[go: up one dir, main page]

JPS6116383A - Word reading system - Google Patents

Word reading system

Info

Publication number
JPS6116383A
JPS6116383A JP59136623A JP13662384A JPS6116383A JP S6116383 A JPS6116383 A JP S6116383A JP 59136623 A JP59136623 A JP 59136623A JP 13662384 A JP13662384 A JP 13662384A JP S6116383 A JPS6116383 A JP S6116383A
Authority
JP
Japan
Prior art keywords
characters
recognition candidate
word
character
similarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59136623A
Other languages
Japanese (ja)
Other versions
JPH0354391B2 (en
Inventor
Yasuhiro Okada
康裕 岡田
Haruo Mizukami
水上 治雄
Masataka Yamamoto
山本 勝敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59136623A priority Critical patent/JPS6116383A/en
Publication of JPS6116383A publication Critical patent/JPS6116383A/en
Publication of JPH0354391B2 publication Critical patent/JPH0354391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Character Discrimination (AREA)

Abstract

PURPOSE:To improve the word recognition rate to shorten the processing time by selecting properly characters in accordance with relations between the number of characters having the similarities higher than a prescribed value and prescribed lower limit and upper limit numbers and using selected characters as recognition candidate characters. CONSTITUTION:A character on a form 1 is photoelectrically converted by a scanning means 2, and this photoelectrically converted character pattern is recognized by a character recognizing means 3, and plural recognition candidate characters to which similarities are added are selected and outputted. Plural recognition candidate characters are selected by a recognition candidate character selecting means 8. The recognition candidate character selecting means 8 uses similarities obtained from a similarity table 9 for recognition candidate character selection and upper and lower limit values obtained from an upper and lower limit table 10 for recognition candidate character selection to select recognition candidate characters. A word determining means 4 selects the word, which has a minimum sum of the order and exists in a word dictionary 5, from recognition candidate characters.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、単語の読取方式に関し、さらに詳しくは単
語で構成する文字を/文字ごとに認識し、その結果から
単語を認識・決定する単語読取方式に関するものである
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a word reading method, and more specifically, a word reading method that recognizes each character of a word, and recognizes and determines a word based on the results. It is related to the method.

〔従来技術〕[Prior art]

従来は、単語を構成する文字を/文字毎に認識して、文
字としての確度(類似度)に対応して順位を定め、一定
の個数の認識候補文字を選択し、これらの認識候補文字
の組合せの中から単語辞書を参照して単語を選択してい
た。
Conventionally, the characters that make up a word are recognized character by character, the ranking is determined according to the degree of certainty (similarity) as characters, a certain number of recognition candidate characters are selected, and these recognition candidate characters are Words were selected from combinations by referring to a word dictionary.

上記従来技術による単語読取方式には例えば第を図に示
すものがあった。第1図中の各構成要素の機能及び処理
の流れは次のとおりである。
For example, there is a word reading method according to the above-mentioned prior art as shown in FIG. The functions and processing flow of each component in FIG. 1 are as follows.

すなわち、用紙/上の文字を走査手段]で光電変換し、
この光電変換された入力文字パターンを文字認識手段3
で認識し且つ予め文字認識手段3に格納しておいた基準
パターンとの類似性を表す類似度を付した複数の認識候
補文字を選択し、単語決定手段亭では、この複数個の認
識候補文字のうちの類似度が高い順に選択した一定の個
数の認識候補文字を対象として認識候補文字の組合せを
作成し、この組合せの中から単語辞書Sを用いて単語を
選択し、単語名を決定していた。
In other words, the characters on the paper/print are photoelectrically converted using a scanning means],
This photoelectrically converted input character pattern is recognized by the character recognition means 3.
A plurality of recognition candidate characters are selected with a degree of similarity representing the similarity to a reference pattern that has been recognized in the character recognition means 3 and stored in advance in the character recognition means 3, and the word determination means tei selects these recognition candidate characters A combination of recognition candidate characters is created using a certain number of recognition candidate characters selected in descending order of similarity, and a word is selected from this combination using the word dictionary S to determine a word name. was.

第2図は従来の単語読取方式における単語決定法を説明
するための図である。
FIG. 2 is a diagram for explaining a word determination method in a conventional word reading system.

図中の6は用紙lに手書き等で記入された入力単語例「
神和住」であり、この入力単語6は走査手段−にて光電
変換され、入力文字パターンとして文字認識手段3に送
られる。7は文字認識手段3で得られる認識候補文字で
入力単語6を構成する各文字ごとに類似度の高い順に番
号を伺して上位から6文字づつ選択したものである。単
語辞書を用いた単語名の決定法の一例として、先に順位
付げし、た順位自体を用いる方法がある。この方法では
認識候補文字7の各文字の組み合せから成る単語が単語
辞書に存在するか否かを類似度が高い順に調べ、複数個
存在するならばその場合の各認識候補文字に付した順位
を加算し、その和が最小となる単語を入力単語6すなわ
ち「神和住」であると決定する。
6 in the figure is an example of the input word "
This input word 6 is photoelectrically converted by the scanning means and sent to the character recognition means 3 as an input character pattern. Reference numeral 7 denotes recognition candidate characters obtained by the character recognition means 3, which are selected from the top 6 characters by numbering each character constituting the input word 6 in descending order of similarity. An example of a method for determining word names using a word dictionary is a method of first ranking words and then using the rankings themselves. In this method, it is checked whether a word consisting of a combination of each character of the recognition candidate characters 7 exists in the word dictionary in descending order of similarity, and if there are multiple words, the ranking given to each recognition candidate character is determined. The word whose sum is the minimum is determined to be the input word 6, that is, "Kawasumi".

第2図の認識候補文字の組合せでは日本人の姓の読取り
に限定すると単語辞書に格納されているのは「神和住」
のみである。この単語°決定方法では認識候補文字7を
各文字ごとに6個(第6位まで)選択すれば正しく読取
ることができるが、5個以下(第5位以内)の場合には
「住」が選択されないので正しく読取ることができない
In the combination of recognition candidate characters shown in Figure 2, if we limit the reading to Japanese surnames, the word stored in the word dictionary is "Kanwazumi".
Only. With this word ° determination method, if six recognition candidate characters 7 are selected for each character (up to the 6th place), it can be read correctly, but if there are 5 or less (within the 5th place), "shu" is Since it is not selected, it cannot be read correctly.

この様に、従来の類似度による順位を用いた単語名の決
定法では、対象とする認識候補文字数を多くする程読取
率は向上するが、それと共に処理時間が増大するという
欠点がある。
As described above, in the conventional word name determination method using rankings based on similarity, the reading rate improves as the number of target recognition candidate characters increases, but the disadvantage is that the processing time increases.

この処理時間の増大を抑制するために、他の従来技術に
よる単語読取方式では一定の個数の認識候補文字を選択
する代りに規定の類似度以上の認識候補文字のみを対象
として単語名を決定する方法を採用している。しかし、
その場合には類似度を大きくすると認識候補文字が選択
されなかったり、類似度を小さくすると必要以上の文字
が選択され過ぎたりする欠点があり、認識候補文字選択
のための類似度の決定法が非常に困難であるという欠点
があった。
In order to suppress this increase in processing time, in other conventional word reading methods, instead of selecting a fixed number of recognition candidate characters, word names are determined only from recognition candidate characters with a predetermined degree of similarity or higher. method is adopted. but,
In this case, if the similarity is increased, no recognition candidate characters will be selected, and if the similarity is decreased, too many characters than necessary will be selected. The drawback was that it was extremely difficult.

〔発明の概要〕[Summary of the invention]

この発明はこれらの欠点を除去するためになされたもの
で、単語認識率を向上し、処理時間を短縮する事を目的
とする。
This invention was made to eliminate these drawbacks, and aims to improve the word recognition rate and shorten the processing time.

この目的を達成するために、この発明に係る単語読取方
式で採用された技術的手段は、単語を構成する文字を一
文字毎に認識し、各文字毎に文字としての確度を表わす
類似度を付した複数の認識候補文字を選択し、該認識候
補文字のうち規定値以上の類似度を有する文字数が所定
下限数より少ない場合には類似度の高い文字から順に前
記所定下限数だけ前記認識候補文字を選択し、前記規定
値以上の類似度を有する文字数が所定上限値より多い場
合には類似度の高い文字から順に前記所定上限数だけ選
択し、前記規定値以上の類似度を有する文字数が前記下
限数より多く且つ前記上限数より少ない場合には前記規
定値以上の類似度を有する文字だけを選択し、該選択さ
れた認識候補文字を対象として単語辞典から単語名を決
定することを特徴としている。
In order to achieve this objective, the technical means adopted in the word reading method according to the present invention recognizes each character that makes up a word, and assigns a degree of similarity to each character to indicate its accuracy as a character. If the number of characters having a degree of similarity equal to or higher than a specified value among the recognition candidate characters is less than a predetermined lower limit number, the recognition candidate characters are selected by the predetermined lower limit number in order from the characters with the highest similarity. is selected, and if the number of characters having a degree of similarity equal to or greater than the specified value is greater than a predetermined upper limit value, select the predetermined upper limit number of characters in descending order of similarity, and if the number of characters having a degree of similarity equal to or greater than the specified value is If the number is greater than the lower limit number and less than the upper limit number, only characters having a degree of similarity equal to or greater than the specified value are selected, and word names are determined from a word dictionary for the selected recognition candidate characters. There is.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を用いて本発明の好ましい実施例を詳細に説
明する。
Preferred embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は、この発明の実施例の構成を示すブロック図で
ある。第3図中の各構成要素の機能及び処理は次のとお
りである。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention. The functions and processing of each component in FIG. 3 are as follows.

まず、用紙l上に記入された文字を走査手段ユによって
光電変換し、この光電変換された文字パターンを文字認
識手段3によって認識し、類似度を付した複数の認識候
補文字を選択し出力する。
First, the characters written on the paper L are photoelectrically converted by the scanning means 1, and this photoelectrically converted character pattern is recognized by the character recognition means 3, and a plurality of recognition candidate characters with degrees of similarity are selected and output. .

次に、文字認識手段3から出力された複数の認識候補文
字を認識候補文字選択手段gによって選択する。この認
識候補文字選択手段ざは、認識候補文字選択類似度テー
ブル9から得られる類似度をL、及び認識候補文字選択
上限下限テーブルi。
Next, a plurality of recognition candidate characters outputted from the character recognition means 3 are selected by the recognition candidate character selection means g. This recognition candidate character selection means uses the similarity obtained from the recognition candidate character selection similarity table 9 as L, and the recognition candidate character selection upper and lower limit table i.

から得られる上限値をN、下限値をMとしたとき、これ
らの値を用いて、認識候補文字を選択する機能を有する
。すなわち、文字認識手段3から得られる類似度を付し
た認識候補文字のうち、規定値り以上の類似度を有する
文字が下限値M(M>0)個以下の場合には類似度の高
い文字から順にM個の認識候補文字を選択し、規定値り
以上の類似度を有する文字が上限値N (N>M)個以
上の場合には同様にしてN個の認識候補文字を選択し、
規定値し以上の類似度を有する文字がM個より多く、N
個より少ない場合には規定値り以上の類似度を有する文
字のみを選択する機能を有する。
Let N be the upper limit value obtained from , and M be the lower limit value obtained from . In other words, among the recognition candidate characters with the similarity obtained from the character recognition means 3, if the number of characters having a similarity higher than the specified value is less than or equal to the lower limit M (M>0), the characters have a high similarity. Select M recognition candidate characters in order from , and if the number of characters having a similarity higher than a specified value is the upper limit N (N>M) or more, select N recognition candidate characters in the same way,
There are more than M characters with similarity equal to or greater than the specified value, N
If the number of similarities is less than a specified value, it has a function of selecting only characters having a degree of similarity equal to or higher than a predetermined value.

次に認識候補文字選択手段gから得られた認識候補文字
から単語決定手段グによって単語名が決定される。例え
ば、単語決定手段ダでは従来技術で述べた方法によって
、認識候補文字選択手段ざから得られた認識候補文字を
対象として、その順位の和が最小でかつ単語辞書Sに存
在する単語の選択する。
Next, word names are determined by the word determining means g from the recognition candidate characters obtained from the recognition candidate character selecting means g. For example, the word determining means DA selects a word that has the smallest sum of ranks and exists in the word dictionary S from the recognition candidate characters obtained from the recognition candidate character selection means using the method described in the prior art. .

次に本発明の実施例の動作を説明する。Next, the operation of the embodiment of the present invention will be explained.

第7図は、用紙lに記入された「神和住」という入力単
語6を走査手段コで走査し、認識手段3で/文字ごとに
認識して求めた認識候補文字の例であり、カッコ内の値
は類似度に相当する値である。
Figure 7 shows an example of candidate characters for recognition obtained by scanning the input word 6 written on form 1, ``Kawasumi'', with the scanning means 2, and recognizing each character with the recognition means 3. The value corresponds to the degree of similarity.

第5図は、第7図の認識候補文字に対して、認識候補文
字選択類似度テーブルデから類似度が得られたとき、規
定値L (r、 = / 、2 o )以上の類似度を
有する認識候補文字を選張した例である。即ち、入力文
字「神jttに対しては規定値L(L= / 20 )
以上の類似度を有する認識候補文字が二個、入力文字「
和」/2に対しては規定値L(L=/20)以上の類似
度を有する認識候補文字は5個、入力文字[住Jt3に
対しては規定値L(r、=t2o)以上の類似度を有す
る認識候補文字は9個存在する。また、認識候補文字に
付した順位は類似度によるノー位である。
FIG. 5 shows that when the similarity is obtained from the recognition candidate character selection similarity table for the recognition candidate characters in FIG. This is an example of selecting recognition candidate characters. That is, for the input character "God jtt", the specified value L (L = / 20)
There are two recognition candidate characters with the above similarity, and the input character "
For the input character [Jt3, there are 5 recognition candidate characters with similarity equal to or higher than the specified value L (L=/20), and for the input character There are nine recognition candidate characters having a degree of similarity. Further, the ranking given to the recognition candidate characters is No based on the degree of similarity.

第6図は、第5図の認識候補文字に対して認識候補文字
選択上限下限テーブル10から得られる上限値N、下限
値MをそれぞれN=&、M=jに設定した場合に、認識
候補文字選択手段ざで選ばれた認識候補文字の例である
。即ち、入力文字、「神Jttに関しては、第S図に示
した様に規定値L(L=/、2θ)以上の類似度を有す
る認識候補文字は2個であるが下限値Mが3個であるの
で第3位までの認識候補文字が選択され、正解文字「神
」llIも結果として選択される。入力文字「和」lユ
に関しては、第3図に示した様に規定値L(L=/コO
)以上の類似度を有する認識候補文字は5個であり下限
値Mと上限値Nとの間に入っているのでそのまま第5位
までの認識候補文字を選択する。入力文字「住」13に
関しては、第S図で示した様に規定値以上の類似度を有
する認識候補文字は9個であるが、上限値Nがg個であ
るので第を位までの認識候補文字が選択され認識候補文
字が1個減り処理時間が削減される。
FIG. 6 shows the recognition candidate characters when the upper limit value N and lower limit value M obtained from the recognition candidate character selection upper and lower limit table 10 are set to N=& and M=j, respectively, for the recognition candidate characters in FIG. This is an example of recognition candidate characters selected by the character selection means. In other words, for the input character "God Jtt," as shown in Figure S, there are two recognition candidate characters with a degree of similarity greater than the specified value L (L = /, 2θ), but the lower limit value M is three. Therefore, the recognition candidate characters up to the third rank are selected, and the correct character "Kami" llI is also selected as a result. As for the input character "WA", the specified value L (L=/koO) is shown in Figure 3.
) There are five recognition candidate characters having a degree of similarity equal to or higher than the lower limit value M and the upper limit value N, so the recognition candidate characters up to the fifth rank are directly selected. Regarding the input character "Sumi" 13, as shown in Figure S, there are 9 recognition candidate characters that have a degree of similarity equal to or higher than the specified value, but since the upper limit N is g, recognition is limited to the 1st digit. A candidate character is selected, the number of recognition candidate characters is reduced by one, and the processing time is reduced.

この様にして認識候補文字選択手段tによって選択され
た認識候補文字を対象として単語辞9gを用いて単語決
定手段亭によって単語名を決定する。具体的には、認識
候補文字の順位の総和が小さい文字の組み合せから順次
、その文字の組み合せが単語辞書に登録されているか否
かを調べることにより単語名を決定する。
The word name is determined by the word determination means tei using the word dictionary 9g for the recognition candidate characters selected by the recognition candidate character selection means t in this manner. Specifically, the word name is determined by checking whether or not the character combination is registered in the word dictionary, starting with the combination of characters with the lowest total rank of recognition candidate characters.

なお、以上は漢字の場合について説明したが、この発明
はこれに限らず、片仮名、平仮名についても適用可能で
ある。
In addition, although the case of kanji has been described above, the present invention is not limited to this, and can also be applied to katakana and hiragana.

〔発明の効果〕〔Effect of the invention〕

上記実施例を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to the above embodiments.

まず、入力文字[神J//に対しては、単に規定値以上
の類似度を有する認識候補文字を選択したとぎには、選
択の範囲から外れる第3候補文字「神」/りがこの発明
を適用することによって認識候補文字として選択される
よ5に補正することができ、正しい認識結果を得ること
がでさるようになる。また、入力文字[住J/3に対す
る認識候補文字の数を、本発明を適用することにより、
9個からg個に減らすことができ、その処理時間を削減
することができるという効果がある。このように、本発
明を用いることにより、単語を読取る場合に単語認識率
を下げることなく処理時間の向上を図ることができると
いう利点がある。
First, for the input character [God J//, if a recognition candidate character with a degree of similarity higher than the specified value is simply selected, the third candidate character "God"/R, which is out of the selection range, will be recognized according to the present invention. By applying this, it is possible to correct the character to 5 so that it is selected as a recognition candidate character, and it becomes possible to obtain correct recognition results. In addition, by applying the present invention, the number of recognition candidate characters for the input character [J/3]
It is possible to reduce the number from 9 to g, which has the effect of reducing the processing time. As described above, by using the present invention, there is an advantage that processing time can be improved without lowering the word recognition rate when reading words.

さらに、認識候補文字選択類似度テーブルデに規定値を
格納しているので姓、名、住所、会社名等の単語の種類
ごとに、規定値を最適に設定できる利点がある。
Furthermore, since the specified values are stored in the recognition candidate character selection similarity table, there is an advantage that the specified values can be optimally set for each type of word such as surname, first name, address, company name, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法を用いた場合の単語読取方式の構成
例を示すブロック図、第一図は従来の単語読取方式にお
ける単語決定方法を説明するための図、第3図は本発明
の実施例による単語読取方式の構成例を示すブロック図
、第を図は文字認識手段からの出力例を示す図、第5図
及び第6図は認識候補文字選択手段を説明するための図
、である。 図中、3は文字認識゛手段、弘は単語決定手段、Sは単
語辞書、ざは認識候補文字選択手段、りは認識候補文字
選択類似度テーブル、そして10は認識候補文字選択上
限下限テーブルである。 なお、図中同一あるいは相当部分には同一符号を付して
示しである。 幣1図 革2図 焔3図 焔4図 革5図 幣6図 手続補正帯(自発) 昭和60.イt 1月5 日
FIG. 1 is a block diagram showing an example of the configuration of a word reading method using a conventional method, FIG. 1 is a diagram for explaining a word determination method in the conventional word reading method, and FIG. A block diagram showing an example of the configuration of a word reading system according to an embodiment, Figure 5 is a diagram showing an example of output from the character recognition means, and Figures 5 and 6 are diagrams for explaining the recognition candidate character selection means. be. In the figure, 3 is a character recognition means, Hiroshi is a word determination means, S is a word dictionary, is a recognition candidate character selection means, is a recognition candidate character selection similarity table, and 10 is a recognition candidate character selection upper and lower limit table. be. Note that the same or equivalent parts in the figures are indicated by the same reference numerals. Coin 1 figure leather 2 figure flame 3 figure flame 4 figure leather 5 figure 6 figure procedural correction band (self-produced) 1986. It January 5th

Claims (3)

【特許請求の範囲】[Claims] (1)単語を構成する文字を一文字毎に認識し、各文字
毎に文字としての確度を表わす類似度を付した複数の認
識候補文字を選択し、該認識候補文字のうち規定値以上
の類似度を有する文字数が所定下限数より少ない場合に
は類似度の高い文字から順に前記所定下限数だけ前記認
識候補文字を選択し、前記規定値以上の類似度を有する
文字数が所定上限数より多い場合には類似度の高い文字
から順に前記所定上限数だけ選択し、前記規定値以上の
類似度を有する文字数が前記下限数より多く且つ前記上
限数より少ない場合には前記規定値以上の類似度を有す
る文字だけを選択し、該選択された認識候補文字を対象
として単語辞典から単語名を決定することを特徴とした
単語読取方式。
(1) Recognize the characters that make up a word one by one, select a plurality of recognition candidate characters for each character with a degree of similarity indicating the degree of certainty that it is a character, and select a number of recognition candidate characters that have a similarity of more than a specified value among the recognition candidate characters. If the number of characters with a degree of similarity is less than the predetermined lower limit number, the recognition candidate characters are selected in order of the characters with the highest similarity by the predetermined lower limit number, and if the number of characters with a degree of similarity equal to or greater than the predetermined value is greater than the predetermined upper limit number. select the predetermined upper limit number of characters in descending order of similarity, and if the number of characters with similarity greater than the specified value is greater than the lower limit number and less than the upper limit number, select the predetermined number of characters with similarity greater than the specified value. 1. A word reading method characterized in that only characters having the same character are selected, and word names are determined from a word dictionary for the selected recognition candidate characters.
(2)前記認識候補文字のうち規定値以上の類似度を有
する文字は、認識候補文字選択類似度テーブルから選択
される特許請求の範囲第1項記載の単語読取方式。
(2) The word reading method according to claim 1, wherein characters having a degree of similarity equal to or higher than a specified value among the recognition candidate characters are selected from a recognition candidate character selection similarity table.
(3)前記所定下限値及び上限値は、認識候補文字選択
上限下限テーブルから選択される特許請求の範囲第2項
記載の単語読取方式。
(3) The word reading method according to claim 2, wherein the predetermined lower limit value and upper limit value are selected from a recognition candidate character selection upper and lower limit table.
JP59136623A 1984-07-03 1984-07-03 Word reading system Granted JPS6116383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136623A JPS6116383A (en) 1984-07-03 1984-07-03 Word reading system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136623A JPS6116383A (en) 1984-07-03 1984-07-03 Word reading system

Publications (2)

Publication Number Publication Date
JPS6116383A true JPS6116383A (en) 1986-01-24
JPH0354391B2 JPH0354391B2 (en) 1991-08-20

Family

ID=15179625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136623A Granted JPS6116383A (en) 1984-07-03 1984-07-03 Word reading system

Country Status (1)

Country Link
JP (1) JPS6116383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353392A (en) * 1989-07-21 1991-03-07 Seiko Epson Corp Character recognizing device
JPH08272813A (en) * 1995-03-31 1996-10-18 Canon Inc Filing device
US7213428B2 (en) 2004-05-10 2007-05-08 Kabushiki Kaisha Honda Lock Apparatus for locking and unlocking vehicle door

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353392A (en) * 1989-07-21 1991-03-07 Seiko Epson Corp Character recognizing device
JPH08272813A (en) * 1995-03-31 1996-10-18 Canon Inc Filing device
US7213428B2 (en) 2004-05-10 2007-05-08 Kabushiki Kaisha Honda Lock Apparatus for locking and unlocking vehicle door

Also Published As

Publication number Publication date
JPH0354391B2 (en) 1991-08-20

Similar Documents

Publication Publication Date Title
US4771385A (en) Word recognition processing time reduction system using word length and hash technique involving head letters
JPH07160389A (en) Data input workstation
JP2740335B2 (en) Table reader with automatic cell attribute determination function
JPS6116383A (en) Word reading system
JP3071570B2 (en) Apparatus and method for determining dictionary data for compound target words
JPS6262388B2 (en)
JPH0475552B2 (en)
JPH0227423A (en) Method for rearranging japanese character data
JPH0223490A (en) Character reading system
JPS61114388A (en) Character input device
JPS6121583A (en) pattern recognition device
JPS61133487A (en) Character recognizing device
JPS6252912B2 (en)
JPS60138689A (en) Character recognizing method
JPH0442382A (en) Word reader
JP2622004B2 (en) Character recognition device
JPS61131159A (en) Erroneously read character correcting device
JPS6252691A (en) Character recognizing device
JPH0546806A (en) Character recognition method
JPS6336392A (en) Threshold setting system
JPS63193287A (en) How to read characters
JPH024035B2 (en)
JPS5839378A (en) Character recognition post-processing method
JPS60189572A (en) Character processor
JPH069065B2 (en) Word recognizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees