[go: up one dir, main page]

JPS6115587Y2 - - Google Patents

Info

Publication number
JPS6115587Y2
JPS6115587Y2 JP3388281U JP3388281U JPS6115587Y2 JP S6115587 Y2 JPS6115587 Y2 JP S6115587Y2 JP 3388281 U JP3388281 U JP 3388281U JP 3388281 U JP3388281 U JP 3388281U JP S6115587 Y2 JPS6115587 Y2 JP S6115587Y2
Authority
JP
Japan
Prior art keywords
frequency
heating chamber
rotating disk
gap
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3388281U
Other languages
Japanese (ja)
Other versions
JPS57147595U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3388281U priority Critical patent/JPS6115587Y2/ja
Publication of JPS57147595U publication Critical patent/JPS57147595U/ja
Application granted granted Critical
Publication of JPS6115587Y2 publication Critical patent/JPS6115587Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は低誘電体からなる基板上に金属片を
配設して励振口を形成してなる回転円板が加熱室
の高周波受入口に設けられた高周波加熱装置の改
良に関する。 第1図および第2図は従来の高周波加熱装置、
例えば電子レンジ全体の概略構成を示すもので、
1は本体である。この本体1内には加熱室2およ
びマグネトロン(高周波発振器)3が収納されて
いる。この加熱室2の天井板2aには円形の高周
波受入口4が設けられており、この高周波受入口
4を上方から被うように空胴箱5が天井板2aに
取付けれている。この空胴箱5は前記マグネトロ
ン3から出力された高周波を導く連結部6に連結
され、この連結部6とともに導波管を構成するも
のである。また、加熱室2の高周波受入口4に
は、この高周波受入口4より若干小さい回転円板
7が設けられている。この回転円板7は低誘電体
からなる円形の基板8とこの基板8上に配設され
た扇形の4枚の金属片9……とから構成されてお
り、これらの各金属片9……は所定間隔離間して
配置され、各金属片9……間の間隙によつて略十
字状の励振口10が形成されている。そして、こ
の回転円板7は空胴箱5に取付けられた回転軸1
1によつて回転自在に支持されているとともに、
上面には図示しない風受部が立設されており、例
えばマグネトロン3を冷却する冷却風が空胴箱5
内に導かれ、この冷却風によつて回転駆動される
ようになつている。 そして、マグネトロン3から出力された高周波
は導波管を通じて高周波受入口へ導かれ、各金属
片9……の表面で略全反射され、主に励振口10
を通じて加熱室2内へ導入されることになり、励
振口10は回転円板7の回転にともない回転され
るので、加熱室2内に導入される高周波エネルギ
の分布を良好な状態に調整することができるよう
になつている。 ところで、回転円板7は転駆動されるものであ
るため、加熱室2の高周波受入口4周縁部位2b
と回転円板7との間にはリング状の間隙部12が
形成されており、空胴箱5内に導かれた高周波が
この間隙部12を通つて加熱室2内に漏洩するこ
ともあつた。この場合、間隙部12を通つて加熱
室2内に導かれる高周波はマグネトロン3からの
距離に応じて強さが異なる。例えば、第3図に示
すように間隙部12のうちマグネトロン3に近い
部位Aとマグネトロン3から遠い部位Bとの間隙
が(λ/2×n)程度(λはマグネトロン3から出力 される高周波の波長で約120mm、nは整数)であ
る場合には、マグネトロン3に近い部位Aから加
熱室2内に導かれる高周波の方がマグネトロン3
から遠い部位Bから加熱室2内に導かれる高周波
よりも強くなる。そのため、加熱室2内に導かれ
る高周波エネルギの分布が不均一になる問題があ
り、加熱室2内に載置された食品等が均一に加熱
されない欠点があつた。 この考案は上記事情を考慮してなされたもの
で、その目的は、加熱室内に導かれる高周波エネ
ルギの分布を良好な状態に調整することができ、
加熱室内に載置された食品等を均一に加熱するこ
とができる高周波加熱装置を提供することにあ
る。 以下、この考案の一実施例を第4図および第5
図を参照して説明する。第4図は高周波加熱装
置、例えば電子レンジの要部構成を示すもので、
第1図乃至第3図と同一部分には同一の符号を付
してその説明を省略する。すなわち、この考案は
加熱室2の高周波受入口4に対し回転円板7を偏
心させて配置し、加熱室2の高周波受入口4周縁
部位21と回転円板7との間に形成される間隙部
22の幅寸法を不均一にしたことを特徴とするも
のである。ここで、間隙部22のうち加熱室2内
に高周波が最も強く導入される部位、例えば間隙
部22のマグネトロン3に最も近い部位Aとマグ
ネトロン3から最も遠い部位Bとの間隔が(λ/2× n)程度である場合、マグネトロン3に最も近い
部位Aの幅寸法が狭くなるように、高周波受入口
4の中心Oから適宜の偏心距離Sだけマグネトロ
ン3側に回転円板7の回転中心O′を偏心させた
状態で回転円板7が配置されている。 そこで、上記構成のものにあつては、マグネト
ロン3から出力された高周波は空胴箱5内に導か
れたのち、大部分のものは回転円板7の励振口1
0を通つて加熱室2内に導入される。また、空胴
箱5内に導かれた高周波のうち一部分は加熱室2
の高周波受入口4周縁部位21と回転円板7との
間の間隙部22を通つて加熱室2内に導入され
る。この場合、間隙部22は加熱室2内に高周波
が強く導入される部位Aの幅寸法が狭く、加熱室
2内に導入される高周波が弱い部位Bの幅寸法が
広くなつているので、間隙部22を通つて加熱室
2内に導入される高周波エネルギを略均一な状態
に調整することができる。出願人は次の実験によ
つてこのことを確認した。 第5図において、23は加熱室2内に載置され
た棚板で、この棚板23の横寸法をW、奥行き寸
法をDとする。また、それぞれ100c.c.の水を収容
した5個の容器24a〜24eを用意し、まず棚
板23の中央に容器24aを配置し、この容器2
4aの横方向両側にW/4の間隔を設けるとともに、 奥行き方向両側にD/4の間隔を設けた位置に4個の 容器24b〜24eをそれぞれ配置する。この状
態でマグネトロン3を2分間動作させて各容器2
4a〜24e内の水の温度上昇値を調べる。最小
温度上昇値(MIN上昇値)と最大温度上昇値
(MAX上昇値)との比(水分布率)から加熱室2
内に導入される高周波エネルギの分布状態を調べ
るようにしたものである。 ここで、 水分布率()=MIN上昇値/MAX上昇値×100
(%) とする。そして、同じ条件で従来構成のもの(間
隙部の幅寸法が均一な場合)と本考案の構成のも
の(間隙部22の幅寸法が不均一な場合)とでそ
れぞれ実験を行なつた。 実験結果を表に示す。(サンプル数n=3)
This invention relates to an improvement of a high-frequency heating device in which a rotating disk formed by disposing a metal piece on a substrate made of a low dielectric material and forming an excitation port is provided at a high-frequency reception port of a heating chamber. Figures 1 and 2 show a conventional high-frequency heating device;
