[go: up one dir, main page]

JPS61155832A - Liquid sealed type differential pressure transmitter - Google Patents

Liquid sealed type differential pressure transmitter

Info

Publication number
JPS61155832A
JPS61155832A JP27614984A JP27614984A JPS61155832A JP S61155832 A JPS61155832 A JP S61155832A JP 27614984 A JP27614984 A JP 27614984A JP 27614984 A JP27614984 A JP 27614984A JP S61155832 A JPS61155832 A JP S61155832A
Authority
JP
Japan
Prior art keywords
pressure
bellows
differential pressure
diaphragm
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27614984A
Other languages
Japanese (ja)
Inventor
Hisayoshi Masuda
増田 久喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27614984A priority Critical patent/JPS61155832A/en
Publication of JPS61155832A publication Critical patent/JPS61155832A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0618Overload protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To improve reliability by arranging a pressure receiving diaphragm, an overpressure preventing mechanism, and an annular diaphragm coaxially while aligning them to the center of a body. CONSTITUTION:When pressure PH to be measured becomes excessive, the pressure PH is impressed to the outside of a bellows 22 through the pressure receiving diaphragm 21a and a pressure transmission medium 28a. When this excessive pressure is received, the bellows 22 moves to right and a valve rod 24 and valve parts 23a and 23b also move to right reacting to the motion. Then, the valve part 23a contacts the valve seat 29 of the body 20 to inhibit the medium 28a from moving. Namely, the movement of the medium 28a is inhibited to stop subsequent pressure transmission and the excessive pressure is never transmitted to a pressure sensitive element part 27. Further, if the temperature varies while the movement of the medium 28a is inhibited, differential pressure is generated owing to the thermal expansion of the media 28a and 28b, but this differential pressure is absorbed by an annular diaphragm 30. Differential pressure generated by thermal expansion while over pressure is prevented is not supplied to the element part 27 either.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、2つの被測定圧力を夫々圧力伝達媒体を介し
て受圧し、その肉圧力の差に応じた電気信号に変換し出
力する液封式差圧伝送器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a liquid seal that receives two measured pressures through a pressure transmission medium, converts it into an electrical signal corresponding to the difference in flesh pressure, and outputs the electrical signal. Regarding differential pressure transmitters.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の液封式差圧伝送器は、例えば第3図及び第4図に
示すように構成されている。
A conventional liquid ring type differential pressure transmitter is configured as shown in FIGS. 3 and 4, for example.

10は筒状に形成されたデディーで、その両開口端には
異なる被測定圧力PHe PLを夫々受圧する受圧ダイ
ア72ムIla、llbがその開口端を閉塞するように
取着されている。また、このデディー10の筒部には、
その筒部と同心的に配置された過圧防止機構が配置され
ている。
Reference numeral 10 denotes a cylindrical body, and pressure receiving diaphragms 72 Ila and 72 lb for receiving different measured pressures PHe PL are attached to both open ends thereof so as to close the open ends. In addition, in the cylindrical part of this Dedy 10,
An overpressure prevention mechanism is disposed concentrically with the cylindrical portion.

この過圧防止機構は、そのゲディー10の筒部な2分割
するごとく配置された第1のベローズ12と、このベロ
ーズ12に応動する1対の弁部13m、13b、この弁
部I Ja 、 I Jb及びベローズ12を連結する
とともに移動可能に前記デディ10に取着された弁棒1
4とより構成されている。
This overpressure prevention mechanism includes a first bellows 12 arranged to divide the cylindrical portion of the geddy 10 into two, a pair of valve portions 13m and 13b that respond to the bellows 12, and the valve portions I Ja and I A valve rod 1 that connects Jb and a bellows 12 and is movably attached to the dedi 10.
It consists of 4.

また、前記デディー10の上部には、圧力を電気信号に
変換する例えば半導体感圧素子部15が内装されている
。この半導体感圧素子部15の対向端には、前記受圧ダ
イアフラム11a。
Further, in the upper part of the body 10, for example, a semiconductor pressure-sensitive element section 15 for converting pressure into an electric signal is installed. The pressure-receiving diaphragm 11a is provided at the opposite end of the semiconductor pressure-sensitive element portion 15.

