[go: up one dir, main page]

JPS61160046A - Apparatus for evaluating crystal - Google Patents

Apparatus for evaluating crystal

Info

Publication number
JPS61160046A
JPS61160046A JP60001656A JP165685A JPS61160046A JP S61160046 A JPS61160046 A JP S61160046A JP 60001656 A JP60001656 A JP 60001656A JP 165685 A JP165685 A JP 165685A JP S61160046 A JPS61160046 A JP S61160046A
Authority
JP
Japan
Prior art keywords
crystal
epitaxial
fiber
infrared
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60001656A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60001656A priority Critical patent/JPS61160046A/en
Publication of JPS61160046A publication Critical patent/JPS61160046A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable the evaluation of the direct non-destructive characteristics of an epitaxial crystal, by irradiating the epitaxial crystal with fiber guided Raman scattered light using an infrared light source and detecting the same from the side surface of the crystal by an infrared image pick-up light detection means through a replaceable interference filter. CONSTITUTION:The infrared laser output of Nd:YAG laser 1 is incident on a single mode silica fiber 2 and the fiber guided Raman laser 3 emitted from the emitting end of said fiber is allowed to be incident to the InGaAsP epitaxial crystal layer 5 grown on an InP crystal. The scattered light 6 emitted from the side surface of the crystal layer 5 is detected by an infrared vidicon 8 through a replaceable interference filter 7. By this method, the direct non- destructive evaluation of the epitaxial crystal is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体エピタキシフル結晶評価装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compound semiconductor epitaxy full crystal evaluation device.

〔従来の技術〕[Conventional technology]

化合物半導体、特に■−■族化合物半導体を利用した各
種の電子および光デバイスの急速な進展の結果、エピタ
キシャル結晶に対する要請が多様化と高度化の度を加え
ている。特に半導体レーデを始めとする光デバイス用結
晶は、欠陥の存在が直接デバイスの品質に関係するため
、完全度の高い結晶の育成とともに、適切な評価手段に
よって、結晶の選別を可能ならしめる特性評価に対する
関心が高まっている。
As a result of the rapid development of various electronic and optical devices using compound semiconductors, particularly group ■-■ compound semiconductors, the demands on epitaxial crystals are becoming more diverse and sophisticated. In particular, in crystals for optical devices such as semiconductor radars, the presence of defects is directly related to the quality of the device, so in addition to growing highly perfect crystals, appropriate evaluation methods are used to evaluate characteristics that make it possible to select crystals. There is growing interest in

従来特性評価の方法として、直接デバイスを製作してそ
の特性を見るほか、7オトルミネセンス、深い単位の過
渡的スベクトロスコピイ(DLTS)Kよるもの等が知
られている。
Conventional methods for evaluating characteristics include directly fabricating a device and observing its characteristics, as well as methods using 7 otoluminescence, deep unit transient spectroscopy (DLTS), and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、いずれも低温を使用する必要があったシ、ある
いは電極形成の必要があるため、非破壊的といえないな
ど問題点を有していた。これに対して赤外光を利用して
吸収あるいは散乱の空間的分布を見る方法は、たとえば
半絶縁性GaAs結晶の評価に対しては顕著な成功を収
めつつあるが、エピタキシャル結晶に対しては層厚が薄
いため光源との結合が容易でなく、しかも完全度がバル
ク結晶と比較して高く、吸収φ、散乱の強度が大幅に低
いために従来はとんど行われた例を見なかった。
However, all of these methods had problems, such as the need to use low temperatures or the need to form electrodes, which made them non-destructive. On the other hand, the method of using infrared light to observe the spatial distribution of absorption or scattering is achieving remarkable success in evaluating semi-insulating GaAs crystals, for example, but it is not suitable for epitaxial crystals. Since the layer thickness is thin, coupling with a light source is not easy, and the degree of perfection is higher than that of bulk crystals, and the intensity of absorption φ and scattering is significantly lower, so it has rarely been used in the past. Ta.

本発明は、かかる状況にかんがみ化合物半導体、特ニ光
デバイス用エピタキシャル結晶の直接的かつ非破壊的特
性評価を可能ならしめる手段を与えることを目的とする
In view of this situation, the present invention aims to provide a means for directly and non-destructively evaluating the characteristics of compound semiconductors, especially epitaxial crystals for optical devices.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は結晶基板上に成長せしめられた薄層のエピタキ
シャル結晶または光導波路を含む光デバイスを光学的手
段によりて特性評価を行う結晶評価装置において、光源
がシリカ・ファイバにおける誘導ラマン散乱を利用した
赤外光源で1+、該エピタキシャル結晶の側方に交換可
能な波長選択素子をもつ像形成可能な光検出手段を有す
る結晶評価装置である。
The present invention is a crystal evaluation apparatus for characterizing an optical device including a thin layer of epitaxial crystal grown on a crystal substrate or an optical waveguide by optical means, in which the light source utilizes stimulated Raman scattering in a silica fiber. This is a crystal evaluation device having an infrared light source of 1+ and a light detection means capable of forming an image with an exchangeable wavelength selection element on the side of the epitaxial crystal.

〔作用〕[Effect]

結晶中の成る種の欠陥、特に析出物・組成のゆらぎ・界
面の不完全性は散乱の原因となることが知られている。
It is known that certain defects in crystals, especially precipitates, compositional fluctuations, and interface imperfections, cause scattering.

しかも散乱強度の波長依存性は欠陥の種類によって異な
り、析出物においてはミー散乱のため波長依存性をもた
ず、組成のゆらぎにおいてはレイリー散乱のため強い波
長依存性を有し、界面あるいは表面の欠陥においては時
に複雑な波長特性を示す。このような理由から、結晶あ
るいはデバイス中の散乱光の波長的および空間的分布を
知ることは、評価上非常に有用である。かかる方法は最
近、9谷・小川により明らかにされたように(シャツニ
ーズ・ジャーナルeオブ・アゲライr・フィシ、クス誌
22巻4号L207に一ジ: GaAsおよび熱処理S
t結晶の格子欠陥の赤外散乱光トモグラフィによる観察
)、バルク結晶に関しては顕著な成功を収めている。し
かるに、従来、エピタキシャル結晶または光導波路デバ
イスのこの種の特性評価が行われなかった理由は、主に
エピタキシャル結晶等と結合可能で広い波長範囲で強い
発光をもつ光源が存在しなかったことによる。これに対
し、シリカ・ファイバにおける誘導ラマン散乱光を光源
として使用すると、10μm程度の狭い面積から1μm
から2μmの波長にいたる数十mWにおよぶ強い発光を
得ることができる。
Furthermore, the wavelength dependence of the scattering intensity differs depending on the type of defect; precipitates have no wavelength dependence due to Mie scattering, compositional fluctuations have a strong wavelength dependence due to Rayleigh scattering, and Defects sometimes exhibit complex wavelength characteristics. For these reasons, knowing the wavelength and spatial distribution of scattered light in a crystal or device is very useful for evaluation. Such a method has recently been clarified by 9 Tani and Ogawa (Shirtneys Journal e of Agerai R. Fisi, Kusu Magazine Vol. 22 No. 4 L207: GaAs and Heat Treatment S
Observation of lattice defects in t-crystals by infrared scattering optical tomography) has achieved remarkable success in bulk crystals. However, the reason why this type of characteristic evaluation of epitaxial crystals or optical waveguide devices has not been performed in the past is mainly due to the absence of a light source that can be combined with epitaxial crystals and the like and emits strong light in a wide wavelength range. On the other hand, when stimulated Raman scattering light in a silica fiber is used as a light source, it is possible to
It is possible to obtain strong light emission of several tens of milliwatts with wavelengths ranging from 2 μm to 2 μm.

従って、適当な結合手段によってエピタキシャル結晶ま
たは光導波路デバイスに光を導入した上、側方より波長
選択手段を有する像形成可能な光検出手段を設置し、各
種の画像を比較すれば散乱の原因となる欠陥の分布に関
して具体的な知見を得ることが可能となる。
Therefore, by introducing light into an epitaxial crystal or optical waveguide device using an appropriate coupling means, and installing a light detection means capable of forming an image with a wavelength selection means from the side, and comparing various images, it is possible to determine the cause of scattering. It becomes possible to obtain specific knowledge regarding the distribution of defects.

〔実施例〕〔Example〕

本発明の特徴ならびに主要な利点を一層明らかにするた
め、以下一実施例について説明をおこなう。
In order to further clarify the features and major advantages of the present invention, an example will be described below.

図面の第1図に示すごとく、1.06μmに発振線を有
するNd:YAGレーデ1の出力を、長尺の単一モード
・シリカ・ファイバ2に入射せしめると、出射端より1
乃至2μmのスペクトルを有するファイバ誘導ラマン光
3を得る。InP結晶基板4上に成長せしめられたIn
GaAsPエピタキシャル結晶層5に該ファイバ誘導ラ
マン光を入射せしめ、該エピタキシャル結晶層の側面よ
り散乱光6を交換可能な干渉フィルタ7を通して赤外ビ
ジコン8によって検出すれば、散乱に関係する欠陥の空
間的分布を求めることができる。広い面積をもつエピタ
キシャル結晶の2次元的分布を知るためには、横方向に
移動機構を臭備しく図示せず)、ビジコンの画像を周知
の方法によって、画像プロセスを行えばよい。
As shown in FIG. 1 of the drawings, when the output of an Nd:YAG radar 1 having an oscillation line at 1.06 μm is input into a long single mode silica fiber 2, 1.
Fiber-stimulated Raman light 3 having a spectrum of 2 μm to 2 μm is obtained. In grown on the InP crystal substrate 4
If the fiber-induced Raman light is incident on the GaAsP epitaxial crystal layer 5, and the scattered light 6 from the side surface of the epitaxial crystal layer is detected by the infrared vidicon 8 through the replaceable interference filter 7, the spatial detection of defects related to scattering is detected. You can find the distribution. In order to know the two-dimensional distribution of epitaxial crystals having a wide area, image processing may be performed on the vidicon image by a well-known method (the lateral movement mechanism is not clearly shown).

さらにエピタキシャル結晶層の背後に、透過光のスペク
トル分布を測定し得る手段を設け、散乱による結果と比
較対比を可能ならしめれば、評価上有益となる。
Furthermore, it would be useful for evaluation if a means for measuring the spectral distribution of transmitted light was provided behind the epitaxial crystal layer, making it possible to compare and contrast the results with the scattering results.

ファイバ誘導ラマン光のスペクトルは、第2図に示すよ
うに、ポンプ光11および数本のストークス線12と長
波長部の連続スペクトル部分13からなシ、通常1−v
族化合物半導体の評価において必要な波長領域をカバー
している。
As shown in FIG. 2, the spectrum of fiber-stimulated Raman light consists of a pump light 11, several Stokes lines 12, and a continuous spectrum part 13 in the long wavelength region, usually 1-v.
It covers the wavelength range necessary for evaluating group compound semiconductors.

かかる結晶評価装置によって、エピタキシフル結晶の不
均一性等の評価はもとより、光導波路を含むデバイス、
たとえば方向性結合器、半導体レーデ等の光デバイス中
の欠陥の評価を行うことも可能である。
Such crystal evaluation equipment can be used not only to evaluate the non-uniformity of epitaxial full crystals, but also to evaluate devices including optical waveguides,
For example, it is also possible to evaluate defects in optical devices such as directional couplers and semiconductor radars.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の結晶評価装置によれば、従来はと
んど行なわれ得なかったエビタキシアル結晶あるいは光
導波路を含む光デバイスの散乱光による評価を有効に行
うことができる効果を有するものである。
As described above, the crystal evaluation apparatus of the present invention has the effect of being able to effectively evaluate optical devices including epitaxial crystals or optical waveguides using scattered light, which has rarely been possible in the past. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかわる結晶評価装置の一実施例の模
式図、第2図はファイバ誘導ラマン散乱光のスペクトル
の一例を示す図である。 l・・・ND : YAGレーザ、2・・・単一モード
・シリカ・ファイバ、3・・・ファイバ誘導ラマン光、
4−・・InP結晶基板、5・・・InGaAsPエピ
タキシャル結晶層、6・・・欠陥等による散乱光、7・
・・干渉フィルタ、8・・・赤外ビジコン、11・−・
ポンプ光、じ・・・ストークス線、13・・・ラマン連
続スペクトル部分特許出願人  日本電気株式会社 121,4\ 代理人 弁理士   内   原    皆[11,−
ノー、 − 第1図
FIG. 1 is a schematic diagram of an embodiment of a crystal evaluation apparatus according to the present invention, and FIG. 2 is a diagram showing an example of the spectrum of fiber-stimulated Raman scattered light. l...ND: YAG laser, 2...single mode silica fiber, 3...fiber-stimulated Raman light,
4-... InP crystal substrate, 5... InGaAsP epitaxial crystal layer, 6... scattered light due to defects, etc., 7...
...Interference filter, 8...Infrared vidicon, 11...
Pump light, di... Stokes line, 13... Raman continuous spectrum partial patent applicant NEC Corporation 121,4\ Agent Patent attorney Minami Uchihara [11,-
No, - Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)結晶基板上に成長せしめられた薄層のエピタキシ
ャル結晶またはかかる結晶より製作された光導波路を有
する光デバイスを光学的手段によって特性評価を行う結
晶評価装置において、光源がシリカ・ファイバにおける
誘導ラマン散乱を利用した赤外光源であり、該エピタキ
シャル結晶の側方に交換可能な波長選択素子をもち像形
成可能な光検出手段を有する結晶評価装置。
(1) In a crystal evaluation apparatus that uses optical means to evaluate the characteristics of an optical device having a thin layer of epitaxial crystal grown on a crystal substrate or an optical waveguide made from such a crystal, the light source is guided by a silica fiber. A crystal evaluation device that is an infrared light source that utilizes Raman scattering, has an exchangeable wavelength selection element on the side of the epitaxial crystal, and has a light detection means that can form an image.
JP60001656A 1985-01-09 1985-01-09 Apparatus for evaluating crystal Pending JPS61160046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001656A JPS61160046A (en) 1985-01-09 1985-01-09 Apparatus for evaluating crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001656A JPS61160046A (en) 1985-01-09 1985-01-09 Apparatus for evaluating crystal

Publications (1)

Publication Number Publication Date
JPS61160046A true JPS61160046A (en) 1986-07-19

Family

ID=11507561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001656A Pending JPS61160046A (en) 1985-01-09 1985-01-09 Apparatus for evaluating crystal

Country Status (1)

Country Link
JP (1) JPS61160046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370536A (en) * 1986-09-12 1988-03-30 Nec Corp Crystal evaluating device
US5262644A (en) * 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
WO2008057183A1 (en) * 2006-11-01 2008-05-15 Raytheon Company Method for continuous, in situ evaluation of entire wafers for macroscopic features during epitaxial growth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370536A (en) * 1986-09-12 1988-03-30 Nec Corp Crystal evaluating device
US5262644A (en) * 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
WO2008057183A1 (en) * 2006-11-01 2008-05-15 Raytheon Company Method for continuous, in situ evaluation of entire wafers for macroscopic features during epitaxial growth
US7776152B2 (en) 2006-11-01 2010-08-17 Raytheon Company Method for continuous, in situ evaluation of entire wafers for macroscopic features during epitaxial growth

Similar Documents

Publication Publication Date Title
US6693286B2 (en) Method for evaluating the quality of a semiconductor substrate
JP2975476B2 (en) Method and apparatus for measuring photoluminescence in crystal
EP0319797A2 (en) Method and apparatus for measuring defect density and defect distribution
DE112006000273T5 (en) Monolithic system and method for enhanced Raman spectroscopy
JPH11101624A (en) Defect evaluation apparatus and method, and semiconductor manufacturing method
Nakashima et al. Detection of defects in SiC crystalline films by Raman scattering
JPH07294422A (en) Detecting method for surface vicinity crystal defect and device therefor
JPS61160046A (en) Apparatus for evaluating crystal
TW200427978A (en) Detection method and apparatus
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
US6744501B2 (en) Method of analyzing silicon-germanium alloys and apparatus for manufacturing semiconductor layer structures with silicon-germanium alloy layers
JP3688383B2 (en) Crystal defect detection method
Valdez et al. Light scattering spectra of guided wave polaritons in thin crystals: Experiment
US5512999A (en) Method for nondestructive measurement of dislocation density in GaAs
JPS61181945A (en) Crystal evaluator
JP2000214099A (en) Crystal defect measurement method and apparatus
JPS6370536A (en) Crystal evaluating device
Fritz et al. Extraction of bonding strain data in diode lasers from polarization-resolved photoluminescence measurements
KR102823393B1 (en) Apparatus for semiconductor inspection and driving method therof
US12163899B2 (en) System for optical inspection of a substrate using same or different wavelengths
JP4410529B2 (en) Film thickness control method
JPH10253546A (en) Method and equipment for evaluating semiconductor substrate
Nuytten et al. Raman stress measurements at the nanoscale
JPS58102536A (en) Semiconductor crystal evaluation method
JPS61283848A (en) Flow site meter