For example, it shows the general configuration of the entire microwave oven.
1 is the main body. A heating chamber 2 and a magnetron (high frequency oscillator) 3 are housed within the main body 1. A circular high-frequency reception port 4 is provided in the ceiling plate 2a of the heating chamber 2, and a cavity box 5 is attached to the ceiling plate 2a so as to cover the high-frequency reception port 4 from above. This cavity box 5 is connected to a connecting portion 6 that guides the high frequency waves output from the magnetron 3, and together with this connecting portion 6 constitutes a waveguide. Further, the high-frequency reception port 4 of the heating chamber 2 is provided with a rotating disk 7 that is slightly smaller than the high-frequency reception port 4 . The rotating disk 7 is composed of a circular substrate 8 made of a low dielectric material and four fan-shaped metal pieces 9 disposed on the substrate 8. Each of these metal pieces 9... are arranged at predetermined intervals, and a substantially cross-shaped excitation opening 10 is formed by the gap between each metal piece 9. This rotating disk 7 is connected to a rotating shaft 1 attached to the cavity box 5.
is rotatably supported by 1, and
A wind receiver (not shown) is installed on the upper surface, and cooling air for cooling the magnetron 3 is transmitted to the cavity box 5.
It is designed to be guided into the air and rotated by this cooling air. The high frequency waves output from the magnetron 3 are guided to the high frequency receiving port through the waveguide, and are substantially totally reflected on the surface of each metal piece 9, mainly at the excitation port 10.
Since the excitation port 10 is rotated as the rotating disk 7 rotates, the distribution of the high frequency energy introduced into the heating chamber 2 can be adjusted to a favorable state. It is becoming possible to do this. By the way, since the rotating disk 7 is driven to rotate, the peripheral portion 2b of the high frequency reception port 4 of the heating chamber 2
A ring-shaped gap 12 is formed between the rotary disk 7 and the rotary disk 7, and the high frequency waves guided into the cavity box 5 may leak into the heating chamber 2 through this gap 12. Ta. In this case, the intensity of the high frequency wave guided into the heating chamber 2 through the gap 12 differs depending on the distance from the magnetron 3. For example, as shown in FIG. 3, the gap between a portion A near the magnetron 3 and a portion B far from the magnetron 3 in the gap portion 12 is approximately (λ/2×n) (λ is the high frequency output from the magnetron 3). When the wavelength is approximately 120 mm (n is an integer), the high frequency wave guided into the heating chamber 2 from part A near the magnetron 3 is
The high frequency wave is stronger than the high frequency wave guided into the heating chamber 2 from the part B which is far from the area B. Therefore, there is a problem that the distribution of the high frequency energy guided into the heating chamber 2 becomes uneven, and there is a drawback that the food placed in the heating chamber 2 is not heated uniformly. This idea was made in consideration of the above circumstances, and its purpose is to be able to adjust the distribution of high-frequency energy introduced into the heating chamber to a favorable state.
An object of the present invention is to provide a high-frequency heating device that can uniformly heat food and the like placed in a heating chamber. An example of this invention is shown below in Figures 4 and 5.
