JPS61167442A - Manufacturing method of micro hollow spheres - Google Patents
Manufacturing method of micro hollow spheresInfo
- Publication number
- JPS61167442A JPS61167442A JP60008436A JP843685A JPS61167442A JP S61167442 A JPS61167442 A JP S61167442A JP 60008436 A JP60008436 A JP 60008436A JP 843685 A JP843685 A JP 843685A JP S61167442 A JPS61167442 A JP S61167442A
- Authority
- JP
- Japan
- Prior art keywords
- hollow
- less
- carbon powder
- particle size
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、建材用として用いられている軽量骨材等に用
いられる微小中空球体の極めて優れた製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an extremely excellent method for manufacturing microscopic hollow spheres used in lightweight aggregates used as building materials.
従来の技術
近年、ガラス、シラス、アルミナ、スラグ、ポリマー等
を材料として微小中空球体を製造し、その軽量性、断熱
性、耐熱性を利用して建築材料に用いたり、電気的性質
を利用して高周波絶縁材料や誘電材料などの電気的用途
に用いたり、又吸着性や触媒能を利用して接触反応の触
媒や揮発性液体の蒸発防止などに用いたりする試みが行
われている。Conventional technology In recent years, microscopic hollow spheres have been manufactured using materials such as glass, shirasu, alumina, slag, and polymers, and are used as building materials by taking advantage of their light weight, heat insulation, and heat resistance, and by utilizing their electrical properties. Attempts are being made to use it for electrical applications such as high-frequency insulating materials and dielectric materials, and to use it as a catalyst for catalytic reactions and to prevent the evaporation of volatile liquids by utilizing its adsorption and catalytic properties.
微小中空球体の製造方法は1球殻構造をとらせる手段に
よってつぎのように分類できる(工業材料、第21巻、
第8号、10〜13頁)。The manufacturing method of micro hollow spheres can be classified as follows depending on the means for forming a single spherical shell structure (Industrial Materials, Vol. 21,
No. 8, pp. 10-13).
(1)中空微小球体の原料素材を融解し、その粘性と表
面張力を利用して、空気ジェットによって空気泡を包蔵
させて、球殻体を形成させるもの、たとえばアルミナバ
ブル、ジルコニアバブル、マグネシア系バブルなど。(1) A spherical shell is formed by melting the raw material for hollow microspheres and using its viscosity and surface tension to encapsulate air bubbles with an air jet, such as alumina bubbles, zirconia bubbles, magnesia bubbles, etc. bubble etc.
(2)原料物質の中に構造的にふくまれている揮発性成
分を、加熱によってガス化させて、融解または軟化して
いる材料を微小中空化させるもの、たとえばシラス、焼
成パーライト、フライアッシュ。(2) Materials that gasify the volatile components structurally contained in the raw material by heating to form microscopic hollows in the melted or softened material, such as whitebait, calcined pearlite, and fly ash.
(3)原料物質中に加熱によって分解気化する無機およ
び有機化合物を発泡剤として加えて融解し。(3) Inorganic and organic compounds that are decomposed and vaporized by heating are added as a foaming agent to the raw materials and melted.
中空微小球体を形成させるもの、たとえばガラス、天然
および合成のポリマー。Things that cause hollow microspheres to form, such as glasses, natural and synthetic polymers.
(0微小直径の球状の液体または固体の芯材の周囲に、
中空微小球体の材質を壁膜状に形成させ、融解または加
熱分解によって芯材を除いて、中空微小球体を形成させ
るもの、たとえばサラン、タングステン、球径111以
上のものでは、活性炭、黒鉛、コークス、カオリン、石
英、黒鉱々サイ、正長石など。(Around a spherical liquid or solid core material with a micro diameter of 0,
Materials for hollow microspheres are formed into a wall film and the core material is removed by melting or thermal decomposition to form hollow microspheres, such as saran, tungsten, and for those with a sphere diameter of 111 or more, activated carbon, graphite, coke. , kaolin, quartz, black mineral rhinoceros, orthoclase, etc.
(5)炭素をふくむ有機物の中空微小球体をあらかじめ
つくり、不活性気体中で加熱分解して炭素の中空微小球
体とする。(5) Hollow microspheres of organic material containing carbon are prepared in advance and heated and decomposed in an inert gas to form hollow microspheres of carbon.
しかしながら(1)の方法は粘性と表面張力を利用する
ことから、原料組成に制限があり、許容範囲外の組成で
は、中空球体とはならず、繊維状や実球となる。また高
圧ガス吹付けによる製造法であるところから、中空球体
の粒度が狭い範囲に限られてしまう欠点があった。However, since the method (1) utilizes viscosity and surface tension, there are restrictions on the raw material composition, and if the composition is outside the allowable range, hollow spheres will not be formed, but fibrous or real spheres will be formed. Furthermore, since the manufacturing method involves high-pressure gas spraying, there is a drawback that the particle size of the hollow spheres is limited to a narrow range.
又、(2)の方法は構造的に揮発性成分を含有するもの
であり、原料の種類が限られる。Furthermore, method (2) structurally contains volatile components, and the types of raw materials are limited.
又、(3)の方法は発泡の際高い粘度と表面張力が必要
であるため、使用できる原料組成に制限がある。さらに
焼成曲原料の粒度が粗いと単一中空球とならず内部で隔
壁を有する多泡体となり、また微粒すぎると発泡し難く
なり、炉内融着の原因となることから、中空球体の粒度
が狭い範囲に限られる。Furthermore, since method (3) requires high viscosity and surface tension during foaming, there are limitations on the raw material composition that can be used. Furthermore, if the particle size of the fired raw material is coarse, it will not form a single hollow sphere but will become a multi-foamed body with internal partition walls, and if the particle size is too fine, it will be difficult to foam and cause fusion in the furnace. is limited to a narrow range.
又、(4)の方法は芯材の大きさ、原料粉末の被覆厚み
を変えることにより球体内部の空孔の大きさや外殻厚み
を自由に制御できる利点があるが。Furthermore, method (4) has the advantage that the size of the pores inside the sphere and the thickness of the outer shell can be freely controlled by changing the size of the core material and the coating thickness of the raw material powder.
球体の焼成工程において球体同士の融着を防止する必要
から原料の溶融点以上の温度では処理できず、外殻に反
応途上の原料を残すことになる0反応途上にある原料の
存在は球体の強度、耐熱性を減する。In the firing process of the spheres, it is necessary to prevent the spheres from adhering to each other, so the process cannot be performed at temperatures above the melting point of the raw materials, leaving raw materials in the middle of reaction in the outer shell. Reduces strength and heat resistance.
又、(5)の方法は外殻が炭素に限定される。Further, in the method (5), the outer shell is limited to carbon.
発明が解決しようとする問題点
本発明は、上記方法によらず、広範囲の原材料に適用可
能な簡便且つ新規な微小中空球体の製造方法を提供しよ
うとするものである。Problems to be Solved by the Invention The present invention aims to provide a simple and novel method for manufacturing microscopic hollow spheres that is applicable to a wide range of raw materials, without relying on the above-mentioned method.
本発明者は鋼の連続鋳造に使用する鋳型添加剤、すなわ
ち溶鋼と鋳型間の潤滑、溶鋼面の酸化防止と保温を目的
としたCaO−S i02− M 203系スラグ造滓
剤の溶融過程に及ぼす炭素粉末の影響について詳細な調
査をおこなったところ、スラグ造滓剤造粒物表面に炭素
粉末を被覆した場合、加熱により造粒物の内部が溶融し
融滴となっても融滴同士が融着することはなく、また特
にこの加熱を急速におこなった場合には、微粉末同士の
融着、内部気孔の閉じ込め、気孔の集合、中空融滴の生
成、実球融滴の生成、溶融スラグ層の形成−といった溶
融過程をたどることを見出した。そしてこの溶融過程を
中空融滴生成の段階でとめるならば、中空球体の製造が
可能であり、かっこの中空球体の製造が、炭素揮発温度
以下の溶融点を有する物質、すなわち鉱物、ガラス、ス
ラグ、セラミックス等幅広い物質に適用可能であること
を見出し本発明を完成したものである。The present inventor has developed a mold additive used in the continuous casting of steel, that is, a CaO-S i02-M 203-based slag slag agent for the purpose of lubrication between the molten steel and the mold, and prevention of oxidation and heat retention of the molten steel surface during the melting process. We conducted a detailed study on the influence of carbon powder and found that when carbon powder is coated on the surface of slag slag granules, even if the inside of the granules melts due to heating and becomes molten droplets, the molten droplets do not interact with each other. There is no fusion, and especially when this heating is carried out rapidly, fusion of fine powders, confinement of internal pores, aggregation of pores, formation of hollow molten droplets, formation of spherical molten droplets, and melting occur. It was discovered that the melting process was followed by the formation of a slag layer. If this melting process is stopped at the stage of forming hollow molten droplets, it is possible to manufacture hollow spheres. The present invention was completed by discovering that the method can be applied to a wide range of materials such as ceramics.
問題点を解決するための手段
すなわち1本発明は(1)平均粒径200 μ以下の無
機物質の微粉末を造粒して平均粒径数十μ〜数層層の造
粒物とし、該造粒物表面を平均粒径10%以下の炭素粉
末で300〜12000■蒔の厚さとなる様被覆し、次
いで炭素粉末で被覆した造粒物を、前記無機物質の溶融
点より 100℃以上高い温度で、且つ3500℃以下
の高温で5分以下急速加熱して、内部を中空、外部を炭
素粉末層となし、前記無機物質の中空融滴を形成させ、
該中空融滴が実球融滴となる以前に急速に冷却し、中空
融滴の外殻を凝固させることを特徴とする軽量で強度の
高い微小中空球体の製造方法、および(2)平均粒径2
00終以下の無機物質の微粉末に加熱によって分解気化
もしくは膨張する発泡剤を加え造粒して平均粒径数十終
〜数腸腸の造粒物とし、該造粒物表面を平均粒径10μ
以下の炭素粉末で300〜12000i+xの厚さとな
る様被覆し、次いで炭素粉末で被覆した造粒物を、前記
無機物質の溶融点より 100℃以上高い温度で、且つ
3500℃以下の高温で5分以下急速加熱して、内部を
中空、外部を炭素粉末層となし、前記無機物質の中空融
滴を形成させ、該中空融滴が実球融滴となる以前に急速
に冷却し、中空融滴の外殻を凝固させることを特徴とす
る軽量で強度の高い微小中空球体の製造方法である。Means for solving the problems, namely 1 The present invention consists of (1) granulating a fine powder of an inorganic substance with an average particle size of 200 μm or less to obtain a granulated product with an average particle size of several tens of μm to several layers; The surface of the granules is coated with carbon powder having an average particle diameter of 10% or less to a thickness of 300 to 12,000 cm, and then the granules coated with carbon powder are heated to a temperature 100°C or more higher than the melting point of the inorganic substance. temperature and rapidly heating for 5 minutes or less at a high temperature of 3500 ° C. or less to form hollow molten droplets of the inorganic material with a hollow interior and a carbon powder layer on the exterior,
A method for producing lightweight and strong micro hollow spheres, characterized by rapidly cooling the hollow molten droplets and solidifying the outer shell of the hollow molten droplets before they become real spherical molten droplets, and (2) an average particle size. Diameter 2
A foaming agent that decomposes and vaporizes or expands when heated is added to a fine powder of an inorganic substance having a particle size of 0.00 or less, and is granulated to form a granulated product with an average particle size of several tens of particles to a few tens of particles, and the surface of the granulated material is 10μ
The following carbon powder is coated to a thickness of 300 to 12,000i+x, and then the granules coated with carbon powder are heated for 5 minutes at a temperature 100°C or more higher than the melting point of the inorganic substance and at a high temperature of 3500°C or less. Thereafter, the hollow molten droplet is heated rapidly to form a hollow inside and a carbon powder layer on the outside to form a hollow molten droplet of the inorganic material, and before the hollow molten droplet becomes a real spherical molten droplet, the hollow molten droplet is rapidly cooled. This is a method for manufacturing lightweight and strong microscopic hollow spheres, which is characterized by solidifying the outer shell of.
作用 以下に本発明を作用とともに、詳細に説明する。action The present invention will be explained in detail below along with its operation.
まず本発明における微小中空球体とは直径が、数十ルか
ら数鵬■までの大きさの中空球体であり、加熱溶融径微
小中空球体外殻の材質となる無機材質の微粉末は炭素揮
発温度以下の溶融点を有するもの、すなわち常圧におい
ては3500℃以下の溶融点(ガラス、スラグの場合に
は明瞭な融点がないので、自重で変形する軟化点)を有
するたとえば鉱物、ガラス、スラグ、セラミックス等で
あり、微粉末の平均粒径は200終以下が好ましい、外
殻の材質としては、最終用途に応じて目的に合ったもの
を選択するが、上記無機材質の溶融点は、その組成によ
っても異なるが、その1例を挙げるならば、ガラス約3
70〜1510℃、鉱物として珪灰石的1540℃、製
鋼スラグ約700〜1500℃、セラミックス約184
0〜4000℃である。First, the micro hollow spheres in the present invention are hollow spheres with diameters ranging from several tens of micrometers to several centimeters, and the fine inorganic powder that is the material of the outer shell of the micro hollow spheres with a heated melting diameter is at a carbon volatilization temperature. Minerals, glass, slag, etc. that have a melting point below 3,500°C at normal pressure (glass and slag have a softening point at which they deform under their own weight, as they do not have a clear melting point); It is preferable that the average particle size of the fine powder is 200 mm or less.The material of the outer shell is selected depending on the final use, but the melting point of the above-mentioned inorganic material depends on its composition. It depends on the glass, but to give one example, the glass is about 3
70-1510℃, wollastonite as a mineral 1540℃, steelmaking slag about 700-1500℃, ceramics about 184
The temperature is 0 to 4000°C.
微粉末の平均粒径を200終以下としたのは、粒径が大
きすぎると造粒が困難となるためである。The reason why the average particle size of the fine powder is set to 200 particles or less is because if the particle size is too large, granulation becomes difficult.
本発明は高温加熱を行うことから、外殻の材料として有
機物はその対象外となる。Since the present invention performs high-temperature heating, organic matter is not applicable as a material for the outer shell.
造粒は通常無機物質の微粉末にバインダー溶液を加えて
造粒を行う、使用するバインダーとしては、無機質のも
の、有機質のものいずれも使用できる0代表的な無機バ
インダーとしては、ケイ酸ソーダ、アルミン酸ソーダ、
タール、ピッチ、シリカゾル、アルミナセメント、ポル
トランドセメント、ベントナイト、リン酸塩等があり、
有機バインダーとしてはデンプン、デキストリン、カル
ボキシメチルセルロース、熱硬化性樹脂、熱可塑性樹脂
等があげられる。溶媒としては通常水を用いることで充
分であるが、有機溶剤を使用することもでき限定するも
のではない。Granulation is usually carried out by adding a binder solution to fine powder of an inorganic substance.The binder used can be either inorganic or organic. Typical inorganic binders include sodium silicate, Sodium aluminate,
Includes tar, pitch, silica sol, alumina cement, portland cement, bentonite, phosphate, etc.
Examples of the organic binder include starch, dextrin, carboxymethyl cellulose, thermosetting resin, thermoplastic resin, and the like. It is usually sufficient to use water as the solvent, but organic solvents can also be used without limitation.
バインダーの使用量としては造粒が容易に行える如く、
被造粒物の種類に応じて適宜定めればよいが、被造粒物
(外殻を構成する前記無機物質)に対して一般的には数
重量%〜数10重量%を使用する。The amount of binder used is such that granulation can be easily performed.
Although it may be determined as appropriate depending on the type of the granulated material, it is generally used in an amount of several weight percent to several tens of weight percent based on the granulated material (the inorganic substance constituting the outer shell).
造粒法としては、既存の押出し造粒法、転勤造粒法、攪
拌造粒法、噴霧造粒法、流動層造粒法などを使用するこ
とができる。As the granulation method, existing extrusion granulation method, transfer granulation method, stirring granulation method, spray granulation method, fluidized bed granulation method, etc. can be used.
造粒物の粒子形状は後の加熱工程における中空融滴生成
時、融滴の表面張力により当初形状にかかわらず球体が
生成する。When forming hollow molten droplets in the subsequent heating step, the particle shape of the granulated product is spherical regardless of the initial shape due to the surface tension of the molten droplets.
造粒物は乾燥後表面を炭素粉末で被覆する。乾燥は溶媒
を蒸発させる通常の条件でよい、乾燥を行わないと次の
乾燥工程で造粒物表面が粉化し良好な中空球体が得られ
にくいので乾燥を行う方が好ましい。After drying, the surface of the granulated material is coated with carbon powder. Drying may be carried out under normal conditions to evaporate the solvent, but it is preferable to carry out drying because if drying is not carried out, the surface of the granules will turn into powder in the next drying step and it will be difficult to obtain good hollow spheres.
炭素粉末による造粒物表面の被覆は単に造粒物と炭素粉
末を混合するだけでも達せられ、ドラムミキサー、■ミ
キサー、ナウターミキサ−といった混合機を用いれば良
い。Covering the surface of the granules with the carbon powder can be achieved simply by mixing the granules and the carbon powder, and a mixer such as a drum mixer, (1) mixer, or Nauta mixer may be used.
炭素粉末としてはタール、ピッチ、カーボンブラック、
コークス、黒鉛等より調整される。これらの炭素粉末は
混合の良否、造粒物表面への被覆性の点から平均粒子径
が10w以下であることが望ましい。Carbon powders include tar, pitch, carbon black,
Adjusted from coke, graphite, etc. It is desirable that these carbon powders have an average particle diameter of 10 W or less from the viewpoint of good mixing and coating properties on the surface of the granules.
炭素粉末の被覆は造粒物表面に300〜12000鳳u
の厚さとなる様に被覆する。このため前記混合に於いて
、造粒物重量に対して、炭素粉末を少くとも0.5重量
%以上、好ましくは5重量%以上添加する。しかし、混
合量が10%超となると、被覆量が多くなり、後記の急
速加熱上は不利である。The coating of carbon powder is 300 to 12,000 u on the surface of the granules.
Cover to a thickness of . Therefore, in the mixing, at least 0.5% by weight or more, preferably 5% by weight or more of carbon powder is added to the weight of the granules. However, if the mixing amount exceeds 10%, the amount of coating increases, which is disadvantageous in terms of rapid heating described later.
造粒物は炭素粉末被覆後、構成無機物質の溶融点以上炭
素揮発温度すなわち約3500℃以下の温度雰囲気下に
おき加熱を行う、この加熱工程に於いて造粒物の外部形
状、内部形状は刻々と変化する。この変化の過程を第1
図に示す、(a)は加熱前の造粒物形状であり、造粒さ
れた構成物質微粉2は炭素粉末1により被覆されている
。造粒物を加熱炉内に投入すると、直ちに造粒物内部の
構成物質微粉が溶融融着を始め(b)の状態となる。微
粉の溶融が早いため、微粉間の気孔3は造粒物の外に出
ることはなく、気孔の集合が進みいくつかの独立した気
孔を持つ(C)の状態となる。さらに溶融が進行すると
気孔はひとつになり、溶融物の表面張力により外殻が溶
融した中空融滴(d)が生成する。After the granules are coated with carbon powder, they are heated in an atmosphere at a temperature above the melting point of the constituent inorganic substances and below the carbon volatilization temperature, that is, below about 3500°C.During this heating process, the external and internal shapes of the granules change. It changes every moment. This process of change is explained first.
In the figure, (a) shows the shape of the granulated product before heating, and the granulated constituent material fine powder 2 is coated with the carbon powder 1. Immediately when the granules are placed in the heating furnace, the constituent fine powder inside the granules begins to melt and adhere, resulting in the state shown in (b). Since the fine powder melts quickly, the pores 3 between the fine powders do not come out of the granule, and the pores continue to aggregate, resulting in the state (C) having several independent pores. As the melting progresses further, the pores become one, and hollow molten droplets (d) whose outer shells are molten due to the surface tension of the molten material are produced.
さらに時間が経過すると中空融滴はガスを放出し内部の
詰まった実球融滴となる。実球融滴となると、冷却して
も中空体とはならないから、本発明の微小中空球体は得
られない、中空融滴から実球融滴への移行は、5分位で
あるため、造粒物の急速加熱は高温短時間に行うことが
極めて大切であり、たとえば無機物質の融点以上のなる
べく高温で且つ炭素が揮散しない3500℃以下の温度
で約5分以内とすることが好ましい、 3500℃超と
なると炭素が揮散し、中空球体同志が融着するおそれが
生ずる。As time passes further, the hollow molten droplet releases gas and becomes a solid spherical molten droplet with a clogged interior. When it comes to real molten droplets, they do not become hollow even when cooled, so the micro hollow spheres of the present invention cannot be obtained.The transition from hollow molten droplets to real spherical molten droplets takes about 5 minutes; It is extremely important that the rapid heating of the particles be carried out at a high temperature and in a short time; for example, it is preferable to heat the particles at a temperature as high as possible above the melting point of the inorganic substance and at a temperature of 3500° C. or less at which carbon does not volatilize, within about 5 minutes. If the temperature exceeds .degree. C., carbon will volatilize and there is a risk that the hollow spheres will fuse together.
さらに本発明者の研究によれば加熱温度を無機物質の溶
融点より少くとも100℃以上高温とすることにより得
られる微小中空球体の外殻の耐圧強度が強まることが知
見された。Furthermore, according to the research conducted by the present inventors, it has been found that the pressure resistance of the outer shell of the obtained micro hollow spheres is increased by setting the heating temperature to a temperature higher than the melting point of the inorganic substance by at least 100°C.
なお、加熱炉内において造粒物を流動もしくは振動させ
ることは造粒物間の炭素消耗度合を均一化し造粒物同士
の融着を防止する効果がある。また造粒物表面に被覆し
た炭素粉末は、高温に於いては酸化消耗の度合が大きく
なる。炭素粉末は、中空融滴生成の段階に至る迄融滴表
面に残存することが不可欠である。従って窒素ガスやア
ルゴンガスによる雰囲気の置換をおこない、炭素粉末の
酸化消耗の程度を小さくし操業の安定をはかることは好
ましい。Note that fluidizing or vibrating the granules in the heating furnace has the effect of equalizing the degree of carbon consumption among the granules and preventing fusion of the granules. Furthermore, the carbon powder coated on the surface of the granules is subject to oxidative consumption to a greater degree at high temperatures. It is essential that the carbon powder remains on the surface of the molten droplet until the stage of hollow molten droplet formation is reached. Therefore, it is preferable to replace the atmosphere with nitrogen gas or argon gas to reduce the degree of oxidative consumption of the carbon powder and stabilize the operation.
中空球体の製造では(d)の段階で中空融滴を加熱炉よ
り取出し、構成物質の溶融点以下の温度に急速に冷却し
融滴の外殻を凝固させる。加熱炉からの造粒物取出し冷
却を開始する時期の目安は造粒物の形状が球形になった
直後である。目的の用途に応じ生成した中空球体表面の
残存炭素粉末を除去する必要がある場合には、外殻凝固
後中空球体を300℃以上でかつ中空球体軟化温度以下
の温度範囲にある酸化性雰囲気内に数分〜数十分間投入
することにより、残存する炭素粉末を酸化消耗させ完全
に除去することができる0以上の操作によって本発明微
小中空球体が得られる。In the production of hollow spheres, in step (d), the hollow molten droplet is taken out from the heating furnace and rapidly cooled to a temperature below the melting point of the constituent materials to solidify the outer shell of the molten droplet. The approximate time to take out the granules from the heating furnace and start cooling is immediately after the granules have become spherical in shape. If it is necessary to remove the residual carbon powder on the surface of the hollow sphere depending on the intended use, after solidifying the outer shell, the hollow sphere should be placed in an oxidizing atmosphere at a temperature of 300°C or higher and below the softening temperature of the hollow sphere. The micro hollow spheres of the present invention can be obtained through zero or more operations in which the remaining carbon powder can be oxidized and completely removed by charging the carbon powder for several minutes to several tens of minutes.
なお、造粒時無機物質の微粉末に、加熱によって分解気
化もしくは膨張する発泡剤、たとえば炭゛素粉末、炭酸
カルシウム、炭酸マグネシウム、赤鉄鉱、黄鉄鉱、硫酸
バリウム、硫酸ストロンチウム、珪酸ナトリウム、酸処
理黒鉛、雲母、蛭石、シラス、発泡性粘土、頁岩、黒曜
石、真珠岩、松脂炭等を加えて造粒し、以後同様の操作
を加えて微小中空球体を製造することも可能である0発
泡剤を加えることによって、中空部分の容積を増加させ
ることができる0発泡剤の選択にあたっては、無機物質
の溶融点を考慮して決定する。Furthermore, during granulation, foaming agents that decompose and vaporize or expand upon heating, such as carbon powder, calcium carbonate, magnesium carbonate, hematite, pyrite, barium sulfate, strontium sulfate, sodium silicate, and acid treatment are added to the inorganic powder during granulation. It is also possible to produce minute hollow spheres by adding graphite, mica, vermiculite, shirasu, foamed clay, shale, obsidian, nacre, pine charcoal, etc., and then performing the same operations. The foaming agent that can be added to increase the volume of the hollow portion is determined by considering the melting point of the inorganic substance.
微小中空球体の粒子径rは、構成無機物質原料にガス発
生物質を含まない場合、中空球体の体積は造粒物の体積
Vとほとんど同じになり、中空球又、外殻厚みをtとし
、造粒物の気孔率をεとすると、(は(1−t/r)3
で表わされる。この式から外殻厚みを小さくするために
は、造粒物の気孔率を大きくすればよい。The particle diameter r of the micro hollow spheres is such that when the constituent inorganic materials do not contain gas generating substances, the volume of the hollow spheres is almost the same as the volume V of the granules, and the outer shell thickness of the hollow spheres is t, If the porosity of the granules is ε, then (is (1-t/r)3
It is expressed as From this equation, in order to reduce the outer shell thickness, it is sufficient to increase the porosity of the granules.
実施例1
本発明の実施例を第1表、第2表、第3表に示す、第1
表は造粒物製造条件である。構成無機物質としては溶融
温度、粘度の大きく異なる3種類のスラグと天然の鉱物
である珪灰石を使用した。Example 1 Examples of the present invention are shown in Tables 1, 2, and 3.
The table shows the conditions for producing granules. Three types of slag with significantly different melting temperatures and viscosities and wollastonite, a natural mineral, were used as constituent inorganic materials.
製造した造粒物はいづれの物質も平均粒径750川、粒
子比重1.20前後のものであった。造粒後造粒物表面
を5重量%のカーボンブラックで被覆した後、第2表に
示す条件で加熱処理を行った。所定時間経過後炉外に取
出し、大気中で冷却を行い、ついで、残存炭素粉末除去
のため450℃の炉内に30分間再投入した。これらの
操作の結果いづれの物質についても中空球体が得られた
。得られた中空球体の特性は第3表に示すとおりであっ
た。All of the produced granules had an average particle size of 750 and a particle specific gravity of about 1.20. After granulation, the surface of the granulated product was coated with 5% by weight of carbon black, and then heat-treated under the conditions shown in Table 2. After a predetermined period of time, it was taken out of the furnace, cooled in the atmosphere, and then put back into the furnace at 450° C. for 30 minutes to remove residual carbon powder. As a result of these operations, hollow spheres were obtained for each material. The properties of the obtained hollow spheres were as shown in Table 3.
実施例2
急速加熱条件を変更した場合の中空、実球融滴生成の別
、及び本発明により製造した中空球体である実施例1.
のC,Dサンプルと、従来方法により製造した中空球体
であるシラスバルーン、ホウ珪酸ソーダガラスマイクロ
バルーンとの強度比較を第4表に示す。Example 2 Differential formation of hollow and real molten droplets when rapid heating conditions are changed, and Example 1, which is a hollow sphere manufactured according to the present invention.
Table 4 shows a strength comparison between Samples C and D, and a hollow sphere made by a conventional method, such as a shirasu balloon and a borosilicate soda glass microballoon.
中空球体の強度指標としては静水圧下に於ける中空球体
の破壊率を採用した。すなわち加圧媒体を水とした密閉
容器中で100kg/c層2の加圧条件に置いたサンプ
ルを再び大気圧に開放し、加圧前の中空球体比重を上ま
わるサンプル重量の割合を破壊率とみなした0強度測定
に際しては、中空球体粒子径の影響を排除するため、粒
子径が14131L〜 198μのものを使用した。The fracture rate of the hollow sphere under hydrostatic pressure was used as the strength index of the hollow sphere. In other words, a sample placed under a pressure condition of 100 kg/c layer 2 in a closed container with water as the pressurizing medium is released to atmospheric pressure again, and the percentage of the sample weight that exceeds the specific gravity of the hollow sphere before pressurization is determined as the failure rate. In order to eliminate the influence of the hollow sphere particle size, we used particles with a particle size of 14131L to 198μ when measuring the zero intensity.
第4表に示すごとく、本発明では融点より 100℃以
上高い温度でかつ2〜3分間加熱した場合に、中空融滴
の生成が認められた。As shown in Table 4, in the present invention, formation of hollow molten droplets was observed when heating was performed for 2 to 3 minutes at a temperature 100° C. or more higher than the melting point.
また生成した中空球体はいづれも、従来方法より製造し
たシラスバルーンやホウ珪酸ソーダガラスマイクロバル
ーンに比べて一定圧下での破壊率が小さく、強度的に優
れることが判明した。It was also found that the produced hollow spheres had a lower fracture rate under constant pressure and were superior in strength compared to the shirasu balloons and borosilicate soda glass microballoons produced by conventional methods.
実施例3
未発明徴小中空球体の軽量化をはかるため、平均粒子径
200 μ以下の無機物質造粒時に、加熱により分解気
化もしくは膨張する発泡剤を加えた場合の生成中空球体
粒子特性を第5表に示す。Example 3 In order to reduce the weight of uninvented small hollow spheres, we investigated the characteristics of hollow sphere particles produced when a blowing agent that decomposes and vaporizes or expands upon heating is added during granulation of an inorganic substance with an average particle diameter of 200 μm or less. It is shown in Table 5.
実施例1のCをサンプルとし、シラス微粉末を発泡剤と
して使用した0発泡剤添加以外の製造条件は実施例1の
Cと同一にした。C of Example 1 was used as a sample, and the manufacturing conditions were the same as those of C of Example 1 except for the addition of zero blowing agent in which fine whitebait powder was used as a blowing agent.
シラス微粉末を添加して得られた粒子形状はいづれも中
空球体であり、かつシラス微粉末添加量が増加するにつ
れて中空球体粒子比重は低下した。The particle shapes obtained by adding fine whitebait powder were all hollow spheres, and as the amount of fine whitebait powder added increased, the specific gravity of the hollow spherical particles decreased.
第5表 発泡剤の添加と中空球体粒子特性発明の効果
以上詳述した如く、無機造粒物表面に炭素粉末を被覆し
、無機物質の溶融点以上に急速加熱し、中空融滴を生成
させ、該中空融滴が球状となった後、実球融滴となる以
前に急速に上記溶融点以下に冷却することにより、容易
に均一な微小中空球体を得ることができる。特に無機物
質の融点から、より高い温度で急速加熱することにより
、均質で強度の高い微小中空球体が得られるので、建材
用、電気用、化学用など種々の材料分野に使用可能であ
り、産業上極めて有用な発明である。Table 5 Addition of blowing agent and characteristics of hollow spherical particles Effects of the invention As detailed above, the surface of the inorganic granules is coated with carbon powder, and the surface of the inorganic granules is rapidly heated to a temperature higher than the melting point of the inorganic substance to generate hollow molten droplets. After the hollow molten droplets become spherical, but before they become real spherical molten droplets, they are rapidly cooled to below the melting point, whereby uniform microscopic hollow spheres can be easily obtained. In particular, by rapidly heating at a temperature higher than the melting point of inorganic substances, homogeneous and strong microscopic hollow spheres can be obtained, which can be used in various material fields such as building materials, electrical, chemical, etc., and is suitable for industrial use. This is an extremely useful invention.
第1図(a) 、 (b) 、 (c) 、 (d)は
中空融滴生成の過程の説明図である。
1−・・被覆炭素粉末、2・・・無機物質、3・・・気
孔。FIGS. 1(a), (b), (c), and (d) are explanatory diagrams of the process of forming hollow molten droplets. 1-... coated carbon powder, 2... inorganic substance, 3... pores.