11bで印加された圧力P Hr P Lが圧力伝達媒
体16m、16bを介して供給されている。この圧力伝
達fMFJ6 a 、 16 bは、受圧ダイアフラム
11*、11bによりゼアイー10内に封入され、前記
第1のベローズ12、感圧素子15及び第2のベローズ
1777(より区画されている。
The pressure P Hr P L applied at 11b is supplied via pressure transmission media 16m and 16b. The pressure transmitting fMFJ6a, 16b is enclosed in the ZE 10 by the pressure receiving diaphragms 11*, 11b, and is divided by the first bellows 12, the pressure sensitive element 15, and the second bellows 1777.

この第1のベローズ12は、一方の被測定圧力が過大圧
力となった場今忙移動し、前記弁棒14を介して弁部1
3&あるいはjJbをボディー10の弁座部18に密着
させ、圧力伝達媒体16mの移動を阻止し、過大圧力が
前記感圧素子部15に印加されないように動作するもの
である。
This first bellows 12 moves when one of the measured pressures becomes an excessive pressure, and moves through the valve stem 14 to the valve portion 1.
3 & or jJb is brought into close contact with the valve seat portion 18 of the body 10 to prevent movement of the pressure transmission medium 16m and operate to prevent excessive pressure from being applied to the pressure sensitive element portion 15.

一方第2のベローズ12は、前記第1のベローズ12に
より圧力伝達媒体16m、16bの移動が阻止された状
態で、温度変化に工、り生じる圧力伝達媒体16m、1
6bの熱膨張忙よる差圧を吸収するように動作するもの
である。
On the other hand, the second bellows 12 controls the pressure transmission medium 16m, 16b which is generated due to temperature change while the movement of the pressure transmission medium 16m, 16b is prevented by the first bellows 12.
It operates to absorb the differential pressure caused by the thermal expansion of 6b.

このようにして、第1のベローズ12及び弁部13*、
13bKより過大圧カ印加時の圧力伝達媒体16*、1
6bの移動を阻止し、また過大圧力印加阻止時の熱膨張
により発生する差圧の吸収を第2のベローズ17で行な
うようにして、前記感圧素子部15Vc過大圧力が印加
されないように構成されている。
In this way, the first bellows 12 and the valve part 13*,
Pressure transmission medium 16*, 1 when excessive pressure is applied than 13bK
6b is prevented from moving, and the second bellows 17 absorbs the differential pressure generated due to thermal expansion when the application of excessive pressure is prevented, so that excessive pressure is not applied to the pressure sensitive element portion 15Vc. ing.

しかしながら、このように構成さhた従来例においては
、第4図に示すように受圧ダイアフラム11*、llb
のセンターci、第1のベローズ12のセンター02及
び第2のベローズ17のセンターC3が夫々異なってお
り、ボディー10の加工が複雑となり、特に過圧防止機
構部の弁部I Ja 、 13bと弁座18との位置合
せ複雑となる。また、♂ディー10の直径は第1.第2
のベローズ12.17を縦列配置としているためにそれ
らの径に制約され小型化が出きないなどの問題がある。
However, in the conventional example configured in this way, as shown in FIG.
The center ci of the first bellows 12, the center 02 of the first bellows 12, and the center C3 of the second bellows 17 are different from each other, which complicates the machining of the body 10. In particular, the valve parts IJa, 13b of the overpressure prevention mechanism part and the valve The alignment with the seat 18 becomes complicated. Also, the diameter of the male Dee 10 is 1. Second
Since the bellows 12 and 17 are arranged in tandem, there are problems such as being restricted by their diameters and not being able to be miniaturized.

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題点に対処して成されたもので
、構造が簡単でかつ小型化が可能な液封式差圧伝送器を
提供するものである。
The present invention has been made to address these problems and provides a liquid ring type differential pressure transmitter that has a simple structure and can be downsized.

〔発明の概要〕[Summary of the invention]

本発明は、過大圧力に応動する圧力吸収体及び弁部を有
する過圧防止機構な受圧ダイアフラムと同軸的に配置す
るとともに前記圧力吸収体よりその内径が大となるよう
に#I成され、この過圧防止機構により過大圧力の伝達
が阻止された状態で発生する差圧の発生量を押える環状
ダイアプラムを前記受圧ダイアフラムへ同軸的に配置し
、過圧防止機構により過大圧力の伝達を阻止しかつ過大
圧力印加阻止時の熱膨張による差圧を環状ダイアフラム
を吸収するように構成したものである。。
The present invention is arranged coaxially with a pressure receiving diaphragm, which is an overpressure prevention mechanism having a pressure absorber that responds to excessive pressure and a valve part, and is constructed so that the inner diameter thereof is larger than that of the pressure absorber. An annular diaphragm is disposed coaxially with the pressure receiving diaphragm to suppress the amount of differential pressure generated when transmission of excessive pressure is blocked by the overpressure prevention mechanism, and the overpressure prevention mechanism prevents transmission of excessive pressure. The annular diaphragm is configured to absorb differential pressure caused by thermal expansion when excessive pressure application is blocked. .

〔発明の実施例〕[Embodiments of the invention]

以下、第1図及び第2図を用いて本発明の一実施例を説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

20は筒状の?ディーで、その両端開口部は受圧ダイア
フラム21龜、21bにより閉塞されている。この受圧
ダイアフラム2 J a 、 21bはがディー20の
筒部と同軸的に配置されている。また、このがディー2
0の筒部には、同軸的に過圧防止機構が配置されている
。この過圧防止機構は、その筒部を2分割する応力吸収
体、例えばベローズ22、このベローズ22に応動する
1対の弁部23*、23bsこの弁部23a。
20 is cylindrical? The openings at both ends thereof are closed by pressure receiving diaphragms 21 and 21b. The pressure receiving diaphragms 2 J a and 21 b are arranged coaxially with the cylindrical portion of the dee 20 . Also, this is Dee 2
An overpressure prevention mechanism is coaxially arranged in the cylindrical portion of No. 0. This overpressure prevention mechanism includes a stress absorbing body that divides the cylindrical portion into two, such as a bellows 22, and a pair of valve portions 23*, 23bs and the valve portion 23a that respond to the bellows 22.

jJbをベローズ22Vc連結する弁棒24及びこの弁
棒24により一体化された弁部23m 。
A valve rod 24 connecting JJb to the bellows 22Vc, and a valve portion 23m integrated by this valve rod 24.

23b及びベローズ22を前記筒部の軸方向に移動可能
にボディ20に取着する弾性体25から構成されている
23b and an elastic body 25 that attaches the bellows 22 to the body 20 so as to be movable in the axial direction of the cylindrical portion.

また、ボディ20の上部には、圧力を電気信号に変換し
端子26を介しズ外部へ出力する感圧素子部27が内装
されている。この感圧素子部、?71Cは、一方の被測
定圧力P、が、受圧ダイアフラム2ノ&及び、この受圧
ダイアフラム21a、ベローズ22及び感圧素子部27
の一方の1I11により形成された部屋に封入された圧
力伝達媒体28mを介し、また、他方の被測定圧力pL
が、受圧ダイアフラム21b及び、この受圧メイアフラ
421b、ベローズ22及び感圧素子部27の他方の面
により形成された部屋に封入された圧力伝達媒体28b
を介し、夫々供給されている。
Further, a pressure sensitive element section 27 is installed in the upper part of the body 20, which converts pressure into an electrical signal and outputs it to the outside via a terminal 26. This pressure sensitive element part? 71C, one pressure to be measured P is the pressure receiving diaphragm 2 &, this pressure receiving diaphragm 21a, the bellows 22, and the pressure sensitive element portion 27.
Through the pressure transmission medium 28m sealed in the chamber formed by 1I11 on one side of the
However, the pressure transmitting medium 28b is sealed in a chamber formed by the pressure receiving diaphragm 21b, the pressure receiving membrane 421b, the bellows 22, and the other surface of the pressure sensitive element portion 27.
are supplied through the respective sources.

ま声、非圧編性のこの圧力伝達媒体28a。This pressure transmission medium 28a has a non-pressure knitting property.

28bは環状ダイアフラムJOKより隔離されている。28b is isolated from the annular diaphragm JOK.

この環状ダイアフラム30は、前記ベローズ22の外径
より大なる内径を有し、かつ、前記ベローズ22及び受
圧ダイアフラム21a。
This annular diaphragm 30 has an inner diameter larger than the outer diameter of the bellows 22, and has a larger inner diameter than the outer diameter of the bellows 22 and the pressure receiving diaphragm 21a.

21bと同軸的に配置されている。この環状ダイアフラ
ム30は、前記過圧防止機構により圧力媒体28aの移
動が阻止された状態で生じる圧力伝達媒体28 a e
 J 8 bの熱膨張による差圧を吸収するためのもの
である。
It is arranged coaxially with 21b. This annular diaphragm 30 transmits the pressure medium 28 a e generated when the pressure medium 28 a is prevented from moving by the overpressure prevention mechanism.
This is to absorb the differential pressure caused by the thermal expansion of J 8 b.

゛ このように構成され、金波測定圧力PH側が過大圧
力となると、その被測定圧力P、は、受圧ダイアフラム
21a、圧力伝達媒体281を介しベローズ22の外側
に印加される。この過大圧力を受けるとベローズ22は
図中右方向に移動し、この動きに応動して弁棒24及び
弁部23a。
With this structure, when the pressure to be measured PH becomes excessive, the measured pressure P is applied to the outside of the bellows 22 via the pressure receiving diaphragm 21a and the pressure transmission medium 281. Upon receiving this excessive pressure, the bellows 22 moves to the right in the figure, and in response to this movement, the valve stem 24 and the valve portion 23a.

23bも図中右方向に移動する。そして、この一方の弁
部23hが前記ボディ2Qの弁座29に密着し圧力伝達
媒体28aの移動を阻止する。
23b also moves to the right in the figure. The one valve portion 23h is in close contact with the valve seat 29 of the body 2Q to prevent the pressure transmission medium 28a from moving.

すなわち、この圧力伝達媒体28aの移動が阻止される
ことにより以後の圧力の伝達は行なわれず、過大圧力が
感圧素子部21に伝達されることはない。また、この圧
力伝達媒体28aの移動が阻止されている状態で温度変
化が起ると、圧力伝達媒体211m、211bの熱膨張
により差圧が発生するがこの差圧は前記環状ダイアフラ
ム30により吸収される。よりて、過圧防止時の熱膨張
により発生する差圧も前記感圧素子部21へ供給される
ことはない。
That is, since the movement of the pressure transmission medium 28a is blocked, no pressure is transmitted thereafter, and excessive pressure is not transmitted to the pressure sensitive element portion 21. Furthermore, if a temperature change occurs while the movement of the pressure transmission medium 28a is blocked, a differential pressure will be generated due to thermal expansion of the pressure transmission media 211m and 211b, but this differential pressure will be absorbed by the annular diaphragm 30. Ru. Therefore, differential pressure generated due to thermal expansion during overpressure prevention is also not supplied to the pressure sensitive element section 21.

〔発明の効果〕〔Effect of the invention〕

本発明は、このように受圧ダイアフラム、過圧防止機構
及び環状ダイアフラムを同軸上に配置し、かつメゾイー
のセンタと一致させたので、位置合せが簡単となり、ま
たメゾイーの加工も簡単となり自動機による加工も可能
となり加工組立効率が向上する。また、温度変化による
差圧の発生量を環状ベローズで少なく押えるように構成
したので、従来のベローズを用いたものに比し、有効面
積を大きく取ることができ、差圧の発生量を少なくでき
、信頼性が向上し、また逆に従来のベローズと同程度の
機能で良いとすれば径少な環状ダイアフラムとすること
ができ小形化が計れるなどの効果を奏する。
In the present invention, the pressure receiving diaphragm, the overpressure prevention mechanism, and the annular diaphragm are arranged on the same axis and aligned with the center of the mezzo-ee, so alignment is easy, and the machining of the mezzo-ee is also simple, and can be easily performed using an automatic machine. Processing is also possible, improving processing and assembly efficiency. In addition, since the annular bellows is configured to suppress the amount of differential pressure generated due to temperature changes, it is possible to have a larger effective area and reduce the amount of differential pressure generated compared to the conventional bellows. , reliability is improved, and conversely, if the function is equivalent to that of a conventional bellows, it is possible to use an annular diaphragm with a smaller diameter, resulting in smaller size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を説明するための
もので、第1図は1部所面図、第2図は第1図のA−A
断面図、第3図及び第4図は従来の液封式差圧伝送器を
説明するためのもので、第3図は一部断面図、第4図は
第3図のB−B断面図である。 20・・・2デイー、21g、21b・・・受圧ダイア
フラム、22・・・ベローズ、23*、:13b・・φ
弁部、27・・・感圧素子部、28a628b・・・圧
力伝達媒体、30・・・環状ダイアフラム。
1 and 2 are for explaining one embodiment of the present invention, FIG. 1 is a partial top view, and FIG. 2 is an A-A in FIG. 1.
The sectional view, FIG. 3, and FIG. 4 are for explaining a conventional liquid ring type differential pressure transmitter. FIG. 3 is a partial sectional view, and FIG. 4 is a BB sectional view of FIG. 3. It is. 20...2D, 21g, 21b...Pressure receiving diaphragm, 22...Bellows, 23*, :13b...φ
Valve part, 27... Pressure sensing element part, 28a628b... Pressure transmission medium, 30... Annular diaphragm.

Claims (1)

【特許請求の範囲】[Claims] 異なる被測定圧力を夫々受圧ダイアフラム、圧力伝達媒
体を介して感圧素子部に供給し、両被測定圧力の差圧を
電気信号に変換し出力する液封式差圧伝送器において、
過大圧力が印加されたとき、この圧力に応動し前記圧力
伝達媒体の移動を阻止する過圧防止機構を前記受圧ダイ
アフラムと同軸的配置するとともにこの過圧防止時の温
度変化による圧力伝達媒体の熱膨張により発生する差圧
の発生量を押える環状ダイアフラムを前記過圧防止機構
及び受圧ダイアフラムと同軸的に配置したことを特徴と
する液封式差圧伝送器。
In a liquid ring differential pressure transmitter that supplies different pressures to be measured to a pressure sensing element section through a pressure receiving diaphragm and a pressure transmission medium, and converts the differential pressure between both pressures to be measured into an electrical signal and outputs it,
When excessive pressure is applied, an overpressure prevention mechanism that responds to this pressure and prevents the movement of the pressure transmission medium is disposed coaxially with the pressure receiving diaphragm, and also prevents heat of the pressure transmission medium due to temperature changes during overpressure prevention. A liquid ring type differential pressure transmitter, characterized in that an annular diaphragm that suppresses the amount of differential pressure generated due to expansion is arranged coaxially with the overpressure prevention mechanism and the pressure receiving diaphragm.
JP27614984A 1984-12-28 1984-12-28 Liquid sealed type differential pressure transmitter Pending JPS61155832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27614984A JPS61155832A (en) 1984-12-28 1984-12-28 Liquid sealed type differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27614984A JPS61155832A (en) 1984-12-28 1984-12-28 Liquid sealed type differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPS61155832A true JPS61155832A (en) 1986-07-15

Family

ID=17565441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27614984A Pending JPS61155832A (en) 1984-12-28 1984-12-28 Liquid sealed type differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS61155832A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296687C (en) * 2005-02-25 2007-01-24 沈阳市传感技术研究所 Telemetering high-temp pressure resistant / differential pressure sensor
CN105806548A (en) * 2014-09-23 2016-07-27 罗斯蒙特公司 Cooling of industrial process variable transmitter
US11313747B2 (en) 2014-09-30 2022-04-26 Rosemount Inc. Fill fluid thermal management

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296687C (en) * 2005-02-25 2007-01-24 沈阳市传感技术研究所 Telemetering high-temp pressure resistant / differential pressure sensor
CN105806548A (en) * 2014-09-23 2016-07-27 罗斯蒙特公司 Cooling of industrial process variable transmitter
CN105806548B (en) * 2014-09-23 2019-06-07 罗斯蒙特公司 The cooling of industrial process variable transmitter
US11313747B2 (en) 2014-09-30 2022-04-26 Rosemount Inc. Fill fluid thermal management

Similar Documents

Publication Publication Date Title
US4508140A (en) Hydraulic flow control valves
CA1145154A (en) Non-symmetrical overload protection device for differential pressure transmitter
US3204924A (en) Valve seats and mounting therefor
US3085437A (en) Differential pressure transducer
JPS61155832A (en) Liquid sealed type differential pressure transmitter
US3290945A (en) Differential pressure responsive device
US3939758A (en) Pressure sensor
SU506223A1 (en) Membrane unit
JPS598183Y2 (en) Differential pressure detection device
US2832372A (en) Safety valve having shielded sealing member
JPS6329217Y2 (en)
JPS5957134A (en) Apparatus for detecting pressure
JPS598184Y2 (en) Differential pressure detection device
JPH0339624B2 (en)
KR102424397B1 (en) Safety relief valve for pressure vessel
JPS6067831A (en) Differential pressure transmitter
JPH079063Y2 (en) Differential pressure measuring device
US2146684A (en) Valve
JPS5844344Y2 (en) Differential pressure detection device
JPS5912127B2 (en) Liquid ring type differential pressure detector
JPS63314431A (en) Electrostatic capacitance type differential pressure transmitter
JPH0212581Y2 (en)
JPH0435780Y2 (en)
US4308788A (en) Fluid pressure responsive apparatus
US3043339A (en) Pressure sensing device