[go: up one dir, main page]

JPS61155745A - Exhaust gas sensor - Google Patents

Exhaust gas sensor

Info

Publication number
JPS61155745A
JPS61155745A JP28093484A JP28093484A JPS61155745A JP S61155745 A JPS61155745 A JP S61155745A JP 28093484 A JP28093484 A JP 28093484A JP 28093484 A JP28093484 A JP 28093484A JP S61155745 A JPS61155745 A JP S61155745A
Authority
JP
Japan
Prior art keywords
type
detection piece
gas detection
oxygen
precious metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28093484A
Other languages
Japanese (ja)
Other versions
JPH053893B2 (en
Inventor
Kazuko Sasaki
佐々木 和子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUIGARO GIKEN KK
Figaro Engineering Inc
Mazda Motor Corp
Original Assignee
FUIGARO GIKEN KK
Figaro Engineering Inc
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUIGARO GIKEN KK, Figaro Engineering Inc, Mazda Motor Corp filed Critical FUIGARO GIKEN KK
Priority to JP28093484A priority Critical patent/JPS61155745A/en
Publication of JPS61155745A publication Critical patent/JPS61155745A/en
Publication of JPH053893B2 publication Critical patent/JPH053893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To reduce detection errors due to coexistence of a combustible gas yet to react and oxygen with a high sensitivity to oxygen, by combining ASnO3-delta of N-type metal oxide semiconductor and BTiO3-delta of P-type metal oxide semiconductor. CONSTITUTION:An N-type gas detection piece 8 and a P-type gas detection piece 10 are provided in a recess between a substrate 2 and a ceramics tube 4 through a threshold section 12. Here, the N-type gas detection piece 8 is composed of an N-type perovskite compound such as BaSnO3, RaSnO3 and Ba0.7Ra0.3SnO3 to which a small amount of precious metal medium and a gel such as SiO2 are added. The precious metal catalyst is provided to suppress the sensitivity to a combustible gas to achieve a balance with the oxygen sensitivity and employs precious metal such as Pt, Ir, R, Os and Rh and a mixture thereof. The P-type gas detection piece 10 composed of a P-type perovskite compound such as SrTiO2, CaTiO3, Sr0.7Ca0.3TiO3 connected to a pair of precious metal electrodes. BTiO3 is used as porous sintered body to which 10-600mug/g of precious metal catalyst is added.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明はn形金属酸化物半導体とp形金属酸化物半導
体とを組み合せた排ガスセンサの改良に関し、エンジン
やボイラーの空燃比の制御や、ストーブの不完全燃焼の
防止等に適したもので有る。
[Detailed Description of the Invention] [Field of Application of the Invention] This invention relates to the improvement of an exhaust gas sensor that combines an n-type metal oxide semiconductor and a p-type metal oxide semiconductor, and is used for controlling the air-fuel ratio of engines and boilers, and for use in stoves. It is suitable for preventing incomplete combustion of.

〔従来技術〕[Prior art]

特公昭57−37824号は、n形金属酸化物半導体と
p形金属酸化物半導体とを組み合せた排ガスセンサを開
示する。この技術の特長は、2つの半導体の組み合せに
より、センサの温度依存性の補償と空燃比(λ)への検
出信号の倍増とを図った点に有る。
Japanese Patent Publication No. 57-37824 discloses an exhaust gas sensor that combines an n-type metal oxide semiconductor and a p-type metal oxide semiconductor. The feature of this technology is that the combination of two semiconductors compensates for the temperature dependence of the sensor and doubles the detection signal for the air-fuel ratio (λ).

このような排ガスセンサへの要求は、 (1)酸素に高感度で有ること、 (2)可燃性ガスへの感度を抑制し、酸素感度とバラン
スさせること、これによって未反応の可燃性ガスの残存
による検出誤差が抑制される、の2点で有る。
These requirements for exhaust gas sensors are: (1) High sensitivity to oxygen; (2) Suppression of sensitivity to combustible gas and balance with oxygen sensitivity; thereby reducing unreacted flammable gas. There are two points: detection errors due to residuals are suppressed.

〔発明の課題〕[Problem of invention]

この発明の課題は、酸素に高感度で、未反応の可燃性ガ
スと酸素との共存による検出誤差の小さい、排ガスセン
サを提供することに有る。
An object of the present invention is to provide an exhaust gas sensor that is highly sensitive to oxygen and has a small detection error due to the coexistence of unreacted combustible gas and oxygen.

