JPS61166673A - Processing system for disaster foreseeing information - Google Patents
Processing system for disaster foreseeing informationInfo
- Publication number
- JPS61166673A JPS61166673A JP60007262A JP726285A JPS61166673A JP S61166673 A JPS61166673 A JP S61166673A JP 60007262 A JP60007262 A JP 60007262A JP 726285 A JP726285 A JP 726285A JP S61166673 A JPS61166673 A JP S61166673A
- Authority
- JP
- Japan
- Prior art keywords
- disaster
- workplace
- group
- function
- accident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、災害予知測定項目を設定してその評価値をも
とに関数を計算し稼働作業所毎の災害予知情報を提供す
る災害予知情報処理システムに関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a disaster prediction system that sets disaster prediction measurement items, calculates a function based on the evaluation value, and provides disaster prediction information for each operating workplace. It relates to information processing systems.
向にあるものの他の産業に比べて際立って高い。 However, it is significantly higher than other industries.
建設業における作業所は、小規模なものから大規模なも
のまで各地に散在していて、それぞれの工事に対して、
立地条件、内容、施工法などに応じた安全管理が行われ
ている。本願の発明者等が別途提案している災害予知情
報処理システムでは、例えば、工事の立地条件、内容、
施工法などによる固有の技術や情報をもとに災害予知指
標を災害危険度として算出し、その災害予知指標を当該
作業所へ情報提供することによって、災害予知指標が所
定の基準値を越えた作業所に対しては重点的な安全指導
を行うようにしている。このシステムにおける災害危険
度は、災害発生メカニズムの対象項目を評価、検出し、
その評価から災害発生率(過去の評価値による発生確率
)を求め加算している。Work sites in the construction industry are scattered all over the place, ranging from small scale to large scale, and for each work,
Safety management is carried out according to location conditions, contents, construction methods, etc. In the disaster prediction information processing system separately proposed by the inventors of this application, for example, the location conditions and contents of construction,
The disaster prediction index is calculated as the degree of disaster risk based on the specific technology and information of the construction method, etc., and the disaster prediction index is provided to the relevant work site, so that the disaster prediction index exceeds the specified standard value. Focused safety guidance is given to workplaces. Disaster risk in this system is determined by evaluating and detecting the target items of the disaster occurrence mechanism.
From this evaluation, the disaster incidence rate (probability of occurrence based on past evaluation values) is calculated and added.
しかしながら、単純加算により災害危険度を算出する従
来のシステムでは、災害が各種要因の積み重ねで発生す
る場合には危険度を太き(するため予知検出能力は高い
が、災害が各種要因の絡みや関わり合いで発生する場合
には予知検出能力が低くなってしまう。However, in the conventional system that calculates the degree of disaster risk by simple addition, when a disaster occurs due to the accumulation of various factors, the degree of risk is increased. If it occurs due to interaction, the ability to predict and detect it will be low.
本発明は、上記問題を解決するものであって、予知精度
を高めることができる災害予知情報処理システムの提供
を目的とするものである。The present invention solves the above problems and aims to provide a disaster prediction information processing system that can improve prediction accuracy.
そのために本発明の災害予知情報処理システムは、災害
予知測定項目を設定して各作業所毎に災害予知測定項目
の評価値を求め、該評価値と所定の定数とを演算して得
られる関数に基づき稼働作業所毎の災害予知情報を提供
する災害予知情報処理システムであって、災害発生作業
所及び無災害作業所の評価値から災害発生作業所グルー
プ判別関数及び無災害作業所グループ判別関数を計算す
る判別関数演算手段と、稼働作業所の評価値から
、、、。To this end, the disaster prediction information processing system of the present invention sets disaster prediction measurement items, obtains evaluation values of the disaster prediction measurement items for each work site, and calculates the evaluation value and a predetermined constant using a function. This is a disaster prediction information processing system that provides disaster prediction information for each operating workplace based on the following: a disaster-occurring workplace group discriminant function and a no-accident workplace group discriminant function from evaluation values of disaster-occurring workplaces and non-disaster-occurring workplaces. From the discriminant function calculation means that calculates the
,,,.
η
各稼働作業所のグループ関数を計算するグループ関数演
算手段とを備え、グループ関数と災害発生作業所グルー
プ判別関数及び無災害作業所グループ判別関数との類似
判定を行って災害予知情報を提供することを特徴とする
ものである。η A group function calculation means for calculating a group function for each operating workplace, and provides disaster prediction information by determining the similarity between the group function and a disaster-occurring workplace group discriminant function and an accident-free workplace group discriminant function. It is characterized by this.
過去に災害を繰り返し起こしている作業所(災害発生作
業所)と同じような状態の稼働作業所については、災害
予知測定項目の評価値も災害発生作業所のそれと似た値
となるから、災害発生作業所及び無災害作業所の評価値
から計算して得られの災害発生作業所グループ判別関数
及び無災害作業所グループ判別関数に対し、稼働作業所
について同様に計算して得られるグループ関数により災
害発生作業所グループと無災害作業所グループとのいず
れのグループに類似するかを調べることによって、極め
て高い確度での災害発生作業所の予知情報を提供するこ
とができる。For workplaces that are operating in similar conditions to workplaces that have repeatedly caused accidents in the past (workplaces where disasters have occurred), the evaluation values of disaster prediction measurement items will be similar to those of workplaces where disasters have occurred. For the accident-occurring workplace group discriminant function and accident-free workplace group discriminant function calculated from the evaluation values of accident-occurring workplaces and accident-free workplaces, a group function obtained by similarly calculating for operating workplaces is used. By checking whether the workplace group is similar to the disaster-occurring workplace group or the accident-free workplace group, it is possible to provide prediction information about the disaster-occurring workplace with extremely high accuracy.
以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.
第1図は本発明の災害予知情報処理システムの1実施例
構成を示す図である。図において、1は係数格納部、2
と3は評価値格納部、4は判別量予知判別判定部、7は
入力部をそれぞれ示している。FIG. 1 is a diagram showing the configuration of one embodiment of the disaster prediction information processing system of the present invention. In the figure, 1 is a coefficient storage section, 2
and 3 indicate an evaluation value storage section, 4 a discriminant amount prediction discrimination determination section, and 7 an input section, respectively.
第1図において、係数格納部1は、災害発生作業所に与
えられる定数A、及び各災害予知測定項目に対する換算
係数A= (i=1.2.・・・・・・)と無災害作業
所に与えられる定数a0及び各災害予知測定項目に対す
る換算係数ai (i=1+2+・・・・・・)とを格
納するものであり、評価値格納部2は、災害発生作業所
についての各災害予知測定項目に対する評価値X= (
i=1.2.・・・・・・)を格納するものであり、評
価値格納部3は、稼働作業所についての各災害予知測定
項目に対する評価値xt (i=L2+・・・・・・)
を格納するものである。ここで、定数は、どの災害予知
測定項目(災害発生要因)にどれだけのウェイトをつけ
ればよいかを決めるものである。In FIG. 1, a coefficient storage unit 1 stores a constant A given to a workplace where a disaster has occurred, a conversion coefficient A= (i=1.2...) for each disaster prediction measurement item, and a non-accident operation. The evaluation value storage unit 2 stores the constant a0 given to the workplace and the conversion coefficient ai (i=1+2+...) for each disaster prediction measurement item. Evaluation value for predictive measurement item X = (
i=1.2. ...), and the evaluation value storage unit 3 stores the evaluation value xt (i=L2+...) for each disaster prediction measurement item for the operating workplace.
It is used to store. Here, the constant determines how much weight should be given to which disaster prediction measurement item (disaster occurrence factor).
判別関数演算部4は、災害発生作業所グループの判別関
数21と無災害作業所グループの判別関数22とを求め
るものである。ここで災害発生作業所グループの判別関
数2.は、各災害発生作業に格納された災害発生作業所
の災害予知測定項目に対する換算係数A、と評価値格納
部2に格納された災害発生作業所の各災害予知測定項目
に対する評価値X、とを乗算して定数A0とともに合計
することによって求められる。また、無災害作業所グル
ープの判別関数22は、各稼働作業所について災害予知
測定項目毎に、係数格納部1に格納された無災害作業所
の災害予知測定項目に対する換算係数a、と評価値格納
部3に格納された稼働作業所の各災害予知測定項目に対
する評価値X。The discriminant function calculation unit 4 calculates a discriminant function 21 for the accident-occurring workplace group and a discriminant function 22 for the accident-free workplace group. Here, the discriminant function 2 for the workplace group where the disaster occurred. are the conversion coefficient A for the disaster prediction measurement item of the disaster occurrence workplace stored in each disaster occurrence work, the evaluation value X for each disaster prediction measurement item of the disaster occurrence workplace stored in the evaluation value storage unit 2, and It is obtained by multiplying by , and summing them together with a constant A0. In addition, the discriminant function 22 for the accident-free workplace group includes, for each disaster prediction measurement item for each working workplace, the conversion coefficient a for the disaster prediction measurement item of the accident-free workplace stored in the coefficient storage unit 1, and the evaluation value. Evaluation value X for each disaster prediction measurement item of the operating workplace stored in the storage unit 3.
とを乗算して定数a0とともに合計することによって求
められる。つまり、ここでは無災害作業所グループとし
て、稼働作業所をあてはめて無災害作業所グループの判
別関数22を求めるようにしているが、過去の無災害作
業所の災害予知測定項目の評価値を使用するようにして
もよいことはいうまでもない。すなわち、判別関数演算
部4では、Z+”Ao+ΣA、X。It is obtained by multiplying by and summing together with a constant a0. In other words, here, the discriminant function 22 of the accident-free workplace group is calculated by applying the working workplaces as the accident-free workplace group, but the evaluation values of the disaster prediction measurement items of past accident-free workplaces are used. It goes without saying that you may do as you like. That is, in the discriminant function calculation unit 4, Z+''Ao+ΣA,X.
Z2 =ao +Σai Xi の演算が行われる。Z2 = ao + Σai Xi calculations are performed.
稼働作業所関数演算部5は、各稼働作業所について災害
発生作業所グループ関数2.と無災害作業所グループ関
数22とを求めるものである。ここで災害発生作業所グ
ループ関数z、は、各稼働作業所について災害予知測定
項目毎に、係数格納部1に格納された災害発生作業所の
災害予知測定項目に対する換算係数A、と評価値格納部
3に格納された稼働作業所の各災害予知測定項目に対す
る評価値X、とを乗算して定数A0とともに合計するこ
とによって求められる。また、無災害作業所グループ関
数22は、各稼働作業所について災害予知測定項目毎に
、係数格納部1に格納された無災害作業所の災害予知測
定項目に対する換算係数38と評価値格納部3に格納さ
れた稼働作業所の各災害予知測定項目に対する評価値x
8とを乗算67定数°°′!″8°°合8+す2′。2
°°1°7求 I□・・められる。すな
わち、稼働作業所関数演算部5では、
Z 1 =A a +ΣAi xizz=ao +
Σai xi
の演算が行われる。The operating workplace function calculation unit 5 calculates a disaster occurrence workplace group function 2 for each operating workplace. and accident-free workplace group function 22. Here, the disaster occurrence workplace group function z stores the conversion coefficient A and the evaluation value for the disaster prediction measurement item of the disaster occurrence workplace stored in the coefficient storage unit 1 for each disaster prediction measurement item for each operating workplace. It is obtained by multiplying the evaluation value X for each disaster prediction measurement item of the working workplace stored in the section 3, and summing the result together with a constant A0. In addition, the accident-free workplace group function 22 includes a conversion coefficient 38 for the disaster prediction measurement item of the accident-free workplace stored in the coefficient storage unit 1 and an evaluation value storage unit 3 for each disaster prediction measurement item for each operating workplace. Evaluation value x for each disaster prediction measurement item of the operating workplace stored in
Multiply by 8 and 67 constant °°'! ″8°° 8+su2′.2
°°1°7 I□... can be found. That is, in the operating workplace function calculation unit 5, Z 1 =A a +ΣAi xizz = ao +
An operation of Σai xi is performed.
災害予知判別判定部6は、判別関数演算部4で求めた災
害発生作業所グループの判別関数ZIの分布及び無災害
作業所グループの判別関数22の分布より、各稼働作業
所について個々に稼働作業所関数演算部Sで求めた災害
発生作業所グループ関数21及び無災害作業所グループ
関数Ztがどちらの判別関数により類似しているかを比
較判別し、その稼働作業所が災害発生作業所グループに
属するか無災害作業所グループに属するかを判定するも
のである。The disaster prediction discrimination judgment unit 6 determines the operating work individually for each operating workplace based on the distribution of the discriminant function ZI of the disaster-occurring workplace group and the distribution of the discriminant function 22 of the accident-free workplace group obtained by the discriminant function calculation unit 4. It compares and determines which discriminant function the disaster-occurring workplace group function 21 and the accident-free workplace group function Zt obtained by the workplace function calculation unit S are similar to, and the operating workplace belongs to the disaster-occurring workplace group. This is to determine whether the workplace belongs to the accident-free workplace group.
人力部7は、係数格納部1や評価値格納部2.3に格納
するデータを人力したり、判別関数演算部4や稼働作業
所関数演算部5、災害予知判別判定部6に対する演算指
令を入力したりするものである。The human power unit 7 manually inputs data to be stored in the coefficient storage unit 1 and the evaluation value storage unit 2.3, and issues calculation commands to the discriminant function calculation unit 4, operating work place function calculation unit 5, and disaster prediction discrimination determination unit 6. It is something that you input.
次に本発明の災害予知情報処理の具体的な例を説明する
。第2図は災害予知測定項目の固定値の例を説明するた
めの図、第3図は災害予知測定項害予知測定項目につい
て作業所群別の特徴を説明するための図、第5図は本発
明の災害予知情報処理システムにより出力される判定結
果の例を示す図である。Next, a specific example of disaster prediction information processing according to the present invention will be explained. Figure 2 is a diagram for explaining examples of fixed values for disaster prediction measurement items, Figure 3 is a diagram for explaining characteristics of disaster prediction measurement items and harm prediction measurement items by workplace group, and Figure 5 is a diagram for explaining the characteristics of disaster prediction measurement items and harm prediction measurement items by workplace group. It is a figure showing an example of a judgment result outputted by a disaster prediction information processing system of the present invention.
災害予知測定項目としては、工事の内容によって評価さ
れる固定値と、工事の進行に伴って評価される変動値と
に分けることができる。すなわち、固定値は、第2図に
示すように特性要因として、工事区分や構造、延面積、
建築物の場合にはその階数(地下、地上)、工期その他
の要素により評価される工事難易度、工事責任者やその
作業所の過去の災害発生データなどにより評価される災
害経歴のを無、鉄骨建方工事や足場組法し工事などの危
険工事工程の有無がある。また、変動値は、第3図に示
すように特性要因として、事前計画の実施状況、安全施
工サイクルの実施状況、安全管理状況の評価、是正状況
の経歴評価がある。これらのデータは、それぞれ第2図
及び第3図に示すように工事報告書、工事工程表、各種
のチj−’7り或いは定期的に人力される。そして、こ
れらの評価値をもとに過去の経験に基づいて算定された
数値を使って災害危険度の配分計算を行う。例えば災害
危険度は、上記の各特性要因の災害発生率の合計の最大
値が100となるように変換したものにより定義するこ
とができる。このような災害予知項目の設定により、建
設工事では、工事の難易性が異なる建物の構造や形状、
事前計画が必要な配員や機材、施工法、安全施工環境を
保証する仮設材や災害防止のための器具の使用状況、現
場管理者が作業進行状必要な施工方針の理解や作業の指
導、統率、その他の災害発生の要因となる評価が加味さ
れる。Disaster prediction measurement items can be divided into fixed values that are evaluated depending on the content of the construction work and variable values that are evaluated as the construction progresses. In other words, the fixed value is based on the characteristic factors such as construction classification, structure, total area, etc. as shown in Figure 2.
In the case of a building, the degree of difficulty of construction is evaluated based on the number of floors (underground, above ground), construction period and other factors, and the history of disasters is evaluated based on past disaster occurrence data of the person in charge of construction and the work site. There may or may not be dangerous construction processes such as steel frame erection work and scaffolding construction work. Further, as shown in FIG. 3, the variation values include, as characteristic factors, the implementation status of advance planning, the implementation status of the safe construction cycle, the evaluation of the safety management status, and the history evaluation of the correction status. These data may be generated from construction reports, construction schedules, various types of charts, or periodically manually as shown in FIGS. 2 and 3, respectively. Then, based on these evaluation values, the disaster risk distribution is calculated using numerical values calculated based on past experience. For example, the disaster risk level can be defined by converting the maximum value of the sum of the disaster occurrence rates of each of the above characteristic factors to 100. By setting such disaster prediction items, construction work can be performed based on the structure and shape of buildings that differ in the difficulty of construction.
Personnel and equipment that require advance planning, construction methods, usage status of temporary materials to ensure a safe construction environment and equipment to prevent disasters, understanding of work progress by site managers, necessary construction policy understanding and work guidance, Leadership and other evaluations that are factors in the occurrence of disasters are taken into consideration.
第2図及び第3図に示す固定値及び変動値さらにこれら
の評価値をもとに過去の経験に基づいて算定された数値
を使って計算された災害危険度の8項目を災害予知測定
項目として作業所群別の特徴を示したのが第4図である
。第4図において、例えば工事難易度は60%〜100
%、災害経歴の有無その他の項目はそれぞれの評価を0
%〜100%のスケールにより示し、災害発生作業所及
び稼働作業所それぞれの平均値を示すと、災害発生作業
所は図示点線、災害発生作業所は図示実線のようになる
。第1図図示の評価値格納部2及び3に格納される災害
発生作業所及び稼働作業所の評価値X8及びx、は、こ
れらの各項目について第4図図示グラフ中のどの点に位
置するかによって評価される値である。すなわち、工事
難易度を例にとると、その評価対象となった作業所の工
事難易度が、第4図図示の災害発生作業所寄りかつまり
実線と点線との中間よりも中心寄りか、稼働作業所寄り
かつまり実線と点線との中間よりも外側寄りかにより評
価値が異なる。そして、このような評価値に対して、定
数A、及びa、を乗じて関数計算を行う。Disaster prediction measurement items include 8 items of disaster risk calculated using fixed values and variable values shown in Figures 2 and 3, and numerical values calculated based on past experience based on these evaluation values. Figure 4 shows the characteristics of each workplace group. In Figure 4, for example, the construction difficulty level is 60% to 100.
%, presence or absence of disaster history, and other items are evaluated as 0.
When the average value is shown on a scale of % to 100% for the workplace where the disaster occurred and the workplace where the disaster occurred, the workplace where the disaster occurred is indicated by the dotted line, and the workplace where the disaster occurred is indicated by the solid line. Where are the evaluation values X8 and x of the disaster-occurring work site and operating work site stored in the evaluation value storage units 2 and 3 shown in Figure 1 located in the graph shown in Figure 4 for each of these items? It is a value evaluated based on In other words, taking construction difficulty as an example, whether the construction difficulty of the work site that was the subject of evaluation is closer to the work site where the disaster occurred as shown in Figure 4, that is, closer to the center than between the solid line and the dotted line, or The evaluation value differs depending on whether it is closer to the work place or closer to the outside than the middle between the solid line and the dotted line. Functional calculations are then performed by multiplying such evaluation values by constants A and a.
第4図図示のように8項目に分けて関数計算を行う場合
には、例えば次のようにして評価値及び定数値が決めら
れる。すなわち、作業所のそれぞれの評価値X1とxl
を工事難易度、X2とx2を災害経歴の有無、X3とx
3を危険工事工程の有無、X、とx4を事前計画の実施
状況、X、とX、を安全施工サイクルの実施状況、X、
とx6を安全管理状況の評価、X7とx7を是正状況の
経歴評価、X8とx8を災害危険度とする。そして、対
応する定数A0〜A、及びa0〜a8として災害発生作
業所の評価値により演算した関数Z+=Ao +ΣA、
X、
Z、’=a0+Σai X。When performing functional calculations divided into eight items as shown in FIG. 4, evaluation values and constant values are determined, for example, as follows. In other words, the respective evaluation values X1 and xl of the workplace
is the construction difficulty level, X2 and x2 are the presence or absence of disaster history, and X3 and x
3 is the presence or absence of a dangerous construction process, X, and x4 are the implementation status of advance planning, X, and X are the implementation status of the safe construction cycle,
and x6 are the evaluation of the safety management situation, X7 and x7 are the history evaluation of the correction situation, and X8 and x8 are the degree of disaster risk. Then, a function Z+=Ao+ΣA is calculated using the evaluation values of the workplace where the disaster occurred as the corresponding constants A0 to A and a0 to a8,
X, Z,'=a0+Σai X.
と、無災害作業所の評価値X、′により演算した°
関数
Z+’=Ao +ΣAHXi ’
zz’=a0+Σai Xi ’
とに偏りが生ずるような値を設定する。すなわち、稼働
作業所のうち災害発生作業所と同じような状況にある作
業所について関数Zl と22とを計算すると、関数2
1の関数Z、に対する類似度の方が関数22の関数zz
Iに対する類似度より顕著に畜くなり、反面、稼働
作業所のうち無災害作業所と同じような状況にある作業
所について関数2対する類似度の方が関数z2の関数z
t ′に対する類似度より顕著に低くなるような値を定
数A0〜A8及びa0〜a8として設定する。and the evaluation value of accident-free workplaces
A value is set such that a bias occurs in the function Z+'=Ao+ΣAHXi'zz'=a0+ΣaiXi'. In other words, when calculating the functions Zl and 22 for workplaces in operation that are in the same situation as the workplace where the disaster occurred, the function 2
1 is more similar to function Z than function 22, zz
The similarity to function 2 is significantly lower than the similarity to function I, but on the other hand, the similarity to function 2 for workplaces that are in the same situation as non-disaster workplaces among working workplaces is lower than that for function z2.
Constants A0 to A8 and a0 to a8 are set to values that are significantly lower than the similarity to t'.
本願の発明者等は、定数A0〜AIl及びa0〜a、を
1例として次の値
A0= 84.84378 ao = 69
.04133A+ = 7.88044 a1
= 6.92438A、 = 9.96012
2z = 7.35430A3 = 6.296
64 23 = 6.94206A4= 96
.20555 a、 = 90.10310A
s =4.20560 as = 4.518
94A6= 4.23298 a6= 3.
07496At = 15.77218 av
= 14.13361As = −2,88123
2s = −4,33489に設定するとともに、各災
害予知測定項目の評価値について第4図図示の実線と破
線との中間に基準点を設け、その外側を「1」、内側を
「2」に評価して判定処理を行ってみた。その作業所判
別判定結果の例を示したのが第5図である。第5図災害
、3が飛来・落下、4が崩壊・倒壊、5が感電、6が火
気、7がその他の災害を示し、また、各項目の0が良好
、Δが一部不良、×が全般不良を示している。この結果
によると、無災害と判定した作業所からの災害発生率は
12.5%、災害が発生すると判定した作業所からの災
害発生率は87.5%となり、極めて高い予知検出能力
を得ることができた。なお、第4図におけるグループ判
定の確率は、各判別関数の分布と各稼働作業所のグルー
プ関数との類似関係から求めることができる。The inventors of the present application set the following value A0 = 84.84378 ao = 69 using the constants A0 to AIl and a0 to a as an example.
.. 04133A+ = 7.88044 a1
= 6.92438A, = 9.96012
2z = 7.35430A3 = 6.296
64 23 = 6.94206A4 = 96
.. 20555 a, = 90.10310A
s = 4.20560 as = 4.518
94A6=4.23298 a6=3.
07496At = 15.77218av
= 14.13361As = -2,88123
2s = -4,33489, and set a reference point between the solid line and the broken line shown in Figure 4 for the evaluation value of each disaster prediction measurement item, and set the outside as "1" and the inside as "2". I tried to evaluate and perform judgment processing. FIG. 5 shows an example of the result of the workplace discrimination determination. Figure 5 indicates disasters, 3 indicates flying/falling, 4 indicates collapse/collapse, 5 indicates electric shock, 6 indicates fire, 7 indicates other disasters, and 0 for each item indicates good, Δ indicates partially defective, and × indicates Indicates general failure. According to this result, the accident occurrence rate from workplaces determined to be accident-free is 12.5%, and the accident occurrence rate from workplaces determined to be accident-prone is 87.5%, achieving extremely high predictive detection ability. I was able to do that. Note that the probability of group determination in FIG. 4 can be determined from the similarity relationship between the distribution of each discriminant function and the group function of each operating workplace.
本発明は、以上に説明したように、災害発生作業所と無
災害作業所とに対応して定数により災害予知測定項目の
評価値にウェイトづけをし、このウェイトづけをして演
算した関数をもとに各稼働作業所の属するグループを判
別した上で、その確率を判定するので、予知精度を上げ
ることができるものであり、災害予知測定項目の分類項
目数や評価値の段数、定数値などは、先に述べた例に限
定されるものでなく、分類項目数や評価値の段数、定数
値などは工事や作業所その他の状況に応じて変えてもよ
いことはいうまでもない。As explained above, the present invention weights evaluation values of disaster prediction measurement items using constants corresponding to workplaces where disasters have occurred and workplaces where there have been no accidents, and calculates a function calculated using this weighting. It is possible to improve prediction accuracy by determining the group to which each operating workplace belongs based on the group and then determining its probability. It goes without saying that these are not limited to the examples described above, and the number of classification items, the number of evaluation value stages, constant values, etc. may be changed depending on the construction, work place, and other conditions.
以上の説明から明らかなように、本発明によれば、災害
予知測定項目を設定し、その評価値にウェイトづけをし
て関数処理することによって、作業所を災害発生作業所
と無災害作業所のいずれのグループに属するかを判別す
るので、災害発生メカニズムの諸要因の探索が可能とな
り、予知精度の向上を図ることができる。また、予知精
度を向上させたことにより質の高い安全指導を行うこと
ができ、災害発生件数の減少を図ることができる。As is clear from the above description, according to the present invention, by setting disaster prediction measurement items, weighting the evaluation values, and performing a function process, workplaces can be divided into disaster-occurring workplaces and accident-free workplaces. Since it is determined which group the disaster belongs to, it is possible to search for various factors behind the mechanism of disaster occurrence, and it is possible to improve prediction accuracy. Furthermore, by improving prediction accuracy, it is possible to provide high-quality safety guidance and reduce the number of disasters that occur.
第1図は本発明の災害予知情報処理システムの1実施例
構成を示す図、第2図は災害予知測定項目の固定値の例
を説明するための図、第3図は災’ifmI+:5!I
Ji IU°**(i(7)ml’fr:mM“7”o
(g゛、;第4図は災害予知測定項目について作業所群
別の特徴を説明するための図、第5図は本発明の災害予
知情報処理システムにより出力される判定結果の例を示
す図である。
■・・・係数格納部、2と3・・・評価値格納部、4・
・・判別関数演算部、5・・・稼働作業所関数演算部、
6・・・災害予知判別判定部、7・・・人力部。Fig. 1 is a diagram showing the configuration of one embodiment of the disaster prediction information processing system of the present invention, Fig. 2 is a diagram for explaining an example of fixed values of disaster prediction measurement items, and Fig. 3 is a diagram showing an example of fixed values of disaster prediction measurement items. ! I
Ji IU°**(i(7)ml'fr:mM"7"o
(g゛,; Figure 4 is a diagram for explaining the characteristics of disaster prediction measurement items by workplace group, and Figure 5 is a diagram showing an example of the judgment results output by the disaster prediction information processing system of the present invention. ■...Coefficient storage section, 2 and 3...Evaluation value storage section, 4.
...Discriminant function calculation section, 5...Operating work place function calculation section,
6... Disaster prediction discrimination judgment department, 7... Human resources department.
Claims (3)
知測定項目の評価値を求め、該評価値と所定の定数とを
演算して得られる関数に基づき稼働作業所毎の災害予知
情報を提供する災害予知情報処理システムであって、災
害発生作業所及び無災害作業所の評価値から災害発生作
業所グループ判別関数及び無災害作業所グループ判別関
数を計算する判別関数演算手段と、稼働作業所の評価値
から各稼働作業所のグループ関数を計算するグループ関
数演算手段とを備え、グループ関数と災害発生作業所グ
ループ判別関数及び無災害作業所グループ判別関数との
類似判定を行って災害予知情報を提供することを特徴と
する災害予知情報処理システム。(1) Disaster prediction measurement items are set, evaluation values of the disaster prediction measurement items are determined for each workplace, and disaster prediction is performed for each operating workplace based on a function obtained by calculating the evaluation value and a predetermined constant. A disaster prediction information processing system that provides information, comprising a discriminant function calculation means for calculating a disaster occurrence workplace group discriminant function and a disaster-free workplace group discriminant function from evaluation values of disaster occurrence workplaces and disaster-free workplaces; and a group function calculation means for calculating a group function for each operating workplace from the evaluation value of the operating workplace, and for determining the similarity between the group function and the accident-occurring workplace group discriminant function and the accident-free workplace group discriminant function. A disaster prediction information processing system characterized by providing disaster prediction information.
に無災害作業所グループ判別関数を計算することを特徴
とする特許請求の範囲第(1)項記載の災害予知情報処
理システム。(2) The disaster prediction information processing system according to claim (1), wherein the discriminant function calculating means calculates the accident-free workplace group discriminant function based on the evaluation values of the operating workplaces. .
プ判別関数及び無災害作業所グループ判別関数と同じ計
算により各稼働作業所のグループ関数を計算し、それぞ
れのグループ関数が災害発生作業所グループ判別関数及
び無災害作業所グループ判別関数のいずれにより類似す
るかを調べて属するグループの判定を行うことを特徴と
する特許請求の範囲第(1)項記載の災害予知情報処理
システム。(3) The group function calculation means calculates a group function for each operating workplace using the same calculation as the accident-occurring workplace group discriminant function and the accident-free workplace group discriminant function, and each group function distinguishes the accident-occurring workplace group. The disaster prediction information processing system according to claim 1, characterized in that the group to which the two objects belong is determined by checking whether they are similar by a function or a disaster-free workplace group discriminant function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60007262A JPS61166673A (en) | 1985-01-18 | 1985-01-18 | Processing system for disaster foreseeing information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60007262A JPS61166673A (en) | 1985-01-18 | 1985-01-18 | Processing system for disaster foreseeing information |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61166673A true JPS61166673A (en) | 1986-07-28 |
Family
ID=11661111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60007262A Pending JPS61166673A (en) | 1985-01-18 | 1985-01-18 | Processing system for disaster foreseeing information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61166673A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5793439A (en) * | 1988-07-13 | 1998-08-11 | Seiko Epson Corporation | Image control device for use in a video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
US5929933A (en) * | 1988-07-13 | 1999-07-27 | Seiko Epson Corporation | Video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
-
1985
- 1985-01-18 JP JP60007262A patent/JPS61166673A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5793439A (en) * | 1988-07-13 | 1998-08-11 | Seiko Epson Corporation | Image control device for use in a video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
US5929933A (en) * | 1988-07-13 | 1999-07-27 | Seiko Epson Corporation | Video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
US5929870A (en) * | 1988-07-13 | 1999-07-27 | Seiko Epson Corporation | Video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
US5973706A (en) * | 1988-07-13 | 1999-10-26 | Seiko Epson Corporation | Video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
US5986633A (en) * | 1988-07-13 | 1999-11-16 | Seiko Epson Corporation | Video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
USRE37879E1 (en) | 1988-07-13 | 2002-10-15 | Seiko Epson Corporation | Image control device for use in a video multiplexing system for superimposition of scalable video data streams upon a background video data stream |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Groves et al. | Analysis of fatalities and injuries involving mining equipment | |
Rucker et al. | Predictive validity of the strain index in manufacturing facilities | |
Lipscomb et al. | Surveillance of work‐related musculoskeletal injuries among union carpenters | |
Villanova | Attribute-based risk model for assessing risk to industrial construction tasks | |
Sekhavati et al. | Assessment optimization of safety and health risks using fuzzy TOPSIS technique (case study: construction sites in the South of Iran) | |
Acuner et al. | An effective risk-preventive model proposal for occupational accidents at shipyards | |
Neitzel et al. | A mixed-methods evaluation of health and safety hazards at a scrap metal recycling facility | |
Ak | Comparison of risk assessment methods within the scope of occupational safety in the construction sector | |
Kazemi et al. | Development of fragility curves by incorporating new spectral shape indicators and a weighted damage index: case study of steel braced frames in the city of Mashhad, Iran | |
CN116975737A (en) | Multi-parameter multi-index magnitude classification combined early warning method based on microseism monitoring | |
CN114862289A (en) | Construction parameter-based safety state confirmation method and device | |
Joughin et al. | A risk evaluation model for support design in Bushveld Complex underground mines: Part I-Description of the model | |
JPS61166673A (en) | Processing system for disaster foreseeing information | |
Fragiadakis et al. | Seismic risk assessment of rocking building contents of multistorey buildings | |
JP5280387B2 (en) | Safety analysis system | |
Fletcher et al. | The risk of lung cancer from asbestos among Swedish construction workers: self-reported exposure and a job exposure matrix compared | |
Lim et al. | Affinity analysis between factors of fatal occupational accidents in construction using data mining techniques | |
Woliński | Robustness and vulnerability of flat slab structures | |
Melchers | THE INFLUENCE OF CONTROL PROCESSES IN STRUCTURAL ENGINEERING. | |
Ntaliakouras et al. | Seismic vulnerability curves for industrial steel structures | |
Błazik-Borowa et al. | Probability distribution functions for service loads of frame scaffoldings | |
Bhasker et al. | Quantifying the degree of torsional irregularity for the fragility assessment of plan asymmetric RC buildings | |
Singh | Cost estimation of prestressed concrete beam and reinforced concrete slab construction | |
JP4771129B2 (en) | Seismic risk assessment system for production facilities | |
Kurnia et al. | Analysis on The Level of Physical Workload of Coal Handling Control Room and Ship Unloader Operation in Cilacap Steam Turbine Power Plant |