this product was evaluated for photoresponsiveness, almost no reversible interconversion between monomer and dimer was observed.
図面は実施例で得られた樹脂膜の吸収スペクトル図であ
る。The drawing is an absorption spectrum diagram of a resin film obtained in an example.
Claims (1)
ンとの包接化合物をバインダー樹脂中に分散させて成る
可逆的有機光メモリー材料。 2 一般式 ▲数式、化学式、表等があります▼ (式中のRは親水性置換基である) で示されるアントラセン誘導体とγ−シクロデキストリ
ンとを水性媒体中に溶解して、これらの包接化合物を形
成させたのち、これに光を照射して該包接化合物中のア
ントラセン誘導体を二量化し、次いでこの溶液にバイン
ダー樹脂を溶解させたのち、このものを製膜することを
特徴とする可逆的光メモリー材料の製造方法。 3 一般式 ▲数式、化学式、表等があります▼ (式中のRは親水性置換基である) で示されるアントラセン誘導体とγ−シクロデキストリ
ンとを水性媒体中に溶解して、これらの包接化合物を形
成させたのち、これに光を照射して該包接化合物中のア
ントラセン誘導体を二量化し、次いでこの溶液にバイン
ダー樹脂を溶解させて製膜し、さらにこのようにして得
た樹脂膜に光を照射するか、又は該樹脂膜を加熱するこ
とにより、樹脂膜中に分散する該包接化合物中のアント
ラセン誘導体の二量体を解重合させることを特徴とする
可逆的有機光メモリー材料の製造方法。[Claims] 1 A binder resin containing an clathrate compound of an anthracene derivative and γ-cyclodextrin represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (R in the formula is a hydrophilic substituent) A reversible organic optical memory material dispersed in 2 The anthracene derivative represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R in the formula is a hydrophilic substituent) and γ-cyclodextrin are dissolved in an aqueous medium, and their inclusion The method is characterized by forming a compound, irradiating the compound with light to dimerize the anthracene derivative in the clathrate compound, dissolving a binder resin in this solution, and then forming a film from this compound. A method for producing reversible optical memory materials. 3 The anthracene derivative represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R in the formula is a hydrophilic substituent) and γ-cyclodextrin are dissolved in an aqueous medium and their inclusion After forming a compound, it is irradiated with light to dimerize the anthracene derivative in the clathrate compound, and then a binder resin is dissolved in this solution to form a film, and the resin film thus obtained is A reversible organic optical memory material characterized in that a dimer of an anthracene derivative in the clathrate compound dispersed in the resin film is depolymerized by irradiating the resin film with light or heating the resin film. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60010401A JPS61169838A (en) | 1985-01-22 | 1985-01-22 | Reversible organic optical memory material and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60010401A JPS61169838A (en) | 1985-01-22 | 1985-01-22 | Reversible organic optical memory material and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61169838A true JPS61169838A (en) | 1986-07-31 |
JPH0415458B2 JPH0415458B2 (en) | 1992-03-18 |
Family
ID=11749116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60010401A Granted JPS61169838A (en) | 1985-01-22 | 1985-01-22 | Reversible organic optical memory material and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61169838A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6343135A (en) * | 1986-08-09 | 1988-02-24 | Dainippon Printing Co Ltd | Ionization radiation sensitive type recording material and laminate having such recording material |
JPH0259739A (en) * | 1988-08-26 | 1990-02-28 | Agency Of Ind Science & Technol | Optical recording material |
EP1099743A1 (en) * | 1999-11-12 | 2001-05-16 | Optische Werke G. Rodenstock | Photochromic plastic article |
US7521154B2 (en) * | 2002-04-11 | 2009-04-21 | Inphase Technologies, Inc. | Holographic storage media |
-
1985
- 1985-01-22 JP JP60010401A patent/JPS61169838A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6343135A (en) * | 1986-08-09 | 1988-02-24 | Dainippon Printing Co Ltd | Ionization radiation sensitive type recording material and laminate having such recording material |
JPH0259739A (en) * | 1988-08-26 | 1990-02-28 | Agency Of Ind Science & Technol | Optical recording material |
EP1099743A1 (en) * | 1999-11-12 | 2001-05-16 | Optische Werke G. Rodenstock | Photochromic plastic article |
US7521154B2 (en) * | 2002-04-11 | 2009-04-21 | Inphase Technologies, Inc. | Holographic storage media |
US8062809B2 (en) | 2002-04-11 | 2011-11-22 | Inphase Technologies, Inc. | Holographic storage media |
Also Published As
Publication number | Publication date |
---|---|
JPH0415458B2 (en) | 1992-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yokoyama | Fulgides for memories and switches | |
US20030174560A1 (en) | Photochromic compounds for molecular switches and optical memory | |
TW201128641A (en) | Compositions, optical data storage media and methods for using the optical data storage media | |
Lvov et al. | Revisiting Peri‐Aryloxyquinones: From a Forgotten Photochromic System to a Promising Tool for Emerging Applications | |
JPS61169838A (en) | Reversible organic optical memory material and its production | |
JPS6161893A (en) | optical recording medium | |
US20030072250A1 (en) | Optical recording material | |
Schultzke et al. | Centennial Isomers: A Unique Fluorinated Azobenzene Macrocyclus with Dual Stability Over 120 Years | |
JPH04252268A (en) | Polymethine dye | |
Ishida et al. | The Interaction of Oxygen with Organic Molecules. II. Oxygen Quenching of the Excited States of Adsorbed Aromatic Hydrocarbons | |
JPH03284743A (en) | Optical recording medium and recording method and reproducing method using this medium | |
JPS62147456A (en) | Optical recording medium | |
JP4519206B2 (en) | Photochromic material | |
JPH02251841A (en) | New compounds, reversible organic optical recording materials, and optical recording media using them | |
JPS63258876A (en) | Photochromic fulgide compound | |
JPH0324082A (en) | Porphyrin and optical recording material using same | |
JPS62165652A (en) | Optical recording method | |
JPS6290651A (en) | Recording method for optical recording medium | |
JP3141584B2 (en) | Reversible optical recording material | |
JPS63312889A (en) | Optical recording material | |
JPS61159634A (en) | Optical recording medium | |
JP2721725B2 (en) | Photochromic material and optical recording medium using the same | |
JPH02175288A (en) | Erasable optical recording medium | |
JPS61285451A (en) | Optical recording medium and optical recording and reproducing method | |
JPS61205290A (en) | Novel di(9-anthryl)dimethylgermane compound and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |