JPS61167809A - Measuring method of internal and external diameters - Google Patents
Measuring method of internal and external diametersInfo
- Publication number
- JPS61167809A JPS61167809A JP830785A JP830785A JPS61167809A JP S61167809 A JPS61167809 A JP S61167809A JP 830785 A JP830785 A JP 830785A JP 830785 A JP830785 A JP 830785A JP S61167809 A JPS61167809 A JP S61167809A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- detectors
- displacement
- detector
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000006073 displacement reaction Methods 0.000 claims abstract description 27
- 238000005259 measurement Methods 0.000 abstract description 13
- 238000000691 measurement method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/08—Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、回転軸、ロール、車輪、歯車、パイプ等の円
形状物体(円弧部を含む)の内外径寸法測定方法に関す
るもので、特に数メートルにも及ぶ大型加工物の測定に
適用して有効な方法である。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for measuring the inner and outer diameter dimensions of circular objects (including circular arc parts) such as rotating shafts, rolls, wheels, gears, and pipes. This is an effective method that can be applied to measuring large workpieces that are several meters long.
〈従来の技術〉
大型加工物の加工、組立においては1寸法精度の確保が
重要課題の一つであシ、大型減速機用歯車、タービンロ
ータ等の丸物加工物についても高い直径寸法精度が要求
されている。<Conventional technology> Ensuring one-dimensional accuracy is one of the important issues in processing and assembling large workpieces, and high diameter dimensional accuracy is also required for round workpieces such as large reduction gear gears and turbine rotors. requested.
大型丸物加工物の直径測定法として実用化されている方
法には二つある。There are two methods that have been put into practical use to measure the diameter of large round workpieces.
その一つを第2図に基づいて説明すると、測定対象物1
を治具2によって両側から挾み、そのへだた、t)tD
即ち直径を何らかの方法によって測定する方式であ)、
この方式を応用した代表的な測定装置としてはマイクロ
メータがあげられる。もう一つの測定方法を第3図に基
づいて説明する。第3図(a)において、測定対象物1
0周上にπテープ3を巻き付け、πテープ3によって測
定した周囲長さLから直径=L/π(π:円周率)とし
て直径を求める方式である。To explain one of them based on Fig. 2, the measurement object 1
is sandwiched from both sides by jig 2, and between them, t)tD
In other words, the diameter is measured by some method)
A typical measuring device to which this method is applied is a micrometer. Another measurement method will be explained based on FIG. In FIG. 3(a), the measurement object 1
In this method, a π tape 3 is wound around the 0th round, and the diameter is determined from the circumferential length L measured by the π tape 3 as diameter=L/π (π: pi).
第3図(bNcおいては、摩擦円板4を測定対象物10
局面に押し当てた状態で測定対象物lを回転し、測定対
象物1が一回転する時の摩擦円板4の回転数nを測定す
る。摩擦円板4の直径dがわかっていれば、[)=dX
nとして測定対象物1の直径を求めることができる。FIG. 3 (bNc) The friction disk 4 is the object to be measured 10
The object 1 to be measured is rotated while being pressed against the surface, and the number of revolutions n of the friction disk 4 when the object 1 to be measured 1 rotates once is measured. If the diameter d of the friction disk 4 is known, [)=dX
The diameter of the object to be measured 1 can be determined as n.
しかしながら、sI2図に示す前者の方法は測定器の操
作性、測定精度等の制約から直径2メ一トル程度が測定
可能限界となっている。又。However, the former method shown in Figure sI2 has a measurable limit of about 2 meters in diameter due to constraints such as the operability of the measuring instrument and measurement accuracy. or.
へだたシ量りをレーザ測長器を利用して測定する方法も
実施されているが、大型かつ高精度な測定装置が必要と
なってしまう。A method of measuring the sag using a laser length measuring device has also been implemented, but this requires a large and highly accurate measuring device.
又、第3図(a)、 (b)に示す後者の2つの方法は
、大型加工物の直径測定に適用して有効な方法であるが
、πテープ30巻き付は精度、摩擦円板4のスリップ等
多くの誤差要因があシ、高精度な直径測定は困難という
のが実情である。In addition, the latter two methods shown in FIGS. 3(a) and 3(b) are effective methods when applied to measuring the diameter of large workpieces, but 30 wraps of π tape may result in poor accuracy and friction disk 4. The reality is that there are many error factors such as slippage, making it difficult to measure diameters with high precision.
そこで最近、大型円形状物体(円弧部を含む)の直径寸
法が高精度に測定できる新しい方法が開発された。Recently, a new method has been developed that can measure the diameter of large circular objects (including arcuate parts) with high precision.
この新しく開発された測定方法を第4図によって説明す
る。移動台5は駆動装置(図示せず)によって基準面6
上を移動可能に設けられておシ、この移動台5上に載置
した変位検出器7によって基準面6と測定対象物1との
へだたり(厳密にはへだた多量の変化)を測定する。な
′お、移動台5の移動量は図示しない移動量検出装
置によって測定される。This newly developed measurement method will be explained with reference to FIG. The movable table 5 is moved to a reference surface 6 by a drive device (not shown).
A displacement detector 7 placed on the moving table 5 detects the gap between the reference surface 6 and the object to be measured 1 (more specifically, a large amount of change in the gap). Measure. Note that the amount of movement of the moving table 5 is measured by a movement amount detection device (not shown).
第4図において、移動台5の移動方向をX軸。In FIG. 4, the moving direction of the moving table 5 is the X axis.
このX軸に直角にy軸を考える。Consider the y-axis perpendicular to this x-axis.
移動台5を図中の矢印方向に移動し、移動台5の移動距
離x1.この時の変位検出器7での測定値y1を得る。The moving table 5 is moved in the direction of the arrow in the figure, and the moving distance of the moving table 5 is x1. A measurement value y1 from the displacement detector 7 at this time is obtained.
移動台5の移動と共に順次”t sy□xl I 3’
m s・・・を得、ある移動範囲内でのデータセット(
xi、yi) i ==1 、2 、3 、−Nを求め
る。As the moving table 5 moves, "t sy□xl I 3'
m s... is obtained, and a data set within a certain movement range (
xi, yi) Find i ==1, 2, 3, -N.
この時、データセラ) (xi、yi)は、座標系X7
における測定対象物10円弧形状上の座標値を表わすこ
とになる。At this time, data cella) (xi, yi) is the coordinate system X7
This represents the coordinate values on the arc shape of the measuring object 10 in .
ここで、測定した円弧形状がよく知られた円の一般式
%式%(1)
で表現される円の一部分であると考えれば、簡単な演算
処理装置(図示せず)を用いて、測定データセット(x
i、yi)から、最も確からしい係数g m ’ a
CO値を推定することができ、更に上記演算処理装置に
よって係数g s ’ m ’を用いて直径りは。If we consider that the measured arc shape is a part of a circle expressed by the well-known general formula for circles, Dataset (x
i, yi), the most probable coefficient g m ′ a
The CO value can be estimated and the diameter determined using the coefficient g s ' m ' by the arithmetic processing unit.
D=2X4η口T ・−(2)で求めることが
できる。It can be determined by D=2X4ηT - (2).
〈発明が解決しようとする問題点〉 ところで第4図で示す測定方法では、実用上。<Problem that the invention seeks to solve> By the way, the measurement method shown in Fig. 4 is not suitable for practical use.
次のような問題点が残されていた。つまり、この測定方
法は、図示しない駆動装置により移動台5を基準面6上
で移動させ、移動11xi と変位検出器7の測定値
yt を得る方法であるため。The following problems remained. That is, this measurement method is a method in which the movable table 5 is moved on the reference plane 6 by a drive device (not shown) to obtain the movement 11xi and the measured value yt of the displacement detector 7.
高精度な測定を得なうためには、高精度な駆動装置と、
うねシのない基準面6が必要であった。In order to obtain highly accurate measurements, a highly accurate drive device,
A reference surface 6 without ridges was required.
逆に言えば、移動台5を駆動するときのガタや基準面6
のうね9(真直変誤差)があると、変位検出器7での測
定値y1 が狂ってしまうのである。しかしこのような
高精度な駆動装置及び基準面を実現することは困難であ
った。Conversely, backlash and reference plane 6 when driving moving table 5
If there is a ridge 9 (straightness error), the measured value y1 by the displacement detector 7 will be incorrect. However, it has been difficult to realize such a highly accurate driving device and reference plane.
〈1町施1シ〉
本発明は、上記従来技術に鑑み、大型円形状物体(円弧
部を含む)の直径寸法を、高精度且つ容易に測定できる
内外径寸法測定方法を提供することを目的とする。In view of the above-mentioned prior art, the present invention aims to provide a method for measuring inner and outer diameter dimensions that can easily and accurately measure the diameter of a large circular object (including a circular arc portion). shall be.
く問題点を解決するための手段〉
上記目的を達成する本発明は、検出器取付治具の平面部
に、この平面部と直角方向の変位量を検出する複数の変
位検出器を間隔をあけて一直状に並べて取)付け、各変
位検出器により前記平面部から円弧状をなす測定対象物
までの距離を測定し、各変位検出器の取付位置とその各
変位検出器で測定した距離とでなる複数のデータを円の
一部であるとみなして演算することによって測定対象物
の径を求めることを特徴とすする。第1図に於て1は測
定対象物であシ、その一部分は円弧形状を示している。Means for Solving the Problems> The present invention achieves the above object by installing a plurality of displacement detectors arranged at intervals on a flat part of a detector mounting jig for detecting displacement in a direction perpendicular to the flat part. The distance from the flat surface to the arc-shaped object to be measured is measured by each displacement detector, and the mounting position of each displacement detector and the distance measured by each displacement detector are determined. The method is characterized in that the diameter of the object to be measured is determined by calculating a plurality of pieces of data as part of a circle. In FIG. 1, reference numeral 1 indicates an object to be measured, a part of which has an arc shape.
7′は複数個の変位検出器であり、検出器取付治具8の
平面部上に一直線状に配置されており、検出器取付治具
8と測定対象物1との隔たりを測定する。A plurality of displacement detectors 7' are arranged in a straight line on the flat surface of the detector mounting jig 8, and measure the distance between the detector mounting jig 8 and the object to be measured 1.
第1図に於て、検出器取付治具8上での複数個の変位検
出器7′の配列方向をY軸、検出器取付治具8と測定対
象物lとの隔たシ方向をY軸として考える。In Fig. 1, the direction in which the plurality of displacement detectors 7' are arranged on the detector mounting jig 8 is the Y axis, and the direction of the distance between the detector mounting jig 8 and the measurement object l is the Y axis. Think of it as an axis.
検出器取付治具8を測定対象物1方向に移動させ、複数
個の変位検出器7′を測定対象物1に押しあて、各々の
変位検出器7′での測定値y1(1=1.2.・・・、
N)を得る。こむにNは変位検出器の個数である(第1
図に於てはN;7)。The detector mounting jig 8 is moved in the direction of the object to be measured 1, the plurality of displacement detectors 7' are pressed against the object to be measured 1, and the measured value y1 (1=1. 2....
N) is obtained. N is the number of displacement detectors (first
In the figure, it is N; 7).
一方、複数個の変位検出器7′の配置から、各々の検出
器7′のX軸座f’l xi(1=1’、 2 e・・
・aN ) t’あらかじめ求めておく(例えば、左端
の検出器のX座標をX1ssoとし、他の検出器7′の
X座標は左端の検出器からのへだたシ量で設定する)。On the other hand, from the arrangement of the plurality of displacement detectors 7', the X-axis seat f'l xi (1=1', 2 e...
・aN) t' is determined in advance (for example, the X coordinate of the leftmost detector is set to X1sso, and the X coordinate of the other detector 7' is set by the amount of deviation from the leftmost detector).
とうして求めたデータセット(xi、yi) i =
1゜2、・・・、Nは座標系XYに於ける測定対象物
10円弧形状上の座標値を表わすことになる。The finally obtained dataset (xi, yi) i =
1°2, . . . , N represent coordinate values on the arc shape of the measuring object 10 in the coordinate system XY.
ここで測定した円弧形状が、よく知られた円の一般式
%式%(1)
で表現される円の一部分であると考えれば、図には示さ
れなかった演算処理装置によって測定データセット(x
l 、 y i) (i=i −2−”・* N)から
最小自乗法によって最も確からしい係数gsf−Cの値
を演算することができ、さらに、係数g。Considering that the arc shape measured here is a part of a circle expressed by the well-known general formula for circles, % formula % (1), the measurement data set ( x
l, y i) (i=i −2−”・* N), the most probable value of the coefficient gsf−C can be calculated by the method of least squares, and furthermore, the value of the coefficient g.
f、eを用いて直径は、
D=2×八宣’へ e (2)で求める
ことができる。式変形の詳細は側受するが、係数g、f
、cは(3)式の連立方程式を解くことに°よって求め
られる。Using f and e, the diameter can be found as follows: D = 2 x Hachisen' e (2). The details of the equation transformation are left to you, but the coefficients g, f
, c are obtained by solving the simultaneous equations of equation (3).