This will be explained with reference to the figures. Figure 4 shows the main structure of a high-frequency heating device, such as a microwave oven.
Components that are the same as those in FIGS. 1 to 3 are given the same reference numerals, and their explanations will be omitted. That is, in this invention, the rotating disk 7 is arranged eccentrically with respect to the high-frequency receiving port 4 of the heating chamber 2, and the gap formed between the peripheral portion 21 of the high-frequency receiving port 4 of the heating chamber 2 and the rotating disk 7 is This is characterized in that the width of the portion 22 is non-uniform. Here, the distance between a portion of the gap 22 where the high frequency is most strongly introduced into the heating chamber 2, for example, a portion A of the gap 22 closest to the magnetron 3 and a portion B farthest from the magnetron 3 is (λ/2 × n), the center of rotation O of the rotating disk 7 is moved toward the magnetron 3 by an appropriate eccentric distance S from the center O of the high-frequency reception port 4 so that the width dimension of the portion A closest to the magnetron 3 is narrowed. The rotating disk 7 is arranged with its point eccentrically centered. Therefore, in the case of the above configuration, the high frequency output from the magnetron 3 is guided into the cavity box 5, and most of the high frequency waves output from the magnetron 3 are introduced into the excitation port 1 of the rotating disk 7.
0 into the heating chamber 2. Also, a part of the high frequency wave guided into the cavity box 5 is transmitted to the heating chamber 2.
is introduced into the heating chamber 2 through the gap 22 between the peripheral edge portion 21 of the high-frequency reception port 4 and the rotating disk 7 . In this case, the width of the gap 22 is narrow at a portion A where the high frequency is introduced into the heating chamber 2 with a strong force, and the width of the portion B where the high frequency is weakly introduced into the heating chamber 2 is wide. The high frequency energy introduced into the heating chamber 2 through the portion 22 can be adjusted to be substantially uniform. The applicant confirmed this through the following experiment. In FIG. 5, reference numeral 23 denotes a shelf board placed in the heating chamber 2, and the horizontal dimension of this shelf board 23 is W, and the depth dimension is D. In addition, five containers 24a to 24e each containing 100 c.c. of water are prepared, and first, the container 24a is placed in the center of the shelf board 23, and this container 2
Four containers 24b to 24e are respectively arranged at positions with an interval of W/4 on both sides of the container 4a in the lateral direction and an interval of D/4 on both sides of the container 4a in the depth direction. In this state, operate the magnetron 3 for 2 minutes and
Check the temperature rise value of the water in 4a to 24e. Heating chamber 2 is determined from the ratio (water distribution ratio) of the minimum temperature rise value (MIN rise value) and the maximum temperature rise value (MAX rise value).
The purpose of this method is to investigate the distribution of high-frequency energy introduced into the system. Here, water distribution rate () = MIN increase value / MAX increase value × 100
(%) Then, under the same conditions, experiments were conducted with the conventional configuration (when the width of the gap portion is uniform) and the configuration of the present invention (when the width of the gap portion 22 is uneven). The experimental results are shown in the table. (Number of samples n=3)

【表】 この表からも明らかなように、従来構成のもの
に比べて本考案の構成のものは水分布率()の
値が大きくなるので、各容器24a〜24e内の
水の温度上昇値のばらつきが小さいことがわか
る。したがつて、間隙部22のうちマグネトロン
3に最も近い部位Aの幅寸法を狭くした場合、高
周波受入口4から加熱室2内に導入される高周波
エネルギは従来よりも均一に分布されていること
になる。 かくして、加熱室2の高周波受入口4に対し回
転円板7を偏心させて配置し、加熱室2の高周波
受入口4周縁部位21と回転円板7との間に形成
される間隙部22の幅寸法を不均一にしたので、
空胴箱5内から加熱室2内に導入される高周波の
うち、間隙部22を通過するものも高周波エネル
ギの分布が略均一な状態に調整することができ、
加熱室2内に導かれる高周波のインピーダンスお
よび出力を安定化して、加熱室2内に載置された
食品等を略均一に加熱することができる。 なお、この考案は上記実施例に限定されるもの
ではなく、考案の要旨を逸脱しない範囲で種々変
形実施できることは勿論である。 以上説明したように、この考案は低誘電体から
なる基板上に励振口を形成する金属片が配設され
てなる回転円板を加熱室の高周波受入口に配設し
た高周波加熱装置において、前記加熱室の高周波
受入口に対し前記回転円板を偏心させて配置し、
前記加熱室の高周波受入口周縁部位と前記回転円
板との間に形成される間隙部の幅寸法を不均一に
したことを特徴とするものである。したがつて、
簡単な構成により、高周波受入口を通じて加熱室
内に導入される高周波のうち前記間隙部を通つて
加熱室内に導入されるものの高周波エネルギを均
一な状態に調整できるので、加熱室内に導かれる
高周波エネルギの分布を良好な状態に調整するこ
とができ、加熱室内に載置された食品等を均一に
加熱することができるという実用上優れた効果を
奏する。
[Table] As is clear from this table, the water distribution ratio ( ) of the structure of the present invention is larger than that of the conventional structure, so the temperature rise of the water in each container 24a to 24e is It can be seen that the variation is small. Therefore, when the width of the portion A of the gap 22 that is closest to the magnetron 3 is narrowed, the high frequency energy introduced into the heating chamber 2 from the high frequency reception port 4 is distributed more uniformly than before. become. Thus, the rotating disk 7 is arranged eccentrically with respect to the high-frequency receiving port 4 of the heating chamber 2, and the gap 22 formed between the peripheral portion 21 of the high-frequency receiving port 4 of the heating chamber 2 and the rotating disk 7 is Since the width dimension was made uneven,
Among the high-frequency waves introduced into the heating chamber 2 from inside the cavity box 5, the distribution of high-frequency energy can be adjusted to be substantially uniform even when the high-frequency waves pass through the gap 22.
By stabilizing the impedance and output of the high frequency wave guided into the heating chamber 2, it is possible to heat food, etc. placed in the heating chamber 2 substantially uniformly. It should be noted that this invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the invention. As explained above, this invention provides a high-frequency heating device in which a rotating disk, which is made of a substrate made of a low dielectric material and has a metal piece forming an excitation port, is arranged at the high-frequency receiving port of the heating chamber. The rotating disk is arranged eccentrically with respect to the high frequency reception port of the heating chamber,
The present invention is characterized in that the width of the gap formed between the peripheral edge of the high-frequency reception port of the heating chamber and the rotating disk is made non-uniform. Therefore,
With a simple configuration, the high-frequency energy introduced into the heating chamber through the gap can be adjusted to a uniform state among the high-frequency waves introduced into the heating chamber through the high-frequency receiving port. The distribution can be adjusted to a good state, and food products placed in the heating chamber can be uniformly heated, which is an excellent practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来例を示すもので、第1
図は全体の概略構成を示す平面図、第2図は第1
図の−線断面図、第3図は第2図の−線
断面図、第4図および第5図はこの考案の一実施
例を示すもので、第4図は要部構成を示す横断面
図、第5図は棚板上の容器の配置状態を示す平面
図である。 2……加熱室、3……マグネトロン(高周波発
振器)、4……高周波受入口、5……空胴箱(導
波管)、6……連結部(導波管)、7……回転円
板、8……基板、9……金属片、10……励振
口、22……間隙部。
Figures 1 to 3 show conventional examples.
The figure is a plan view showing the overall general configuration, and Figure 2 is the first
Figure 3 is a cross-sectional view taken along the - line in Figure 2, Figures 4 and 5 show an embodiment of this invention, and Figure 4 is a cross-sectional view showing the configuration of the main parts. FIG. 5 is a plan view showing the arrangement of containers on the shelf board. 2... Heating chamber, 3... Magnetron (high frequency oscillator), 4... High frequency reception port, 5... Cavity box (waveguide), 6... Connection part (waveguide), 7... Rotating circle Plate, 8...Substrate, 9...Metal piece, 10...Excitation port, 22...Gap portion.

Claims (1)

【実用新案登録請求の範囲】 (1) 高周波発振器から出力された高周波を導波管
を介して加熱室内へ導くとともに、低誘電体か
らなる基板上に金属片を配設して励振口を形成
した回転円板を前記加熱室の高周波受入口に配
設した高周波加熱装置において、前記加熱室の
高周波受入口に対し前記回転円板を偏心させて
配置し、前記加熱室の高周波受入口周縁部位と
前記回転円板との間に形成される間隙部の幅寸
法を不均一にしたことを特徴とする高周波加熱
装置。 (2) 回転円板は高周波分布の強い部分の間隙部の
幅寸法が狭くなるように加熱室の高周波受入口
に配置されたことを特徴とする実用新案登録請
求の範囲第(1)項記載の高周波加熱装置。
[Claims for Utility Model Registration] (1) The high frequency waves output from the high frequency oscillator are guided into the heating chamber through a waveguide, and a metal piece is placed on a substrate made of a low dielectric material to form an excitation port. In the high-frequency heating device, the rotating disk is disposed at the high-frequency receiving port of the heating chamber, and the rotating disk is arranged eccentrically with respect to the high-frequency receiving port of the heating chamber, and the peripheral portion of the high-frequency receiving port of the heating chamber is A high-frequency heating device characterized in that the width of the gap formed between the rotary disk and the rotary disk is made non-uniform. (2) The utility model registration claim described in item (1) is characterized in that the rotating disk is arranged at the high-frequency reception port of the heating chamber so that the width of the gap in the area where the high-frequency distribution is strong is narrowed. high frequency heating device.
JP3388281U 1981-03-11 1981-03-11 Expired JPS6115587Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3388281U JPS6115587Y2 (en) 1981-03-11 1981-03-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3388281U JPS6115587Y2 (en) 1981-03-11 1981-03-11

Publications (2)

Publication Number Publication Date
JPS57147595U JPS57147595U (en) 1982-09-16
JPS6115587Y2 true JPS6115587Y2 (en) 1986-05-14

Family

ID=29831218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3388281U Expired JPS6115587Y2 (en) 1981-03-11 1981-03-11

Country Status (1)

Country Link
JP (1) JPS6115587Y2 (en)

Also Published As

Publication number Publication date
JPS57147595U (en) 1982-09-16

Similar Documents

Publication Publication Date Title
JPS6242597B2 (en)
KR20050082546A (en) Microwave oven range
US4508946A (en) Microwave oven with rotary antenna
JPS63114093A (en) Triangular antenna arrangement for microwave oven
JPS6115587Y2 (en)
JPS6035992Y2 (en) High frequency heating device
JPS6337472B2 (en)
JPH11121160A (en) High frequency heating device
JPS6115586Y2 (en)
JPS6115588Y2 (en)
JP3623676B2 (en) High frequency heating device
JPS6015220B2 (en) Microwave cooking container
JPS6037837Y2 (en) High frequency heating device
JP3246095B2 (en) High frequency heating equipment
JPS6233275Y2 (en)
JP3750652B2 (en) High frequency heating device
JPS6142398B2 (en)
JPH0464154B2 (en)
JPH04345788A (en) High frequency heating device
JPS6352440B2 (en)
JPS6127878B2 (en)
KR200160253Y1 (en) Cooking chamber in microwave oven
KR850001803B1 (en) High frequency heater
JPS649718B2 (en)
JPS6035993Y2 (en) High frequency heating device