JPS61163173A - Method for producing heat-resistant inorganic fiber molded product - Google Patents
Method for producing heat-resistant inorganic fiber molded productInfo
- Publication number
- JPS61163173A JPS61163173A JP280785A JP280785A JPS61163173A JP S61163173 A JPS61163173 A JP S61163173A JP 280785 A JP280785 A JP 280785A JP 280785 A JP280785 A JP 280785A JP S61163173 A JPS61163173 A JP S61163173A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- resistant inorganic
- molded article
- fiber molded
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、耐熱性無機質繊維成形体の製造方法に関し
、詳しくは、均質で高い寸法精度を有する複雑な形状の
無機質繊維成形体を効率的に量産する製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-resistant inorganic fiber molded article, and more particularly, to a method for efficiently mass-producing a complex-shaped inorganic fiber molded article that is homogeneous and has high dimensional accuracy. It is.
周知のごとく、耐熱性無機質繊維として注目されている
セラミック繊維はその断熱性、軽量性、柔軟性、耐熱衝
撃性などの優れた特性から、各種工業技術分野で広く利
用されておシ、最近では、自動車エンジンの排気系部や
ガスタービンエンジン部材のような精密で複雑な構造部
への適用研究が活発となシつつsb、これに伴ない、従
来の成形法では困難な複雑な形状の成形体を高い寸法精
度で効率的に量産できる成形技術が強く要望されている
。As is well known, ceramic fibers, which are attracting attention as heat-resistant inorganic fibers, are widely used in various industrial technology fields due to their excellent properties such as heat insulation, lightness, flexibility, and thermal shock resistance. There is active research into application to precise and complex structures such as automobile engine exhaust systems and gas turbine engine parts. There is a strong demand for a molding technology that can efficiently mass-produce bodies with high dimensional accuracy.
従来、セラミック繊維成形体の製造方法として、多量の
水にセラミック繊維および所要量の結合剤を均一に分散
させてスラリーとし、それを入れた槽のなかに成形用金
網型を沈め、金網型の内側からスラIJ−4−吸引濾過
して型の表面に繊維全積層させ、これを乾燥して成形品
を得る真空成形法が広〈実施されているが、この方法で
は、空間的制約の多い複雑な形状の成形体や偏肉異形成
形体の量産は殆んど不可能である。Conventionally, as a manufacturing method for ceramic fiber molded bodies, ceramic fibers and a required amount of binder are uniformly dispersed in a large amount of water to form a slurry, and a wire mesh mold for forming is submerged in a tank containing the slurry. A vacuum forming method is widely used in which fibers are completely laminated on the surface of the mold by suction filtration from the inside and then dried to obtain a molded product, but this method has many spatial constraints. It is almost impossible to mass produce molded bodies with complex shapes or irregularly shaped bodies with uneven thickness.
一方、セラミック粉体の成形技術分野では、複雑な形状
の成形体を高い寸法精度で量産する方法として、ポリス
テレ/、ポリエチレン、ポリプロピレンなどの熱可辺性
樹脂を成形助剤とし、加熱混線後、成形、脱脂、焼結の
各工程を経て成形体を得る射出成形法(例えば特開昭5
5−115510号、特開昭55−115456号)が
あ夛、近年、その改善、改良に係わる方法も提案されて
いる。On the other hand, in the field of ceramic powder molding technology, as a method for mass-producing molded bodies with complex shapes with high dimensional accuracy, thermolabile resins such as polyester, polyethylene, and polypropylene are used as molding aids, and after heating and cross-wiring, Injection molding method (for example, Japanese Patent Application Laid-open No. 5
5-115510, Japanese Patent Application Laid-Open No. 55-115456), and in recent years, methods related to their improvements have been proposed.
しかしながら、前述した従来の射出成形法では、樹脂を
分解除去するための脱脂工程で、成形体に軟化変形、へ
たシ、膨れなどの形状不良が生じ易く、また脱脂した成
形体には全く強度が無いため、焼結工程を経なければ移
動やハンドリングができないという本質的な欠点がラシ
、このため粉粒体中に埋め込んで脱脂する方法(特開昭
57−100973号)、高圧ガス下で脱脂する方法(
特開昭57−17468号)、ちるいは溶媒を用いて部
分脱脂する方法(特開昭55−114524号、特開昭
57−47774号)など多くの提案がなされているが
、いずれも脱脂工程における本質的な欠点を解決したも
のではなく、更に実施上の困難もあシ、それがため、複
雑な形状を有する耐熱性無機質繊維成形体を従来の射出
成形法で得ようとしても、脱脂工程中に変形、破壊して
しまう。However, in the conventional injection molding method described above, the molded product tends to suffer shape defects such as softening, deformation, sagging, and blisters during the degreasing process to decompose and remove the resin, and the degreased molded product has no strength at all. Since there is no sintering process, the essential drawback is that it cannot be moved or handled without going through the sintering process. How to degrease (
Many proposals have been made, including a method of partially degreasing using a cloth or solvent (Japanese Patent Laid-Open Nos. 55-114524 and 57-47774), but none of them are suitable for degreasing. It does not solve the essential drawbacks of the process, and there are also difficulties in implementation.As a result, even if you try to obtain a heat-resistant inorganic fiber molded product with a complicated shape using the conventional injection molding method, it is difficult to degrease it. Deformed and destroyed during the process.
この発明は、従来の射出成形法における上記欠点を改善
した耐熱性無機質繊維成形体の製造方法、詳しくは、均
質で高い寸法精度を有する複雑な形状の成形体を効率的
に量産する製造方法を提供したものであって、耐熱性無
機質繊維のほかに、成形助剤として固体ワックス、溶媒
水を含むコロイド状無機結合剤および分散助剤を必須成
分として含む組成物を固体ワックスの融点以上の温度で
加熱混練して成形し、固体ワックスの凝固点以下の温度
に冷却して脱型し、これを乾燥し、脱ロウする工程から
なる製造方法に要旨を有するものである。The present invention provides a method for manufacturing heat-resistant inorganic fiber molded articles that improves the above-mentioned drawbacks of conventional injection molding methods, and more specifically, a method for efficiently mass-producing molded articles of complex shapes that are homogeneous and have high dimensional accuracy. In addition to the heat-resistant inorganic fibers, the composition contains a solid wax as a forming aid, a colloidal inorganic binder containing solvent water, and a dispersing aid as essential components at a temperature above the melting point of the solid wax. The gist of this method is to form a solid wax by heating and kneading it, removing it from the mold by cooling it to a temperature below the freezing point of solid wax, drying it, and dewaxing it.
この発明の技術的特徴としては、前記成形用組成物の分
散系にあシ、固体ワックスの融点以上の温度では可塑性
のある流動体、固体ワックスの凝固点以下の温度では硬
い固体であシ、かつ乾燥によって成形体(グリーン)か
ら容易に溶媒水が除去(脱水)され、それに伴なって無
機結合剤の強固な結合力が生ずるような均一な分散系を
調製することによって、目的とする成形体を製造する方
法にある。The technical features of the present invention include that the dispersion of the molding composition is a plastic fluid at a temperature above the melting point of the solid wax, and a hard solid at a temperature below the freezing point of the solid wax; By preparing a uniform dispersion system in which the solvent water is easily removed (dehydrated) from the molded body (green) by drying and a strong bonding force of the inorganic binder is generated, the desired molded body can be obtained. In the method of manufacturing.
この発明における成形用組成物の構成材料である耐熱性
無機質繊維としては、アルミナ、シリカ、アルミノシリ
ケート、カルシウムシリケート、スラ/、ljtス、ア
スベスト、ジルコニア、酸化硼素、炭化硼素、窒化珪素
、炭化珪素、炭素などの材質の繊維が好適であシ、その
中から単独もしくは混合物として使用できる。また必要
に応じて短繊維化あるいは粉末化したものであってもよ
い。前記繊維材の所要量の好適な範囲は成形助剤の含量
1重量部に対してα1〜10重量部がよい。The heat-resistant inorganic fibers that are constituent materials of the molding composition in this invention include alumina, silica, aluminosilicate, calcium silicate, sulfur/ljt, asbestos, zirconia, boron oxide, boron carbide, silicon nitride, and silicon carbide. Preferably, fibers made of materials such as , carbon, etc. can be used alone or as a mixture. Further, it may be made into short fibers or powdered as required. A preferable range of the required amount of the fiber material is α1 to 10 parts by weight per 1 part by weight of the molding aid.
前記固体ワックスは、鉱物系ワックス、動植物系ワック
ス、変性ワックス、合成ワックス、合成炭化水素、硬化
油脂などがオシ、それらのものから単独もしくは混合物
として選択できるが、融点は40℃〜100℃の範囲の
ものが好ましく、特に好適な例はパラフィンワックスで
ある。The solid wax can be selected from mineral waxes, animal and vegetable waxes, modified waxes, synthetic waxes, synthetic hydrocarbons, hardened oils and fats, etc., singly or as a mixture, and has a melting point in the range of 40°C to 100°C. A particularly preferred example is paraffin wax.
また、溶融時の流動性状を改善するため、必要に応じて
、ポリエチレン、エチレン−酢酸ビニル共重合体、ポリ
プロピレン、ブチルゴム、石油樹脂、その他の熱可塑性
樹脂を加えたものであってもよい。Furthermore, in order to improve the fluidity during melting, polyethylene, ethylene-vinyl acetate copolymer, polypropylene, butyl rubber, petroleum resin, or other thermoplastic resin may be added as necessary.
前記溶媒水を含むコロイド状無機結合剤は、乾燥(脱水
)によ構成形用組成物に強固な結合力を生じさせるもの
であって、目的や繊維材質などに応じて選択される。好
適な例はコロイダルシリカ、コロイダルアルミナ、コp
イダルジルコニア、エチルシリケート加水分解液、水分
散した粘土、および金属超微粉末の水分散液などである
が、一般用途で特に好ましいものけコロイダルシリカで
ある。結合前の添゛加量および固形分濃度は必要に応じ
て!11!整できる。The colloidal inorganic binder containing solvent water produces a strong bonding force in the composition when dried (dehydrated), and is selected depending on the purpose, fiber material, etc. Suitable examples are colloidal silica, colloidal alumina, and colloidal alumina.
These include idal zirconia, ethyl silicate hydrolyzate, water-dispersed clay, and aqueous dispersion of ultrafine metal powder, but Monoke colloidal silica is particularly preferred for general use. Add amount and solid content concentration before binding as necessary! 11! It can be arranged.
前記分散助剤は、成形用組成物とくに固体ワックスと溶
媒水を均一に分散する上で不可欠の成分である。好適な
例はアニオン活性剤、カチオン活性剤、ノニオン活性剤
、両性活性剤などの界面活性剤、アルギン酸誘導体、澱
粉誘導体、セルロース防導体、などの多糖類、ゼラチン
、カゼイン、アルブミンなどのたんばく質、アラビアゴ
ム、トラガントゴムなどの天然ゴム、および、ポリビニ
ルアルコール、ポリビニルブチラール、ポリエチレング
リコール、ポリオキシエチレン、ポリアクリル酸塩、リ
グニンスルホン酸塩などの各種水溶性高分子であシ、こ
れらを単独もしくは混合して使用するが、特に2種以上
を混合して使用するのが好ましい。また、必要に応じて
各種の樹脂エマルジョンやセラミック粉末を加えること
もできる。The dispersion aid is an essential component for uniformly dispersing the molding composition, especially the solid wax and solvent water. Suitable examples include surfactants such as anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants, polysaccharides such as alginic acid derivatives, starch derivatives, cellulose conductors, and proteins such as gelatin, casein, and albumin. , natural rubbers such as gum arabic and gum tragacanth, and various water-soluble polymers such as polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyoxyethylene, polyacrylate, and lignin sulfonate, singly or in combination. However, it is particularly preferable to use a mixture of two or more. Furthermore, various resin emulsions and ceramic powders can be added as necessary.
なお、分散助剤として、特に界面活性剤を併用する場合
は固体ワックスと溶媒水を過度に乳化させない範囲で添
加することが好ましい。これは分散系がW2O型(油中
水盤)となると、成形体(グリーン)の乾燥(脱水)が
困難となう、0/W型(水中油型)となると成形体(グ
リーン)の強度が乏しくなり、成形型から脱脂する際に
形状を保つことが困難となるためである。In addition, especially when a surfactant is used together as a dispersion aid, it is preferable to add it within a range that does not excessively emulsify the solid wax and solvent water. This is because when the dispersion system becomes W2O type (water-in-oil type), it becomes difficult to dry (dehydrate) the molded body (green), and when the dispersion system becomes 0/W type (oil-in-water type), the strength of the molded body (green) decreases. This is because it becomes difficult to maintain the shape when degreasing the mold.
次に、この発明による耐熱性無機質繊維成形体の製造方
法の特徴およびその効果を添付の製造工程図に基づいて
詳しく説明する。Next, the features and effects of the method for producing a heat-resistant inorganic fiber molded article according to the present invention will be explained in detail based on the attached production process diagram.
第1図はこの発明の製造工程を示し、第2図は従来の製
造工程(セラミック粉体を原料とする射出成形法)を示
したものである。FIG. 1 shows the manufacturing process of the present invention, and FIG. 2 shows the conventional manufacturing process (injection molding method using ceramic powder as a raw material).
この発明において、耐熱性無機質繊維に固体フック、ス
、溶媒水を含むコロイド状無機結合剤および分散助剤を
加えて構成した組成物の加熱混線工程は従来の射出成形
法の場合とほとんど同様であるが、被加熱物は含水系組
成物であるため、加熱温度は100℃以下が好ましい。In this invention, the heating and mixing process of a composition made of heat-resistant inorganic fibers, a solid hook, a colloidal inorganic binder containing solvent water, and a dispersion aid is almost the same as in the conventional injection molding method. However, since the object to be heated is a water-containing composition, the heating temperature is preferably 100° C. or lower.
成形工程も従来の射出成形法の場合と同様で゛あるが、
他に加圧成形、押出成形、ローラー成形などの成形法を
とることもできる。成形後、数秒から数分の保持時間(
必要なら水冷する)で凝固し、硬い成形体(グリーン)
が得られるが、凝固時に微量の溶媒水が発汗するため極
めて離呈性に優れておシ、容易に脱型できる特徴がある
。また、成形性も極めて優れておシ、IIL1111I
程度の肉厚でも成形可能である。The molding process is similar to that of conventional injection molding, but
Other molding methods such as pressure molding, extrusion molding, and roller molding can also be used. After molding, the holding time ranges from several seconds to several minutes (
(water cooling if necessary) to solidify into a hard compact (green)
However, since a small amount of solvent water is sweated out during solidification, it has excellent release properties and can be easily demolded. In addition, it has excellent moldability, IIL1111I
It can be molded even with a certain thickness.
乾燥工程は、この発明による成形法を最もよく特徴づけ
る工程でアシ、成形体(グリーン)内部に均一に分散し
ている溶媒水全脱水し、無機納合剤の強固な結合力を生
じさせる工程である。この目的に対しては、特に通風式
乾燥機が好ましく、固体ワックスの変形温度以下、好ま
しくは40℃以下の温度で乾燥する。所要時間は成形体
の肉厚、形状によって異なるが、通常、5〜48時間範
囲で充分に脱水できる。The drying process is the process that best characterizes the molding method according to the present invention, and is a process that completely dehydrates the solvent water uniformly dispersed inside the reeds and molded body (green) and creates a strong bonding force of the inorganic binding agent. It is. For this purpose, ventilation dryers are particularly preferred, drying at temperatures below the deformation temperature of the solid wax, preferably below 40°C. Although the time required varies depending on the thickness and shape of the molded product, sufficient dehydration can normally be achieved within a range of 5 to 48 hours.
説ロク(脱脂)工程は、この発明による成形法の効果が
最もよく発揮される工程であり、既に乾燥工程を経た成
形体は無機結合材による充分な保形強度を有しているた
め、固体ワックスその他の有機物の軟化、分解に伴なっ
て変形したシ、崩壊することがない。したがって、従来
方法では物理的、空間的制約から脱脂困難とされている
複雑な形状の成形体や偏肉異形体を、特別な形状支持物
を要せずに、脱脂することができる。とくに、セラミッ
ク繊維成形体は本質的に気孔率が高いため脱ロウ時の燃
焼性は極めて良好である。加熱温度は800℃程度で充
分であり、概ね数分〜数10分の所要時間で完全に脱ロ
ウされ、良好な形状を有する最終製品が得られる。なお
、脱ロウ法としては、他に熱抽出、溶剤抽出によってワ
ックスを回収する方法であってもよい。ただし、これら
の方法では完全な脱ロウは困難である。The degreasing process is the process in which the effects of the molding method according to the present invention are best exhibited, and the molded product that has already undergone the drying process has sufficient shape-retaining strength due to the inorganic binder, so it is not solid. It does not deform or disintegrate due to softening or decomposition of wax or other organic substances. Therefore, it is possible to degrease complex-shaped molded bodies and irregularly shaped bodies with uneven thickness, which are difficult to degrease using conventional methods due to physical and spatial constraints, without requiring a special shaped support. In particular, since ceramic fiber molded bodies inherently have high porosity, their combustibility during dewaxing is extremely good. A heating temperature of about 800° C. is sufficient, and the wax is completely dewaxed in approximately several minutes to several tens of minutes, and a final product with a good shape can be obtained. Note that the dewaxing method may also be a method of recovering wax by thermal extraction or solvent extraction. However, complete dewaxing is difficult with these methods.
次に、この発明の実施例を下記に示す。Next, examples of this invention will be shown below.
実施例
耐熱性無機質繊維としてセラミック繊維であるアルミノ
シリケート質繊維を、固体ワックスとしてパラフィンワ
ックス(融点60℃)金、溶媒水を含むコロイド状無機
結合剤としてコロイダルシリカ液(固形分30慢)を、
分散助剤としてノニオン活性剤(アルキルエーテル系)
およびポリオキシエチレン(分子量100万)t−選択
し、これらを表1に示した各種割合で配合した組成物に
ついて、突起を有する中空エルボ形の成形体(肉厚5
m )を作成した。Examples Aluminosilicate fibers which are ceramic fibers were used as heat-resistant inorganic fibers, paraffin wax (melting point 60°C) gold was used as the solid wax, and colloidal silica liquid (solid content 30%) was used as the colloidal inorganic binder containing solvent water.
Nonionic activator (alkyl ether type) as a dispersion aid
and polyoxyethylene (molecular weight 1,000,000) t- selected and blended in various proportions shown in Table 1, hollow elbow-shaped molded bodies with protrusions (wall thickness 5
m) was created.
成形条件は、加熱混線温度80℃、ニーダ−による攪拌
速度5Qr、p、m、、射出温度70℃、射出圧力10
0 Kf/i、金型温度20℃とした。The molding conditions were: heating crosstalk temperature 80°C, kneader stirring speed 5Qr, p, m, injection temperature 70°C, injection pressure 10°C.
The temperature was 0 Kf/i and the mold temperature was 20°C.
成形体くグリーン)をただちに脱型した後、40℃の通
風式乾燥機内で15時間乾燥し、次で、加熱炉内に静置
し、いかなる形状支持物も用いずに800℃で10分間
脱ロウした。脱ロウ品は、いずれも軽量、白色で、寸法
精度は[11%以内の良好な形状を有するものであるこ
とが認められた0
実施例(5)では極短繊維(粉末状)を使用した。Immediately after demolding the molded body (green), it was dried in a ventilation dryer at 40°C for 15 hours, then placed in a heating oven and demolded at 800°C for 10 minutes without any form support. I waxed it. All the dewaxed products were light and white, and the dimensional accuracy was found to be within 11% and had a good shape. In Example (5), ultrashort fibers (powdered) were used. .
以上に述べたように、この発明によれば、耐熱性無機質
繊維のほかに、成形助剤として固体ワックス、溶媒水を
含むコロイド状無機結合剤および分散助剤を含む組成物
を、前記固体ワックスの融点以上の温度で加熱混練して
形成し、次に固体ワックスの凝固点以下の温度に冷却し
て脱呈し、それを乾燥し、脱ロウする工程からなるので
、複雑な形状を有する耐熱性無機質繊維成形体を高い寸
法精度で効率的に量産することができる。As described above, according to the present invention, in addition to heat-resistant inorganic fibers, a composition containing a solid wax as a forming aid, a colloidal inorganic binder containing solvent water, and a dispersion aid is added to the solid wax. The process consists of heating and kneading at a temperature above the melting point of the solid wax, then cooling it to a temperature below the freezing point of the solid wax to dewax it, drying it, and dewaxing it. Fiber molded bodies can be efficiently mass-produced with high dimensional accuracy.
Claims (5)
ワツクス、溶媒水を含むコロイド状無機結合剤および分
散助剤を含む組成物を、前記固体ワツクスの融点以上の
温度で加熱混練して成形し、次に固体ワツクスの凝固点
以下の温度に冷却して脱型し、それを乾燥し、脱ロウす
る工程からなることを特徴とする耐熱性無機質繊維成形
体の製造方法。(1) In addition to heat-resistant inorganic fibers, a composition containing a solid wax as a forming aid, a colloidal inorganic binder containing solvent water, and a dispersion aid is heated and kneaded at a temperature equal to or higher than the melting point of the solid wax. A method for producing a heat-resistant inorganic fiber molded article, comprising the steps of molding, then cooling to a temperature below the freezing point of solid wax, demolding, drying, and dewaxing.
シリケート、カルシウムシリケート、スラグ、ジルコニ
ア、酸化硼素、炭化硼素、窒化珪素、炭化珪素、炭素、
ガラス、アスベストの各繊維から選択される特許請求の
範囲第1項記載の耐熱性無機質繊維成形体の製造法。(2) Heat-resistant inorganic fibers include alumina, silica, aluminosilicate, calcium silicate, slag, zirconia, boron oxide, boron carbide, silicon nitride, silicon carbide, carbon,
The method for producing a heat-resistant inorganic fiber molded article according to claim 1, wherein the fiber is selected from glass and asbestos fibers.
ス、変性ワツクス、合成ワツクス、合成炭化水素、硬化
油脂から選択される特許請求の範囲第1項記載の耐熱性
無機質繊維成形体の製造法。(3) The method for producing a heat-resistant inorganic fiber molded article according to claim 1, wherein the solid wax is selected from mineral waxes, animal and plant waxes, modified waxes, synthetic waxes, synthetic hydrocarbons, and hydrogenated oils and fats.
シリカ、コロイダルアルミナ、コロイダルジルコニア、
エチルシリケート加水分解液、水分散した粘土、金属超
微粉末の水分散液から選択される特許請求の範囲第1項
記載の耐熱性無機質繊維成形体の製造方法。(4) Colloidal inorganic binders containing solvent water include colloidal silica, colloidal alumina, colloidal zirconia,
The method for producing a heat-resistant inorganic fiber molded article according to claim 1, wherein the method is selected from an ethyl silicate hydrolyzate, water-dispersed clay, and an aqueous dispersion of ultrafine metal powder.
