JPS61160965A - Semiconductor ic device - Google Patents
Semiconductor ic deviceInfo
- Publication number
- JPS61160965A JPS61160965A JP60001067A JP106785A JPS61160965A JP S61160965 A JPS61160965 A JP S61160965A JP 60001067 A JP60001067 A JP 60001067A JP 106785 A JP106785 A JP 106785A JP S61160965 A JPS61160965 A JP S61160965A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- base
- transistor
- region
- bipolar transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 8
- 230000003071 parasitic effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/40—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00 with at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of IGFETs with BJTs
- H10D84/401—Combinations of FETs or IGBTs with BJTs
Landscapes
- Bipolar Transistors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は高性能のMOS トランジスタと高速のバブポ
ーラトランジスタを一体化した半導体集積回路装置の構
造に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a semiconductor integrated circuit device that integrates a high-performance MOS transistor and a high-speed bubble polar transistor.
従来の技術
従来のバイポーラトランジスタ、MOSトランジスタを
一体化した半導体集積回路装置を第10図に示す。2. Description of the Related Art A conventional semiconductor integrated circuit device in which a bipolar transistor and a MOS transistor are integrated is shown in FIG.
図において、1はP形基板、2はバイポーラトランジス
タのn 埋込部、3はMOSトランジスの
j1+埋込部、4はn−ウェルでバイポーラトランジス
タのコレクタ、5はn−ウェル、6は分離酸化膜、7は
バイポーラトランジスタのp形ベース、8はバイポーラ
トランジスタのp 形ベースコンタクト層、9はp 領
域でMOSトランジスタのソース、10はp 領域でM
OSトランジスタのドレイン、11はn 領域でペース
コンイクト層、12はn 領域でエミッタ、13はコレ
クタ、14はエミッタ、16はベース、16はソース電
極、17はドレイン電極、18はゲート酸化膜、19は
ゲート電極である。このような構造において、MOSト
ランジスタは、ゲート電極18とソース電極16(又は
ドレイン電極17)は2゛層構造になっているので、電
極間の距離を小さくすることができる。そのためトラン
ジスタのサイズが小さくなり、寄生容量が下がる。これ
はトランジスタの性能を上げることになる。一方バイボ
ーラトランジスタはベース電極8とエミッタ電極12は
一層構造になっているため、電極間の距離を広くとる必
要がある。このためベース面積が大きくなり、寄生容量
が上がる。これはトランジスタのスピードを著しく低減
させることになる。In the figure, 1 is the P-type substrate, 2 is the n-buried part of the bipolar transistor, 3 is the j1+ buried part of the MOS transistor, 4 is the n-well and the collector of the bipolar transistor, 5 is the n-well, and 6 is the isolated oxide. 7 is the p-type base of the bipolar transistor, 8 is the p-type base contact layer of the bipolar transistor, 9 is the p-region and the source of the MOS transistor, 10 is the p-region and M
The drain of the OS transistor, 11 is an n-region and a spaceconducting layer, 12 is an emitter in an n-region, 13 is a collector, 14 is an emitter, 16 is a base, 16 is a source electrode, 17 is a drain electrode, 18 is a gate oxide film, 19 is a gate electrode. In such a structure, since the gate electrode 18 and the source electrode 16 (or drain electrode 17) have a two-layer structure in the MOS transistor, the distance between the electrodes can be reduced. This reduces the size of the transistor and reduces parasitic capacitance. This will improve the performance of the transistor. On the other hand, since the base electrode 8 and emitter electrode 12 of the bibolar transistor have a single layer structure, it is necessary to provide a wide distance between the electrodes. This increases the base area and increases parasitic capacitance. This will significantly reduce the speed of the transistor.
従ってこのような従来の構造では、高性能のMOSトラ
ンジスタと高速のバイポーラトランジスタを両者の特性
を互に損なうことなしに一体化することは難しいもので
あった。Therefore, with such a conventional structure, it is difficult to integrate a high-performance MOS transistor and a high-speed bipolar transistor without mutually damaging the characteristics of both.