Claims (1)
て平均粒径数十μ〜数mmの造粒物とし、該造粒物表面
を平均粒径10μ以下の炭素粉末で300〜12000
mμの厚さとなる様被覆し、次いで炭素粉末で被覆した
造粒物を、前記無機物質の溶融点より100℃以上高い
温度で、且つ3500℃以下の高温で5分以下急速加熱
して、内部が中空で、外部が炭素粉末層を形成した、前
記無機物質の中空融滴を形成させ、該中空融滴が実球融
滴となる以前に急速に冷却し、中空融滴の外殻を凝固さ
せることを特徴とする軽量で強度の高い微小中空球体の
製造方法。 2、平均粒径200μ以下の無機物質の微粉末に加熱に
よって分解気化もしくは膨張する発泡剤を加え造粒して
平均粒径数十μ〜数mmの造粒物とし、該造粒物表面を
平均粒径10μ以下の炭素粉末で300〜12000m
μの厚さとなる様被覆し、次いで炭素粉末で被覆した造
粒物を、前記無機物質の溶融点より100℃以上高い温
度で、且つ3500℃以下の高温で5分以下急速加熱し
て、内部が中空で、外部が炭素粉末層を形成した、前記
無機物質の中空融滴を形成させ、該中空融滴が実線融滴
となる以前に急速に冷却し、中空融滴の外殻を凝固させ
ることを特徴とする軽量で強度の高い微小中空球体の製
造方法。[Claims] 1. A fine powder of an inorganic substance with an average particle size of 200 μm or less is granulated to form a granule with an average particle size of several tens of μm to several mm, and the surface of the granule is coated with an average particle size of 10 μm or less. 300~12000 for carbon powder
The granules coated with carbon powder are then rapidly heated at a temperature of 100°C or more higher than the melting point of the inorganic substance and at a high temperature of 3,500°C or less for 5 minutes or less to remove the internal Form a hollow molten droplet of the inorganic material, which is hollow and has a carbon powder layer formed on the outside, and rapidly cools the hollow molten droplet before it becomes a real spherical molten droplet to solidify the outer shell of the hollow molten droplet. A method for producing lightweight and strong microscopic hollow spheres characterized by: 2. Add a foaming agent that decomposes and vaporizes or expands when heated to a fine powder of an inorganic substance with an average particle size of 200 μ or less, and granulate it to make a granule with an average particle size of several tens of μ to several mm. 300 to 12,000 m with carbon powder with an average particle size of 10 μ or less
The granules coated with carbon powder are then rapidly heated at a temperature of 100°C or more higher than the melting point of the inorganic substance and at a high temperature of 3,500°C or less for 5 minutes or less to form an internal forming a hollow molten droplet of the inorganic material, which is hollow and has a carbon powder layer formed on the outside, and rapidly cooling the hollow molten droplet before it becomes a solid line molten droplet to solidify the outer shell of the hollow molten droplet. A method for producing lightweight and strong microscopic hollow spheres, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60008436A JPS61167442A (en) | 1985-01-22 | 1985-01-22 | Manufacturing method of micro hollow spheres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60008436A JPS61167442A (en) | 1985-01-22 | 1985-01-22 | Manufacturing method of micro hollow spheres |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61167442A true JPS61167442A (en) | 1986-07-29 |
Family
ID=11693071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60008436A Pending JPS61167442A (en) | 1985-01-22 | 1985-01-22 | Manufacturing method of micro hollow spheres |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61167442A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103285793A (en) * | 2013-06-14 | 2013-09-11 | 复旦大学 | Method for preparing hollow polymer microsphere coated with phase change material |
-
1985
- 1985-01-22 JP JP60008436A patent/JPS61167442A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103285793A (en) * | 2013-06-14 | 2013-09-11 | 复旦大学 | Method for preparing hollow polymer microsphere coated with phase change material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4871693A (en) | Porous cordierite ceramics | |
US4867931A (en) | Methods for producing fiber reinforced microspheres made from dispersed particle compositions | |
AU583531B2 (en) | Hollow microspheres | |
US3321414A (en) | Cellular glass and method of making same | |
US4303432A (en) | Method for compressing gaseous materials in a contained volume | |
US4303731A (en) | Compressed gaseous materials in a contained volume | |
US4775598A (en) | Process for producing hollow spherical particles and sponge-like particles composed therefrom | |
JPS597745B2 (en) | Free-flowing aggregate of hollow spheres | |
US4777154A (en) | Hollow microspheres made from dispersed particle compositions and their production | |
GB2094748A (en) | Forming metal microspheres | |
JPS58120525A (en) | Manufacture of hollow silicate sphere | |
JPS61167442A (en) | Manufacturing method of micro hollow spheres | |
US4178163A (en) | Method for the manufacture of foamed glass | |
US9643876B2 (en) | Microspheres and methods of making the same | |
JPS5992983A (en) | Ceramic fiber foamed body and manufacture | |
JPH0560980B2 (en) | ||
JP2004359543A (en) | Foamed silica gel and method for producing the same | |
JPH052606B2 (en) | ||
RU2690569C2 (en) | Method for production of pearlite sand microspheres | |
JPH0146457B2 (en) | ||
JP2563105B2 (en) | Manufacturing method of porous carbon material | |
JP2994406B2 (en) | Method for producing hollow particles | |
JPH011742A (en) | How to foam pitch particles | |
JPS61236621A (en) | Manufacturing method of micro glass foam particles | |
JPH0417900B2 (en) |