ニオン活性剤、両性活性剤、アルギン酸誘導体、澱粉誘
導体、セルロース誘導体、ゼラチン、カゼイン、アルブ
ミン、アラビアゴム、トラガントゴム、ポリビニルアル
コール、ポリビニルブチラール、ポリエチレングリコー
ル、ポリオキシエチレン、ポリアクリル酸塩、リグニン
スルホル酸塩から選択される特許請求の範囲第1項記載
の耐熱性無機質繊維成形体の製造方法。(5) Dispersion aids include anionic activators, cationic activators, nonionic activators, amphoteric activators, alginic acid derivatives, starch derivatives, cellulose derivatives, gelatin, casein, albumin, gum arabic, gum tragacanth, polyvinyl alcohol, polyvinyl butyral, polyethylene. The method for producing a heat-resistant inorganic fiber molded article according to claim 1, wherein the molded article is selected from glycol, polyoxyethylene, polyacrylate, and lignin sulforate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP280785A JPS61163173A (en) | 1985-01-11 | 1985-01-11 | Method for producing heat-resistant inorganic fiber molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP280785A JPS61163173A (en) | 1985-01-11 | 1985-01-11 | Method for producing heat-resistant inorganic fiber molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61163173A true JPS61163173A (en) | 1986-07-23 |
JPH0155217B2 JPH0155217B2 (en) | 1989-11-22 |
Family
ID=11539654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP280785A Granted JPS61163173A (en) | 1985-01-11 | 1985-01-11 | Method for producing heat-resistant inorganic fiber molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61163173A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168582A (en) * | 1985-01-18 | 1986-07-30 | 株式会社 興人 | Manufacture of inorganic formed body |
-
1985
- 1985-01-11 JP JP280785A patent/JPS61163173A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168582A (en) * | 1985-01-18 | 1986-07-30 | 株式会社 興人 | Manufacture of inorganic formed body |
JPH0459271B2 (en) * | 1985-01-18 | 1992-09-21 | Kojin Kk |
Also Published As
Publication number | Publication date |
---|---|
JPH0155217B2 (en) | 1989-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tallon et al. | Recent trends in shape forming from colloidal processing: A review | |
US20110129640A1 (en) | Method and binder for porous articles | |
Guzman | Certain principles of formation of porous ceramic structures. Properties and applications (a review) | |
US3880969A (en) | Method of preparing an open-celled aromic foam | |
WO1998043927A3 (en) | Porous ceramic articles and method for the manufacture thereof | |
JP2928486B2 (en) | Forming method | |
EP3315478B1 (en) | Precursor material for additive manufacturing of ceramic parts and methods of producing the same | |
KR960006252B1 (en) | Porous ceramic molded articles, compositions for the manufacture thereof, and articles thereof | |
JP2002517375A5 (en) | ||
JPH0366373B2 (en) | ||
JPH02503013A (en) | Shaping method using ceramic and metal | |
JP2000510807A (en) | Stabilization of sintered foam and production of open-cell sintered foam | |
JP2681067B2 (en) | Ceramic foam filter and method for manufacturing the same | |
CA1038890A (en) | Siliceous thermal insulation and method of making same | |
JPS61163173A (en) | Method for producing heat-resistant inorganic fiber molded product | |
EP0410601B1 (en) | Composite ceramic material | |
US5320989A (en) | Boron nitride-containing bodies and method of making the same | |
JP2651170B2 (en) | Ceramics porous body | |
US4126653A (en) | Method of manufacturing silicon nitride products | |
JP2506503B2 (en) | Multilayer ceramic porous body | |
JPH0597537A (en) | Production of ceramic porous material | |
JPS63265880A (en) | Production of porous sintered body having open cell | |
JP2728838B2 (en) | Method for producing porous sintered body | |
JPH04160078A (en) | Production of ceramic porous body | |
JPH03257081A (en) | Production of porous ceramics |