ここにN:測定データセットの数
本発明による方法は、複数個の変位検出器によって、−
回の測定で測定対象部分の円弧形状を測定し、その結果
から対象物の直径を推定評価する方法である。従って、
第4図に示す従来法に比べ、装置構成が簡単罠な)高精
度な駆動装置及び基準面を必要とせず、その実用化が容
易とまる。where N: number of measurement data sets The method according to the invention provides -
This method measures the arcuate shape of the part to be measured in multiple measurements, and estimates and evaluates the diameter of the object from the results. Therefore,
Compared to the conventional method shown in FIG. 4, the device configuration is simple and does not require a high-precision drive device or reference surface, making it easy to put it into practical use.
なお、検出器取付治具8と測定対象物1との隔たシty
lの測定にあたっては、各々の変位検出器の零点調整位
置のずれが問題となる。その為の対策としては、検出器
取付治具8上に複数個の変位検出器7′を取付けた状態
で、あらかじめ十分真直度精度が保証された治具(例え
ばストレートエツジ)に検出器を押しあて、その時の状
態をyi=0(1=1 、2 、・・・、N)と設定す
る方法を採ればよい。Note that the distance between the detector mounting jig 8 and the measurement target 1 is
In measuring l, a problem arises due to deviations in the zero point adjustment positions of the respective displacement detectors. As a countermeasure for this, with multiple displacement detectors 7' mounted on the detector mounting jig 8, press the detectors onto a jig (for example, a straight edge) that has been guaranteed to have sufficient straightness accuracy. A method may be adopted in which the state at that time is set as yi=0 (1=1, 2, . . . , N).
また第1図に於ては接触式の変位検出器を例に示したが
、これ以外でも検出器取付治A8と測定対象物1との隔
たシが測定できるような検出器であれば適用が可能であ
る。即ち、光学式。In addition, although a contact-type displacement detector is shown as an example in Fig. 1, any other detector can be used as long as it can measure the distance between the detector mounting jig A8 and the object to be measured 1. is possible. In other words, optical.
渦電流式、静電容量式等の検出器の適用が考えられる。The application of detectors such as eddy current type and capacitance type can be considered.
また、第1図は測定対象物の外径測定(凸形の円弧形状
測定)の例を示したが、内径測定(凹形の円弧形状測定
)についても、ことで説明した方法をそのまま適用でき
ることは勿論である。In addition, although Figure 1 shows an example of measuring the outer diameter of the object to be measured (measuring the shape of a convex arc), the method described above can also be applied as is to measuring the inner diameter (measuring the shape of a concave arc). Of course.
因に、検出器取付治具8上に配列する変位検出器の数(
N) Kよって、対象物半径Rの評価精度が異なる。対
象物のR1検出器取付治具8の寸法等によって詳細は異
なるが、一般にN=10〜20.[1度とすれば実用上
の問題はない。Incidentally, the number of displacement detectors arranged on the detector mounting jig 8 (
N) Therefore, the evaluation accuracy of the target object radius R differs. Although the details vary depending on the dimensions of the R1 detector mounting jig 8 of the object, generally N=10 to 20. [If it is done once, there is no practical problem.
〈発明の効果〉
以上説明したように本発明に係る径測定方法によれば、
測定対象部分の凸状、凹状の円弧形状を測定し、その結
果から対象部分の直径(半径もしくは曲率)を推定算出
するようにしたので、特に大型加工物の直径が容易且つ
高精度に測定できるようになる。また、測定に要する器
具としても大がか夛なものは一切必要としないので、測
定に要する費用の低廉化・が図れる。<Effects of the Invention> As explained above, according to the diameter measuring method according to the present invention,
The convex and concave arc shapes of the part to be measured are measured and the diameter (radius or curvature) of the part to be measured is estimated from the results, making it easy and highly accurate to measure the diameter of particularly large workpieces. It becomes like this. Moreover, since no large-scale equipment is required for measurement, the cost required for measurement can be reduced.
第1図は本発明の一構成を示す図、第2図。 第3図及び第4図はそれぞれ従来例の説明図である。 図面中。 1は測定対象物、 5は移動台。 6は基準面。 7.7′は変位検出器、 8は検出器取付治具。 x、yは座標軸である。 FIG. 1 is a diagram showing one configuration of the present invention, and FIG. 2 is a diagram showing one configuration of the present invention. FIGS. 3 and 4 are explanatory diagrams of conventional examples, respectively. In the drawing. 1 is the object to be measured, 5 is a moving platform. 6 is the reference plane. 7.7' is a displacement detector, 8 is the detector mounting jig. x and y are coordinate axes.
Claims (1)
位量を検出する複数の変位検出器を間隔をあけて一直線
状に並べて取り付け、各変位検出器により前記平面部か
ら円弧状をなす測定対象物までの距離を測定し、各変位
検出器の取付位置とその各変位検出器で測定した距離と
でなる複数のデータを円の一部であるとみなして演算す
ることによつて測定対象物の径を求めることを特徴とす
る内外径寸法測定方法。A plurality of displacement detectors for detecting the amount of displacement in a direction perpendicular to the flat part are installed in a straight line at intervals on the flat part of the detector mounting jig, and each displacement detector detects an arc shape from the flat part. By measuring the distance to the object to be measured, and calculating the multiple data consisting of the mounting position of each displacement detector and the distance measured by each displacement detector, assuming that it is a part of a circle. A method for measuring inner and outer diameter dimensions, characterized by determining the diameter of an object to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP830785A JPS61167809A (en) | 1985-01-22 | 1985-01-22 | Measuring method of internal and external diameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP830785A JPS61167809A (en) | 1985-01-22 | 1985-01-22 | Measuring method of internal and external diameters |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61167809A true JPS61167809A (en) | 1986-07-29 |
Family
ID=11689493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP830785A Pending JPS61167809A (en) | 1985-01-22 | 1985-01-22 | Measuring method of internal and external diameters |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61167809A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277916A (en) * | 1987-05-11 | 1988-11-15 | Nkk Corp | Measuring instrument for curvature quantity of beltlike body |
US7987610B2 (en) * | 2007-03-27 | 2011-08-02 | Showa Denko K.K. | Method of examining aperture diameter of disk substrate having circular aperture in central portion thereof and apparatus thereof |
CN103712585A (en) * | 2013-12-23 | 2014-04-09 | 潘旭华 | Workpiece dimension measuring device |
-
1985
- 1985-01-22 JP JP830785A patent/JPS61167809A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277916A (en) * | 1987-05-11 | 1988-11-15 | Nkk Corp | Measuring instrument for curvature quantity of beltlike body |
US7987610B2 (en) * | 2007-03-27 | 2011-08-02 | Showa Denko K.K. | Method of examining aperture diameter of disk substrate having circular aperture in central portion thereof and apparatus thereof |
CN103712585A (en) * | 2013-12-23 | 2014-04-09 | 潘旭华 | Workpiece dimension measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109141225B (en) | Measurement method and measurement system for shafting error with five and six degrees of freedom based on circular grating | |
Zhang | A study on the Abbe principle and Abbe error | |
JP3687896B2 (en) | Measuring device for pulley for continuously variable transmission | |
US6175813B1 (en) | Circumferential diameter measuring apparatus and method | |
CN109759953B (en) | Contour detection device and detection method of large-aperture plane mirror | |
Garratt | A new stylus instrument with a wide dynamic range for use in surface metrology | |
JP2000205854A (en) | Dimension measurement method for machine parts | |
JPS61167809A (en) | Measuring method of internal and external diameters | |
CN103591874A (en) | Method for achieving polar coordinate gear measuring center zero point calibration through standard block | |
JP2746511B2 (en) | Method for measuring orientation flat width of single crystal ingot | |
JPH05272958A (en) | Automatic detection method and detector for rotation center position by flat substrate and three sensors | |
JPWO2005093366A1 (en) | Curvature radius measuring device | |
JPH0465610A (en) | Tube shape measuring device | |
JPS5952764B2 (en) | Three-point roundness measurement method | |
JPS61139710A (en) | Method for measuring inner and outer diameter dimensions | |
JPS6130681B2 (en) | ||
CN105783812A (en) | Impeller end tooth precision three-coordinate detection method used for 100000m<3>/h air separation and impeller end tooth precision three-coordinate detection device thereof | |
JP2754128B2 (en) | Cylindricity measuring device and measuring method | |
JPH0522814Y2 (en) | ||
JPS59100809A (en) | Device for measuring out-of-roundness | |
US4459748A (en) | Y-Gauge angle measuring device | |
JPS62267612A (en) | Measuring method for size of inside and outside diameters | |
JPH076786B2 (en) | Non-contact rotation accuracy measurement method | |
Zhu et al. | A Fast Calculation Method of Eccentricity of Rotary Parts Based on Least Squares | |
JPH07318301A (en) | Method and device for measuring uneven wall thickness of cylindrical body |