発明が解決しようとする問題点
このような従来の半導体集積回路装置ではlMOSトラ
ンジスタの特性は良いが、同一基板に形成されたバイポ
ーラトランジスタの高速化は十分でない。特にバイポー
ラトランジスタのベース電極とエミッタ電極との距離を
長くとる必要があるためベース領域が大きくなり、その
ためベース容量の増大により高速化が損なわれる。本発
明はかかる点に鑑みてなされたもので、簡単な構成で高
性能のMOS トランジスタと高速なバイポーラトラン
ジスタを互いの性能を損うことなく良好に一体化するこ
とができる半導体集積回路装置を提供することを目的と
している。Problems to be Solved by the Invention Although the characteristics of the IMOS transistor in such a conventional semiconductor integrated circuit device are good, the speed of the bipolar transistor formed on the same substrate is not sufficiently high. In particular, it is necessary to increase the distance between the base electrode and emitter electrode of a bipolar transistor, which increases the base region, which impairs high speed performance due to an increase in base capacitance. The present invention has been made in view of the above, and provides a semiconductor integrated circuit device that can satisfactorily integrate a high-performance MOS transistor and a high-speed bipolar transistor with a simple configuration without impairing each other's performance. It is intended to.
問題点を解決するだめの手段
本発明は上記問題点を解決するため、同一の工程で形成
したMOSトランジスタのゲート電極とバイポーラトラ
ンジスタのエミッタ電極を有し。Means for Solving the Problems In order to solve the above problems, the present invention has a gate electrode of a MOS transistor and an emitter electrode of a bipolar transistor formed in the same process.
かつ、上記ゲート電極とエミッタ電極を被覆する絶縁膜
にそれぞれ開口を設けて形成されたソース。and a source formed by providing an opening in an insulating film covering the gate electrode and the emitter electrode.
ドレイン電極及びベース電極を備えたものである。It is equipped with a drain electrode and a base electrode.
エミッタ電極とベース電極は2層構造になっておりゲー
ト電極とソース電極(ドレイン電極)は2層構造になっ
ている。The emitter electrode and base electrode have a two-layer structure, and the gate electrode and source electrode (drain electrode) have a two-layer structure.
作用
本発明は上記の構造によシ、バイポーラトランジスタの
エミッタ電極とベース電極間の距離を短縮し、ベース、
コレクタ間の容量を小さくして。Effect of the present invention In accordance with the above structure, the distance between the emitter electrode and the base electrode of a bipolar transistor is shortened, and the distance between the base and base electrodes is reduced.
Reduce the capacitance between collectors.
MOSトランジスタの高性能を保ちながら、バイポーラ
トランジスタの高速化を実現する。Achieving high speed bipolar transistors while maintaining the high performance of MOS transistors.
実施例
第1図は本発明の一実施例における半導体集積回路装置
の断面図である。図において、20はp形基板、21は
MOSトランジスタの計理込部。Embodiment FIG. 1 is a sectional view of a semiconductor integrated circuit device according to an embodiment of the present invention. In the figure, 20 is a p-type substrate, and 21 is a calculation section of a MOS transistor.
22はバイポーラトランジスタのn十埋込部、23はn
−ウェル、24はn−ウェルでバイポーラトランジスタ
のコレクタ、25は分離酸化膜、26ハp十領域でMO
Sトランジスタのソース、27はp十領域でMOSトラ
ンジスタのドレイン。22 is the n-buried portion of the bipolar transistor, and 23 is the n-buried portion of the bipolar transistor.
- well, 24 is an n-well and is the collector of a bipolar transistor, 25 is an isolation oxide film, and 26 is a hap region for MO
The source of the S transistor, 27 is the p region and the drain of the MOS transistor.
28はバイポーラトランジスタのp十形ベースコンタク
ト、29はp領域でMOSトランジスタのソース、30
はp領域でMOSトランジスタのドレイン、31はp領
域でバイポーラトランジスタの外部ベース、32はp領
域でバイポーラトランジスタの内部ベース、33はn十
領域でバイポーラトランジスタのエミッタ、34はn十
領域でバイポーラトランジスタのコレクタコンタクト、
35はゲート酸化膜、36はゲート電極、3りはエミッ
タ電極、38は多層用の眉間絶縁膜、39はソース電極
、40はビレ1イン電極、41はベース電極、42はコ
レクタ電極、43はサイドウオールである。28 is the p-type base contact of the bipolar transistor, 29 is the p region and the source of the MOS transistor, 30
is the drain of the MOS transistor in the p region, 31 is the external base of the bipolar transistor in the p region, 32 is the internal base of the bipolar transistor in the p region, 33 is the emitter of the bipolar transistor in the n0 region, and 34 is the bipolar transistor in the n0 region. collector contact,
35 is a gate oxide film, 36 is a gate electrode, 3 is an emitter electrode, 38 is a glabella insulating film for multilayer, 39 is a source electrode, 40 is a fin 1-in electrode, 41 is a base electrode, 42 is a collector electrode, 43 is a It's a side wall.
第1図に示した構造において、MOS トランジスタは
ゲート電極36とソース電極39(又はドレイン電極4
0)が層間絶縁膜38を介して2層wt造になっている
ので電極間の距離を小さくすることができる。そのため
トランジスタのサイズが小さくなり、寄生容量が下がシ
、トランジスタの性能が上がる。バイポーラトランジス
タにおいてもエミッタ電極37とベース電極41が層間
絶縁膜38を介して2層構造になっているので電極間の
距離を小さくすることができる。そのためトランジスタ
のベース面積が小さくなシ、寄生容量が下がり、トラン
ジスタのスピードが上がる。ベース電極41とソース電
極39(又はドレイン電極40)は同一の工程で形成さ
れ、ゲート電極36とエミッタ電極37は同一の工程で
形成される。In the structure shown in FIG. 1, the MOS transistor has a gate electrode 36 and a source electrode 39 (or drain electrode 4).
0) has a two-layer wt structure with an interlayer insulating film 38 in between, so the distance between the electrodes can be reduced. This reduces the size of the transistor, reduces parasitic capacitance, and improves transistor performance. In the bipolar transistor as well, since the emitter electrode 37 and the base electrode 41 have a two-layer structure with the interlayer insulating film 38 in between, the distance between the electrodes can be reduced. This reduces the base area of the transistor, reduces parasitic capacitance, and increases the speed of the transistor. The base electrode 41 and the source electrode 39 (or the drain electrode 40) are formed in the same process, and the gate electrode 36 and the emitter electrode 37 are formed in the same process.
ゲート電極36とエミッタ電極37の材料としては、多
結晶Si、シリサイド、高融点金属等が使用される。As the material for the gate electrode 36 and the emitter electrode 37, polycrystalline Si, silicide, high melting point metal, etc. are used.
次に第2図〜第9図をもとに、上記半導体集積回路装置
の構造を実現するだめの製造プロセスを説明する。Next, a manufacturing process for realizing the structure of the semiconductor integrated circuit device will be explained based on FIGS. 2 to 9.
第2図において、n−ウェル領域23.24を分離する
酸化膜25が形成されている。n−ウェル領域23には
ゲート酸化膜35.p形の不純物領域a2.n%の不純
物領域33が形成されている。In FIG. 2, an oxide layer 25 is formed which separates the n-well regions 23,24. A gate oxide film 35 is formed in the n-well region 23. p-type impurity region a2. An n% impurity region 33 is formed.
次に第3図において全面に、多結晶Si又はシリサイド
又は高融点金属を堆積したのち、フォトエツチング工程
によりゲート電極36.エミッタ電極37を形成する。Next, as shown in FIG. 3, after polycrystalline Si, silicide, or high melting point metal is deposited on the entire surface, the gate electrode 36. An emitter electrode 37 is formed.
次に第4図において、エミッタ電極37をマスクとして
、p形の不純物領域32.n+形の不純物領域33をエ
ツチングすることによりp形の活性ベース領域32.n
十形のエミッタ領域33を形成する・
次に第6図において、p形め不純物を全面にインブラン
ティング(注入)して、低濃度のソース領域29.ドレ
イン領域30.低濃度の外部ベース31を同時に形成す
る。この時、ゲート電極36の直下及びエミッタ電極3
7の直下には不純物が入らないようにインブランティン
グのエネルギーを設定する。Next, in FIG. 4, using the emitter electrode 37 as a mask, p-type impurity regions 32. By etching the n+ type impurity region 33, a p type active base region 32. n
Forming a ten-shaped emitter region 33 Next, as shown in FIG. 6, p-type impurities are implanted over the entire surface to form a low concentration source region 29. Drain region 30. A low concentration external base 31 is formed at the same time. At this time, directly under the gate electrode 36 and the emitter electrode 3
Implanting energy is set so that impurities do not enter directly under 7.
次に第6図において、全面にCvDのSiO□層を形成
する。Next, in FIG. 6, a CvD SiO□ layer is formed on the entire surface.
次に第7図において、異方性のドライエツチングを用い
て、GVDsio□23をエツチングしてゲート電極3
6.エミッタ電極37の側面のみに残しサイドウオール
43を形成する。ソース、ドレイン領域29.30及び
外部ベース31上のCVD5iO□層43はエツチング
される。Next, in FIG. 7, the gate electrode 3 is etched using anisotropic dry etching.
6. A side wall 43 is formed leaving only the side surface of the emitter electrode 37. The CVD5iO□ layer 43 over the source and drain regions 29, 30 and extrinsic base 31 is etched.
次に第8図において、全面にp形の不純物をイオン注入
して、p+のソース26.ドレイン27゜p+の外部ベ
ース28を同時に形成する。Next, in FIG. 8, p-type impurity ions are implanted into the entire surface of the p+ source 26. The external base 28 of the drain 27°p+ is formed at the same time.
ゲート電極36.サイドウオール43.エミッタ電極3
7の直下にはインブランティングの不純物が入らないよ
うにエネルギーを設定する。ドレイン領域30は低濃度
のドレイン領域でいわゆるL D D (ligh、t
ly dopad drain)構造となッテオリ、ホ
ットエレクトロンの低減に効果がある。また低濃度の外
部ベース28はエミッタ、ベース間の耐圧向上に効果が
ある。Gate electrode 36. Side wall 43. Emitter electrode 3
The energy is set so that impurities from im-blanting do not enter directly under 7. The drain region 30 is a low concentration drain region and has a so-called L D D (light, t
This structure is effective in reducing hot electrons. Furthermore, the low concentration external base 28 is effective in improving the breakdown voltage between the emitter and the base.
次に第9図において、全面にOV D Si0□38を
堆積する。次にソースコンタクト44.ドレインコンタ
クト45.ベースコンタクト46.47を開孔する。Next, in FIG. 9, OV D Si0□ 38 is deposited on the entire surface. Next, source contact 44. Drain contact 45. Base contacts 46, 47 are drilled.
最後に第1図に示すように、ソース電極39゜ドレイン
電極40.ベース電極41.コレクタ電極42を同時に
形成する。第2図〜第9図の工程ではバイポーラトラン
ジスタのn 埋込部22゜MOSトランジスタのn十埋
込部21.p形基板20、n十領域でバイポーラトラン
ジスタのコレクタコンタクト34の形成手順を示してい
ないが。Finally, as shown in FIG. 1, the source electrode 39, the drain electrode 40. Base electrode 41. A collector electrode 42 is formed at the same time. In the steps shown in FIGS. 2 to 9, the n buried portion 22 of the bipolar transistor and the n ten buried portion 21 of the MOS transistor. Although the steps for forming the collector contact 34 of the bipolar transistor in the p-type substrate 20 and the n+ region are not shown.
通常の方法で簡単に形成することができる。ゲート電極
36とソース、ドレイン電極39.40は2層構造に、
エミッタ電極3Tとベース電極41は2層構造になる。It can be easily formed using conventional methods. The gate electrode 36 and the source and drain electrodes 39 and 40 have a two-layer structure,
The emitter electrode 3T and the base electrode 41 have a two-layer structure.
発明の効果
以上述べてきたように本発明によれば、簡易な構造で高
性能のMOSトランジスタと高速のバイポーラトランジ
スタを互いの性能を損うことなく一体化することができ
、実用上きわめて有用である。Effects of the Invention As described above, according to the present invention, it is possible to integrate a high-performance MOS transistor and a high-speed bipolar transistor with a simple structure without degrading each other's performance, which is extremely useful in practice. be.
第1図は本発明の一実施例における半導体集積回路装置
の断面図、第2図〜第9図は上記半導体集積回路装置の
製造プロセスを説明するだめの断面図、第10図は従来
の半導体集積回路装置を示す断面図である。
36・・・・・・ゲート電極、37・・・・・・エミッ
タ電極。
38・・・・・・多層用の眉間絶縁膜、39・・・・・
・ソース電極、40・・・・・・ドレイン電極、41・
・・・・・ベース電極。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
3t−−−p秀■帆、ttrイA7−ラー211pτ−
人 4j−74ドラシア−IL第2図
第10因FIG. 1 is a cross-sectional view of a semiconductor integrated circuit device according to an embodiment of the present invention, FIGS. 2 to 9 are cross-sectional views for explaining the manufacturing process of the semiconductor integrated circuit device, and FIG. 10 is a conventional semiconductor integrated circuit device. FIG. 1 is a cross-sectional view showing an integrated circuit device. 36...Gate electrode, 37...Emitter electrode. 38...Multilayer glabella insulating film, 39...
