[go: up one dir, main page]

JPS61168270A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS61168270A
JPS61168270A JP60008217A JP821785A JPS61168270A JP S61168270 A JPS61168270 A JP S61168270A JP 60008217 A JP60008217 A JP 60008217A JP 821785 A JP821785 A JP 821785A JP S61168270 A JPS61168270 A JP S61168270A
Authority
JP
Japan
Prior art keywords
zener voltage
type
region
measuring
type region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60008217A
Other languages
Japanese (ja)
Inventor
Teruo Ozaki
照夫 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP60008217A priority Critical patent/JPS61168270A/en
Publication of JPS61168270A publication Critical patent/JPS61168270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain desired electric characteristic accurately in a short time by connecting a contactor between two points through a P-N junction, and heat treating in nonoxidative atmosphere while measuring electric characteristic between the both contactors. CONSTITUTION:Insulating films 3, 3 such as oxide films are formed on both front and back surfaces of a semiconductor wafer 10, and a window hole 3a is formed only on the film 3 of the surface. Then, a P-type impurity is selectively diffused from the hole 3a to form a P-type region 2. Then, only thin oxide film of the hole 3a portion is removed by etching. Then, contactors 6, 7 are contacted with the adjacent regions 2, 2, heated at 1,150-1,250 deg.C in reduced nonoxidative atmosphere while measuring a Zener voltage by a measuring unit 8 to additionally press the P-type impurity of the region 2 into an N-type region 1. When the Zener voltage arrives at the desired value, the heating is stopped. Subsequently, an anode electrode 4 and a cathode electrode 5 are formed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は半導体装置の製造方法に関し、特に拡散接合
型定電圧ダイオードのツェナ電圧の調整時に利用される
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing a semiconductor device, and is particularly used for adjusting the Zener voltage of a diffusion junction type constant voltage diode.

発明の概要 この発明は拡散接合型定電圧ダイオードのツェナ電圧全
熱処理によって調整するものにおいて、PN接合全介在
する2点間に接触子全接続し、両接触子間の電気的特性
全測定しながら、非酸化性雰囲気中で熱処理全行なうこ
とによって、希望する霜、気門特性の半導体装置を製造
できるよう゛にしたものである。
Summary of the Invention This invention adjusts the Zener voltage of a diffusion bonded voltage regulator diode by full heat treatment, in which all contacts are connected between two points across all PN junctions, and all electrical characteristics between both contacts are measured. By performing all heat treatments in a non-oxidizing atmosphere, it is possible to manufacture semiconductor devices with desired frost and pore characteristics.

従来の技術 定電圧ダイオードには、多結晶ンリコン接合型と、拡散
接合型の2種類がある。前者はN型のシリコン基板の上
にP型の多結晶シリコンを気相成長させたもので、P型
多結晶シリコ〉・の不純物濃度を高くできることによっ
て、低いツェナ電圧が得られるか為製造が面倒で比較的
隔測である。一方、後者はN型のシリコン基板に選択拡
散によってP型不純物全拡散したもので、比較的間いツ
ェナ電圧しか侍られないが、安価であるという利点′f
t有する。
There are two types of conventional voltage regulating diodes: polycrystalline silicon junction type and diffusion junction type. The former is made by growing P-type polycrystalline silicon in a vapor phase on an N-type silicon substrate, and by increasing the impurity concentration of P-type polycrystalline silicon, a low Zener voltage can be obtained, making it easier to manufacture. It is cumbersome and relatively remote. On the other hand, in the latter case, P-type impurities are completely diffused into an N-type silicon substrate by selective diffusion, and although it can withstand only a relatively short Zener voltage, it has the advantage of being inexpensive.
have t.

第2図は従来の拡散接合型定電圧ダイオードペレットの
基本面な断面図である。図において、1はN型領域、2
はN型領域l中に選択拡散によって形成されたP型領域
、3は酸化膜等の絶縁膜、4はP型頭域2上に形成され
たアノード電極、4けN要領域lに形成されたカソード
電極である。
FIG. 2 is a basic sectional view of a conventional diffusion bonded constant voltage diode pellet. In the figure, 1 is an N-type region, 2
is a P-type region formed by selective diffusion in the N-type region l, 3 is an insulating film such as an oxide film, 4 is an anode electrode formed on the P-type head region 2, and 4 is formed in the N-type region l. This is the cathode electrode.

次に、上記ダイオードペレットの製造方法について、第
3図(Al〜CD+全参照して説明する。
Next, a method for manufacturing the diode pellets will be described with reference to FIG. 3 (Al to CD+).

まず、N型領域1となる半導体ウェーハ1o全用意しく
kl、表裏両面に酸化膜等の絶縁膜3,3全形成したの
ち、表面側の絶縁膜3に周知のフォトリングラフィによ
って多数の窓孔3aを形成する(B)。次に、前記各窓
孔3aからP型不純@全選択拡散して、P型頭域2′f
!:形成する(01゜この選択拡散は酸化性雰囲気中で
実施されるため、窓孔3a部分に薄い酸化膜が形成され
る。したかつて、この窓孔3a部分の薄い酸化膜および
裏面の絶縁膜3全エツチング除去したのち、P頭領域2
およびN型領域1にそれぞれアノード電極4およびカソ
ード電極5を形成しくDI、Lかるのちに一点@線箇所
からダイシング等により切断すると、第1図のダイオー
ドペレットが得らnる。
First, the entire semiconductor wafer 1o, which will become the N-type region 1, is completely formed with insulating films 3, 3 such as oxide films on both the front and back surfaces, and then a large number of windows are formed in the insulating film 3 on the front side by well-known photolithography. Form 3a (B). Next, the P-type impurity@all selectively diffuses from each window hole 3a, and the P-type head region 2'f
! : Formation (01° Since this selective diffusion is carried out in an oxidizing atmosphere, a thin oxide film is formed in the window hole 3a portion. 3 After removing all etching, P head area 2
Then, an anode electrode 4 and a cathode electrode 5 are formed in the N-type region 1, respectively. After DI and L are cut, the diode pellet shown in FIG. 1 is obtained by dicing or the like from a single point @ line.

上記の定電圧ダイオードペレットにおいて、ツェナ電圧
は、第4図に示すように、p型頭域2の不純物濃度によ
って決まるため、P頭領域2の不純物濃度は、希望する
ツェナ電圧等に応じて決められる。ところが、P頭領域
2の不純物濃度を希望するツェナ電圧に応じて設定して
も、N要領域lの不純物濃度のばらつきやP頭領域2の
拡散時の温度分布、ガスの不純物濃度等のばらつきによ
って、希望どおりのツェナ電圧が得られないことが多い
。そこで、ツェナ電圧を調整することが必要になる。
In the above-mentioned constant voltage diode pellet, the Zener voltage is determined by the impurity concentration of the p-type head region 2, as shown in FIG. It will be done. However, even if the impurity concentration in the P head region 2 is set according to the desired Zener voltage, variations in the impurity concentration in the N required region l, the temperature distribution during diffusion in the P head region 2, and the impurity concentration in the gas, etc. Therefore, it is often not possible to obtain the desired Zener voltage. Therefore, it is necessary to adjust the Zener voltage.

上記のツェナ電圧の調整は、第3図(C1のP型頭域2
全拡散形成後に、第5図に示すように、窓孔3a部分の
P型頭域2上およびN型領域1上に形成された絶縁膜を
エツチング除去してから、P頭領域2とN型領域1とに
それぞれ接触子6,7を当接して1測定装置8でツェナ
電圧を測定する。
The adjustment of the Zener voltage described above is shown in Figure 3 (P-type head area 2 of C1).
After the entire diffusion is formed, as shown in FIG. Contactors 6 and 7 are brought into contact with region 1, respectively, and the Zener voltage is measured by measuring device 8.

この測定の結果、もし、ツェナ電圧が所望値に足りなけ
れば、追加の熱処理条件全決定して為再び押込炉で熱処
理に施して、P頭領域2の不純?IPN型領域上領域1
中させて、P頭領域2の不純物濃度全低下させてAツェ
ナ電圧全上昇はせる。こののち、再度、P頭領域2およ
びN型領域1上に形成された絶縁膜全除去して、第5図
に示す方法でツェナ電圧全測定する。以下、このような
操作全数回性り返えして所望のツェナ電圧?得る(特願
昭58−133984号)。
As a result of this measurement, if the Zener voltage is insufficient to the desired value, all additional heat treatment conditions are determined and heat treatment is performed again in the forced furnace to eliminate impurities in the P head region 2. IPN type area upper area 1
The impurity concentration in the P head region 2 is completely lowered, and the A Zener voltage is completely increased. Thereafter, the insulating film formed on the P head region 2 and the N type region 1 is completely removed again, and the entire Zener voltage is measured by the method shown in FIG. After repeating this operation several times, find the desired Zener voltage. (Japanese Patent Application No. 58-133984).

発明が解決しようとする問題点 ところが、上記のツェナ電圧の調整方法に従えば、半導
体ウェーハ10の押込炉への挿入−押込み一押込炉より
取り出し一絶縁膜除去一ツエナ電圧測定−押込炉への押
入−の操作全線り返えすので、作業が著しく煩雑である
のみならず、所望のツェナ電圧を得るまでに長時間全装
し、さらには所望のツェナ電圧全確実に得ることが困難
で為特性道中率が低くなるといった各種の問題点があっ
た。
Problems to be Solved by the Invention However, if the above Zener voltage adjustment method is followed, the steps of inserting the semiconductor wafer 10 into the pushing furnace - pushing the semiconductor wafer 10 - taking it out from the pushing furnace - removing the insulating film - measuring the Zener voltage - entering the pushing furnace. Not only is the work extremely complicated as the entire push-in operation has to be repeated, but it also takes a long time to complete the installation to obtain the desired Zener voltage, and furthermore, it is difficult to reliably obtain the desired Zener voltage. There were various problems such as a low drop-in rate.

問題点を解決するだめの手段 この発明は上記問題点全解決するために、多数のPN接
合全形成した半導体ウェーハのPN接合全介在した2点
間に接触子を接続して、両接触子間の電気的特性を測定
しな力)ら、非削化性雰囲気で熱処理を施すものである
Means for Solving the Problems In order to solve all of the above problems, the present invention connects contacts between two points of a semiconductor wafer in which a large number of PN junctions are all interposed, and connects the contacts between both contacts. After measuring the electrical properties of the material, heat treatment is performed in a non-abrasive atmosphere.

作用 上記の手段によれば、ツェナ電圧等を測定しながら押込
み処理全するので、一工程でしかも正確に所望のツェナ
電圧等が得られる。
Effect According to the above means, since the entire pushing process is performed while measuring the Zener voltage, etc., the desired Zener voltage, etc. can be accurately obtained in one step.

実施例 以下、この発明の一実施例全、第1図(Al−(Gl 
’e参照して説明する。
Embodiment Hereinafter, all embodiments of the present invention, FIG. 1 (Al-(Gl
I will explain with reference to 'e.

まず、N型の半導体ウェーハ10に用意する(Al。First, an N-type semiconductor wafer 10 is prepared (Al.

この半導体ウェーハ10の表裏両面に酸化膜等の絶縁膜
3,3全形成し、表向の絶縁膜3のみにIllのフォト
リングラフィにより窓孔3aを形成する(B)。
Insulating films 3, such as oxide films, are entirely formed on both the front and back surfaces of this semiconductor wafer 10, and window holes 3a are formed only in the front insulating film 3 by Ill photolithography (B).

次に、前記窓孔3aからP型不純物を選択拡散してP型
頭域2全形成する(01゜ 上記P型頭域2の形成によって、窓孔3a部分に薄い酸
化膜が形成されるので、この窓孔3a部分の薄い酸化膜
のみ全エツチング除去するCDI OCののち、隣接す
るP頭領域2,2に接触子6゜7を当接し1測定装置8
でツェナ電圧と測定しながら、N2等の中性またはN2
等の還元性の非酸化性雰囲気中で、1150〜1250
°C程度の温度で加熱して、P型領域2のP型不純吻′
kN型領域1甲に追加押し込み処理全行なう。すると、
時間の経過に伴って、P型領域2の不純物濃度が低下し
て、ツェナ電H−,が次第に上昇する。このとき、−万
のPN接合は順方向となるので、ツェナ電圧には関係し
ない。かくして、ツェナ電圧が所望1直に達すると、加
熱全中止して、追加押し込み処理全終了する(劇。
Next, the P-type impurity is selectively diffused from the window hole 3a to form the entire P-type head region 2 (01° By forming the P-type head region 2, a thin oxide film is formed in the window hole 3a portion. After CDI OC, which completely etches only the thin oxide film on this window hole 3a portion, contactor 6°7 is brought into contact with the adjacent P head regions 2, 2, and 1 measurement device 8 is applied.
Neutral such as N2 or N2 while measuring Zener voltage with
1150-1250 in a reducing non-oxidizing atmosphere such as
By heating at a temperature of about °C, the P-type impurity in the P-type region 2 is removed.
Perform all additional indentation processing on kN type area 1A. Then,
As time passes, the impurity concentration of the P-type region 2 decreases, and the Zener current H- gradually increases. At this time, since the PN junction at -1000 is in the forward direction, it is not related to the Zener voltage. In this way, when the Zener voltage reaches the desired level, heating is completely stopped and the additional pushing process is completely completed (drama).

次に、N型領域lの絶縁膜3を除去し、P型領域2およ
びN型領域1に、それぞれアノード電極4およびカソー
ド電4@5全形成する(F)。
Next, the insulating film 3 in the N-type region 1 is removed, and an anode electrode 4 and a cathode electrode 4@5 are completely formed in the P-type region 2 and the N-type region 1, respectively (F).

こののち、第1図(P″)の一点@腺箇所から切断する
と、第2図と同様の定電圧タイオードペレットが得られ
る(Gl。
Thereafter, by cutting from one point @gland position in FIG. 1 (P''), a constant voltage diode pellet similar to that in FIG. 2 is obtained (Gl.