〔発明の構成〕[Structure of the invention]

この発明の排ガスセンサは、 (1)  n形金属酸化物半導体のASnO3−δ、こ
こにAはBaおよびRaからなる群の少くとも一員の元
素を、δは非化学量論的パラメータを現す、と、 (2)p形金属酸化物半導体のBTiOB−δ、ここK
BはSrおよびCaからなる群の少くとも一員の元素を
、δは非化学量論的パラメータを現す、 とを組み合せたことを特徴とする。
The exhaust gas sensor of the present invention includes: (1) an n-type metal oxide semiconductor ASnO3-δ, where A represents at least an element of the group consisting of Ba and Ra, and δ represents a non-stoichiometric parameter; (2) P-type metal oxide semiconductor BTiOB-δ, where K
B is at least a member of the group consisting of Sr and Ca, and δ represents a non-stoichiometric parameter.

〔表記法〕[Notation]

以下では非化学量論的パラメータδを除いて化合物を表
示する。また酸素感度を示す概念として、酸素勾配(n
)を導入し、 R8=KlIP02°、(R8;半導体の抵抗値)とし
て定義する。
In the following, compounds are presented without the non-stoichiometric parameter δ. In addition, as a concept indicating oxygen sensitivity, oxygen gradient (n
) is introduced and defined as R8=KlIP02°, (R8: resistance value of semiconductor).

〔実施例〕〔Example〕

(ん 排ガスセンサの構造 第1図と第2図とにより、排ガスセンサの構造を説明す
る。図において(2)はアルミナ製の6穴管基体で、そ
の先端にはヒータ内蔵のセラミックス管(4)が取り付
けである。このセラミックス管(4)は、内部にタング
ステンや白金等の膜ヒータ(6)を設けたもので、n形
ガス検出片(8)やp形ガス検出片QOを一定温度に加
熱するためのもので有る。なおヒータについては、図示
の膜ヒータ(6)以外にも種々のものを用い得る。
(N) Structure of an exhaust gas sensor The structure of an exhaust gas sensor will be explained with reference to Figures 1 and 2. In the figure, (2) is a 6-hole tube base made of alumina, and at its tip is a ceramic tube (4) with a built-in heater. ) is the installation. This ceramic tube (4) is equipped with a membrane heater (6) made of tungsten, platinum, etc. inside, and the N-type gas detection piece (8) and P-type gas detection piece QO are kept at a constant temperature. The heater is for heating the membrane to a temperature of 10.degree.

基体(2)とセラミックス管(4)との間のくぼみ部に
は、しきい部(2)を介してn形ガス検出片8とp形ガ
ス検出片aOとを設ける。
An n-type gas detection piece 8 and a p-type gas detection piece aO are provided in the recessed part between the base body (2) and the ceramic tube (4) with the threshold part (2) interposed therebetween.

ここでn形ガス検出片(8)は、Ba8n03 、Ra
5n03 s  BaO,7RaO,3Sn03  等
のn形ペロブスカイト化合物に少量の貴金属触媒と、8
102 等のゲルとを加えたもので有る。貴金属触媒は
、可燃性ガスへの感度を抑制し、酸素感度とのバランス
を達成するためのもので、Pt、Ir、Ruq Os、
Rh等の貴金属やこれらの混合物を用いる。添加量は金
属に換算して、ASnCa  1g当り10μ9〜51
1gが適当である。5i02  等のゲルは酸素増感剤
とじて用いるもので、8i02 、GeO2、ZrO2
、HfO2の非晶質、非ガラス質のゲルを用いる。
Here, the n-type gas detection piece (8) is Ba8n03, Ra
5n03s An n-type perovskite compound such as BaO, 7RaO, 3Sn03, etc., a small amount of noble metal catalyst, and 8
102 and other gels. Precious metal catalysts are used to suppress sensitivity to combustible gases and achieve a balance with oxygen sensitivity, and include Pt, Ir, Ruq Os,
A noble metal such as Rh or a mixture thereof is used. The amount added is 10 μ9 to 51 per gram of ASnCa in terms of metal.
1g is appropriate. Gels such as 5i02 are used as oxygen sensitizers, and gels such as 8i02, GeO2, ZrO2
, an amorphous, non-vitreous gel of HfO2 is used.

なおここでいう非晶質とは、X線回折より求めた半値幅
が60λ以下で有ることを意味する。
Note that the term "amorphous" as used herein means that the half width determined by X-ray diffraction is 60λ or less.