・Source electrode, 40...Drain electrode, 41・
...Base electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3t---p Hide ■ sail, ttri A7-ra 211p
Person 4j-74 Dorashia-IL Figure 2 Factor 10
Claims (1)
電極、バイポーラトランジスタのエミッタ電極と、上記
ゲート電極とエミッタ電極上を被覆する絶縁膜と、上記
絶縁膜をそれぞれ開口して形成されたソース、ドレイン
電極及びベース電極を備えたことを特徴とする半導体集
積回路装置。A gate electrode of a MOS transistor, an emitter electrode of a bipolar transistor formed in the same process, an insulating film covering the gate electrode and the emitter electrode, and a source and drain electrode formed by opening the insulating film, respectively. A semiconductor integrated circuit device comprising a base electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60001067A JPS61160965A (en) | 1985-01-08 | 1985-01-08 | Semiconductor ic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60001067A JPS61160965A (en) | 1985-01-08 | 1985-01-08 | Semiconductor ic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61160965A true JPS61160965A (en) | 1986-07-21 |
Family
ID=11491182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60001067A Pending JPS61160965A (en) | 1985-01-08 | 1985-01-08 | Semiconductor ic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61160965A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179564A (en) * | 1987-01-21 | 1988-07-23 | Mitsubishi Electric Corp | Semiconductor integrated circuit device and its manufacturing method |
JPS63244768A (en) * | 1987-03-31 | 1988-10-12 | Toshiba Corp | Bipolar CMOS semiconductor device manufacturing method |
JPS63283152A (en) * | 1987-05-15 | 1988-11-21 | Toshiba Corp | Semiconductor device and manufacture thereof |
JPS63284854A (en) * | 1987-05-18 | 1988-11-22 | Seiko Epson Corp | Semiconductor device and its manufacturing method |
FR2626406A1 (en) * | 1988-01-22 | 1989-07-28 | France Etat | BIPOLAR TRANSISTOR COMPATIBLE WITH MOS TECHNOLOGY |
-
1985
- 1985-01-08 JP JP60001067A patent/JPS61160965A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179564A (en) * | 1987-01-21 | 1988-07-23 | Mitsubishi Electric Corp | Semiconductor integrated circuit device and its manufacturing method |
JPS63244768A (en) * | 1987-03-31 | 1988-10-12 | Toshiba Corp | Bipolar CMOS semiconductor device manufacturing method |
JPS63283152A (en) * | 1987-05-15 | 1988-11-21 | Toshiba Corp | Semiconductor device and manufacture thereof |
JPS63284854A (en) * | 1987-05-18 | 1988-11-22 | Seiko Epson Corp | Semiconductor device and its manufacturing method |
FR2626406A1 (en) * | 1988-01-22 | 1989-07-28 | France Etat | BIPOLAR TRANSISTOR COMPATIBLE WITH MOS TECHNOLOGY |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100253699B1 (en) | Soi device and its manufacturing method | |
JPH0348459A (en) | Semiconductor device and its manufacturing method | |
JP3113426B2 (en) | Insulated gate semiconductor device and method of manufacturing the same | |
JPS60202965A (en) | Method of manufacturing improved oxide-defined transistors and resulting structures | |
JPH0691098B2 (en) | Semiconductor device | |
JPS61160965A (en) | Semiconductor ic device | |
JPS6298663A (en) | Semiconductor integrated circuit device | |
JPH07273340A (en) | SOI type transistor | |
JPH0618200B2 (en) | Method of manufacturing lateral transistor semiconductor device | |
JPH0481336B2 (en) | ||
JPH04241465A (en) | Method for manufacturing field effect semiconductor device | |
JPH06120431A (en) | Bipolar transistor and method of manufacturing semiconductor device | |
JPH053135B2 (en) | ||
JPS60136377A (en) | Manufacture of semiconductor device with insulated gate | |
JPS60113967A (en) | Manufacturing method of semiconductor device | |
JP2722415B2 (en) | Method for manufacturing semiconductor device | |
JPS60128656A (en) | Semiconductor device | |
JPH09129884A (en) | Soi thin film field-effect transistor and its manufacture | |
JPS60235460A (en) | Semiconductor device | |
JPS63211748A (en) | Manufacturing method of semiconductor device | |
JPH04207038A (en) | Semiconductor device and its manufacture | |
JPS6251263A (en) | Insulated gate type transistor | |
JPH02102541A (en) | Semiconductor device | |
JPS632365A (en) | Manufacturing method of semiconductor integrated circuit | |
JPS59207662A (en) | Manufacture of semiconductor device |