発明の効果 この発明によれば、ツェナ電圧等の電気的特性全測定し
なから、追/10押し込み処理全実施できるので、従来
方法に比較して格段に容易かつ短時間で正確に所望の電
気的特性が得られる。
Effects of the Invention According to the present invention, the entire additional/10 push process can be performed without measuring all electrical characteristics such as the Zener voltage, making it much easier and faster to accurately obtain the desired electrical characteristics than with conventional methods. characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Al−(Glはこの発明の一実施例である定電
。 圧ダイオードの製造方法について説明するだめの各工程
の半導体ウェーハないしペレットの断面図である。 第2図は定電圧ダイオードの断面図で、第3図(A)−
(D)は上記定電圧ダイオードの製造方法について、説
明するための各工程の半導体ウェーハの断面図、第4図
はP型領域の不純物濃度対ツェナ電圧特性図、第5図は
ツェナ電圧調整時の状態全示す半纏体ウェーハの断面図
である。 1・・・・・・N型領域・ 2・・・・・・P型領域、 3・・・・・・絶縁膜(酸化膜)、 3a・・・・・・慧孔、 6.7・・・・・・接触子、 8・・・・・・測、定装置、 10・・・・・・半導体ウェーハ。 特許出願人 関西日本電気株式会社 ← h+に鉢叶
Figure 1 (Al- (Gl is a constant voltage diode according to an embodiment of the present invention) is a cross-sectional view of a semiconductor wafer or pellet at each step to explain the manufacturing method of a piezo diode. A cross-sectional view of FIG. 3(A)-
(D) is a cross-sectional view of a semiconductor wafer at each step for explaining the method for manufacturing the constant voltage diode, FIG. 4 is a characteristic diagram of the impurity concentration of the P-type region versus Zener voltage, and FIG. 5 is when adjusting the Zener voltage. FIG. 2 is a cross-sectional view of a semi-integrated wafer showing its entire state. 1... N-type region, 2... P-type region, 3... Insulating film (oxide film), 3a... Keikou, 6.7. ... Contactor, 8 ... Measurement and measurement device, 10 ... Semiconductor wafer. Patent applicant Kansai NEC Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 多数のPN接合を形成した半導体ウェーハのPN接合を
介在した2点間に接触子を接続して、両接触子の間の電
気的特性を測定しながら、非酸化性雰囲気で熱処理を施
すことを特徴とする半導体装置の製造方法。
A contact is connected between two points of a semiconductor wafer with many PN junctions interposed therebetween, and the electrical characteristics between both contacts are measured while heat treatment is performed in a non-oxidizing atmosphere. A method for manufacturing a featured semiconductor device.
JP60008217A 1985-01-18 1985-01-18 Manufacturing method of semiconductor device Pending JPS61168270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60008217A JPS61168270A (en) 1985-01-18 1985-01-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60008217A JPS61168270A (en) 1985-01-18 1985-01-18 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61168270A true JPS61168270A (en) 1986-07-29

Family

ID=11687046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60008217A Pending JPS61168270A (en) 1985-01-18 1985-01-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61168270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303032A (en) * 2004-04-13 2005-10-27 Renesas Technology Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303032A (en) * 2004-04-13 2005-10-27 Renesas Technology Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4947218A (en) P-N junction diodes in silicon carbide
JP3184320B2 (en) Diamond field effect transistor
US4810665A (en) Semiconductor device and method of fabrication
JPH0744272B2 (en) Transistor manufacturing method
US5015593A (en) Method of manufacturing semiconductor device
US4398962A (en) Method of controlling base contact regions by forming a blocking layer contiguous to a doped poly-si emitter source
US5952679A (en) Semiconductor substrate and method for straightening warp of semiconductor substrate
US4056415A (en) Method for providing electrical isolating material in selected regions of a semiconductive material
US3725145A (en) Method for manufacturing semiconductor devices
EP0211174A2 (en) Monolithic temperature compensated voltage-reference diode and method for its manufacture
US6146947A (en) Insulated gate type field effect transistor and method of manufacturing the same
JPS61168270A (en) Manufacturing method of semiconductor device
KR100405015B1 (en) A method of manufacturing semiconductor device
US6077744A (en) Semiconductor trench MOS devices
JP3249753B2 (en) Method for manufacturing semiconductor device
JPH0582465A (en) Semiconductor device and mos fet
JP3293987B2 (en) Method for manufacturing semiconductor device
US5340752A (en) Method for forming a bipolar transistor using doped SOG
US3116184A (en) Etching of germanium surfaces prior to evaporation of aluminum
JP4951872B2 (en) Manufacturing method of semiconductor device
JP3300645B2 (en) Semiconductor device and manufacturing method thereof
JPH1187260A (en) Method for manufacturing semiconductor device
JPS63138772A (en) Schottky barrier type semiconductor device and manufacture thereof
Moravvej-Farshi et al. Novel NMOS transistors with near-zero depth conductor/thin insulator/semiconductor (CIS) source and drain junctions
JPH023291A (en) Double-implantation manufacture of zener diode