5i02  等の添加量はム8n03 1モル当り1〜
30モル%が好ましい。貴金属触媒や8i02等は加え
なくても良い。
The amount of addition of 5i02 etc. is 1 to 1 mole of Mu8n03.
30 mol% is preferred. It is not necessary to add a noble metal catalyst, 8i02, etc.

n形ガス検出片(8)の他の問題は、化合物ASnCa
  が基本(2)のアルミナ等と反応して、AAe20
4とS n02  とに分解することを防止する点に有
る。
Another problem with the n-type gas detection piece (8) is that the compound ASnCa
reacts with basic (2) alumina etc. to form AAe20
The purpose is to prevent decomposition into 4 and S n02 .

そこでn形ガス検出片(8)周囲を、化合物ASnO3
と反応しない物質で被覆する。被覆材には、4ライトや
スピネル、コーディエライト、あるいは前記の5i02
 やGeO2等のゲル等を用いる。
Therefore, the area around the n-type gas detection piece (8) was covered with compound ASnO3.
Cover with a substance that does not react with The coating material can be 4lite, spinel, cordierite, or the above-mentioned 5i02.
A gel such as GeO2 or the like is used.

第3図により、n形ガス検出片(8)の構造をより詳細
に説明すると、α→はA3n03  の多孔質焼結体、
aQ、(至)は貴金属電極、(1)は厚さ100μ程度
のベライトの保護膜で有る。
To explain the structure of the n-type gas detection piece (8) in more detail with reference to FIG. 3, α→ is a porous sintered body of A3n03;
aQ, (to) is a noble metal electrode, and (1) is a protective film of berite with a thickness of about 100 μm.

p形ガス検出片aGは、8rTi03、CaTiO3、
S ro、r Ca□、3 T iOB  等のp形ペ
ロブスカイト化谷物に、図示しない一対の貴金属電極を
接続したもので有る。BTiOB  は多孔質の焼結体
として用い、10〜600μ9/9の貴金属触媒を添加
する。触媒の意義や組成の基準は、n形の場合と同じで
、添加量はBTiCa  1g当り金属換算でlO〜6
00μりが好ましい。
The p-type gas detection piece aG is 8rTi03, CaTiO3,
A pair of noble metal electrodes (not shown) are connected to a p-type perovskite structure such as S ro, r Ca□, 3 T iOB . BTiOB is used as a porous sintered body, and a noble metal catalyst of 10 to 600 μ9/9 is added. The significance and composition standards of the catalyst are the same as in the case of n-type, and the amount added is 1O~6 in terms of metal per 1g of BTiCa.
00 μm is preferable.

もちろん触媒は加えなくても良い。Of course, it is not necessary to add a catalyst.

周知のようにペロブスカイト化合物は、置換に鈍感な物
質で有り、例えばA元素や8n元素、B元素やTi元素
を10モル%程度他の元素で置換しても良い。またAS
nOgやBTiOBは、その抵抗値が支配的となる範囲
で、他の化合物と混合して用いても良い。
As is well known, a perovskite compound is a substance that is insensitive to substitution, and for example, about 10 mol % of the A element, 8n element, B element, and Ti element may be substituted with other elements. Also AS
nOg and BTiOB may be used in combination with other compounds as long as their resistance values are dominant.

第1図、第2図にもどって、υはセンサを自動車エンジ
ンの排気管やストーブやボイラー等の燃焼室等に取り付
けるための金具である。また(至)、(ホ)は膜ヒータ
(6)に接続したリードピン、(ハ)、■はn形ガス検
出片(8)に接続したリードピン、(至)、(ロ)はp
形ガス検出片QOに接続したり−ドピンで有る。
Returning to Figures 1 and 2, υ is a metal fitting for attaching the sensor to the exhaust pipe of an automobile engine or the combustion chamber of a stove, boiler, or the like. Also, (to) and (e) are lead pins connected to the membrane heater (6), (c) and ■ are lead pins connected to the n-type gas detection piece (8), (to) and (b) are p
It can be connected to a type gas detection piece QO or connected to a - doped pin.

ω)付帯回路 第4図に付帯回路例を示すと、ガス検出片(8)。ω) Auxiliary circuit An example of ancillary circuit is shown in FIG. 4: a gas detection piece (8).

0Qに負荷抵抗(R1)、(R2)を接続してブリッジ
回路とし、電源(EB)  を接続する。また各負荷抵
抗(Ri)、(R2)への印加電圧を増幅器(A1)、
(A2)を介して取り出す。
Connect load resistors (R1) and (R2) to 0Q to form a bridge circuit, and connect the power supply (EB). In addition, the voltage applied to each load resistor (Ri), (R2) is controlled by an amplifier (A1),
Take it out via (A2).

ここでASnCaと BTiOB  とを比較すると、
リーン領域中の700°Cでの抵抗値はAs noa 
 で10にΩ強、BTiOB  で100に0弱となる
。またリーン領域での500°Cと900℃の抵抗値の
比は、ASnO3で100倍強、BTiOB  で10
00倍弱で有る。そこで抵抗(R1)、(R2)の値や
、増幅器(AI)。
Comparing ASnCa and BTiOB here,
The resistance value at 700°C in the lean region is As noa
For 10, it is a little over Ω, and for BTiOB, it is a little less than 0 for 100. In addition, the ratio of resistance values at 500°C and 900°C in the lean region is more than 100 times for ASnO3 and 10 times for BTiOB.
It is slightly less than 00 times. Therefore, the values of the resistors (R1) and (R2) and the amplifier (AI).

(A2)のゲインを調整し、抵抗値をマツチングさせる
。またn形ガス検出片(8)からの出力を、1.5乗程
度のべき東回路(Ml)に接続し、温度係数もマツチン
グさせる。べき東回路(Ml)はなくても良い。
Adjust the gain of (A2) and match the resistance values. In addition, the output from the n-type gas detection piece (8) is connected to the east circuit (Ml) to a power of about 1.5, and the temperature coefficient is also matched. There is no need for the east circuit (Ml).

べき東回路(Ml)と増幅器(A2)の出力を、除算回
路(Dl)に入力し、温度補償済みの出力を制御回路(
ト)に加えて、空燃比を制御する。
The outputs of the power east circuit (Ml) and the amplifier (A2) are input to the divider circuit (Dl), and the temperature compensated output is sent to the control circuit (
In addition to (g), it also controls the air-fuel ratio.

一方、排ガスセンサの温度を一定とするため、膜ヒータ
(6)への印加電圧のデユーティ比を制御する。べき東
回路(Ml)と増幅器(A2)の出力を、乗算回路(M
2)に加えて、温度にのみ依存する信号を得る。発振回
路(6)の出力パルスの幅を、電圧−パルス幅変調回路
(財)で乗算回路(M2)の出力により変化させ、スイ
ッチングトランジスタに)のオン時間を変化させる。こ
のようにして電源(EB′)から膜ヒータ(6)への印
加電力を排ガスセンサの温度により変化させて、加熱温
度を一定とする。
On the other hand, in order to keep the temperature of the exhaust gas sensor constant, the duty ratio of the voltage applied to the membrane heater (6) is controlled. The outputs of the power east circuit (Ml) and the amplifier (A2) are transferred to the multiplier circuit (M
In addition to 2), we obtain a signal that depends only on temperature. The width of the output pulse of the oscillation circuit (6) is changed by the output of the multiplier circuit (M2) using a voltage-pulse width modulation circuit (incorporated), and the on-time of the switching transistor (2) is changed. In this way, the power applied from the power supply (EB') to the membrane heater (6) is varied depending on the temperature of the exhaust gas sensor, thereby keeping the heating temperature constant.

Ω ガス検出片(8)、α1の製造 アルカリ土類の炭酸塩と5n02やTiO2を混合し、
1200°Cで仮焼してASnO3やBTiCa  と
する。これらの物質の粉砕後、1300″Cで焼成しガ
ス検出片(8)、Q□とする。好ましい変形範囲はA3
n0a  について焼成条件を1200〜1500℃と
することで仮焼条件は重要ではない。BTiOB  に
ついては、焼成温度を1200〜1300’Cとするこ
とで、仮焼温度は焼成温度と同一または100″C低い
温度とする。
Ω Gas detection piece (8), production of α1 Mix alkaline earth carbonate with 5n02 or TiO2,
It is calcined at 1200°C to form ASnO3 and BTiCa. After pulverizing these materials, they are fired at 1300″C to form gas detection pieces (8), Q□.The preferred deformation range is A3.
The calcination conditions are not important as the calcination conditions for n0a are 1200-1500°C. For BTiOB, the calcination temperature is set to 1200 to 1300'C, so that the calcination temperature is the same as or 100'C lower than the calcination temperature.

酸素増感剤の添加は、仮焼後にゾルやゲルの形態で行う
のが良く、貴金属触媒は焼成後に含浸させ900〜10
00°C程度で熱分解して担持させるのが良い。また保
護膜(1)は焼成後に、溶射や塗布後の焼結等により設
けるのが良い。
The oxygen sensitizer is preferably added in the form of a sol or gel after calcination, and the noble metal catalyst is impregnated after calcination to give a
It is preferable to carry out thermal decomposition at about 00°C. Further, the protective film (1) is preferably provided after firing by thermal spraying, sintering after coating, or the like.

なお比較例として、La2(CCa)aとOoOとを1
200°Cで仮焼、1300°Cで焼成したLaCo0
3(p形)を用いた。また1200°Cで仮焼1300
°Cで焼成したTi02(n形)を他の比較例とした。
As a comparative example, La2(CCa)a and OoO are
LaCo0 calcined at 200°C and fired at 1300°C
3 (p type) was used. Also, calcined at 1200°C for 1300
Ti02 (n-type) fired at °C was used as another comparative example.

これらの比較例の試料には、いずれも1g当り100μ
りのPtを加えた。
In each of these comparative samples, 100μ/g was added.
Added a small amount of Pt.

(6)当量点(χ=1)付近の特性 Asn03とBTiOB とを組み合せたものも、Ti
O2とL a Co O3とを組み合せたものも、当量
点付近の特性はほぼ等しい。
(6) The combination of characteristics Asn03 near the equivalence point (χ = 1) and BTiOB also
The combination of O2 and L a Co O3 also has approximately the same characteristics near the equivalence point.

(6)酸素感度 表1に、各ガス検出片(8)、αQの酸素勾配を示す。(6) Oxygen sensitivity Table 1 shows the oxygen gradient of αQ for each gas detection piece (8).

ASnO3の酸素勾配はTiO2よりも約50%大きく
、BTiOB  の酸素勾配はLaCoO3の約2倍と
なる。つぎにBaSnO3とRa 8 n 03、Ca
TiO3と8 rT A03  とは相互に均等物で有
る。なおりao、7 RaO,38n03の特性はBa
5nCaに、 8 ro、7 Cao、a T ioa
の特性は8rTiOIに、酷似する。またPtの添加は
、酸素勾配には影響しなかった。
The oxygen gradient of ASnO3 is about 50% larger than that of TiO2, and the oxygen gradient of BTiOB is about twice that of LaCoO3. Next, BaSnO3, Ra 8 n 03, Ca
TiO3 and 8 rT A03 are mutually equivalent. The characteristics of Naori ao, 7 RaO, 38n03 are Ba
5nCa, 8 ro, 7 Cao, a Tioa
The properties of 8rTiOI are very similar to those of 8rTiOI. Also, the addition of Pt did not affect the oxygen gradient.

表2に、A3nO3へのS A02  等の添加効果を
示す。8i02  等の添加により酸素勾配は0.03
〜0.04改善される。
Table 2 shows the effect of adding S A02 and the like to A3nO3. The oxygen gradient is 0.03 by adding 8i02 etc.
~0.04 improvement.

表1酸素勾配 I   Ba8nOs     8i0x 5モル% 
 0.22 (n)2  Ra8nOs      /
/      0.22(n)3 8rTiO1”=・
−0,21(1))4 0aTiOs      ・・
−・・−0,21φ)5※   Tio意      
   ++m         0.15  (n)6
※LaCoOs            0.11 (
p)7※8rFeO@           −0,1
1(p)8   Ba5nOs+8rTiOs    
     O,439※Ti01+LacoOB   
      0.26*1 ※印は比較例、 ※2 いずれもILi当り100μりおPtを添加、※
3700°Cで02濃度を1〜1096に変化させて測
定(N!バランス)、なお試料8,9については、n形
ガス検出片(8)とp形ガス検出片αQの抵抗値の比の
酸素勾配を示す。
Table 1 Oxygen gradient I Ba8nOs 8i0x 5 mol%
0.22 (n)2 Ra8nOs /
/ 0.22(n)3 8rTiO1”=・
-0,21(1))4 0aTiOs...
−・・−0,21φ)5* Tio meaning
++m 0.15 (n)6
*LaCoOs 0.11 (
p)7*8rFeO@-0,1
1(p)8 Ba5nOs+8rTiOs
O,439*Ti01+LacoOB
0.26*1 *marked is a comparative example, *2 In both cases, 100μ Rio Pt was added per ILi, *
Measured at 3700°C while varying the 02 concentration from 1 to 1096 (N! balance).For samples 8 and 9, the ratio of the resistance values of the n-type gas detection piece (8) and the p-type gas detection piece αQ Showing the oxygen gradient.

表28i02等の添加効T I  Ba5nO100,18 2//     8i01 3    0.223  
  tt      tt    5     //4
    //       //  10     s
5    s       z  20     ti
6    //     GeO250,2157ti
     ZrO25ti 8    tt     HfO25//9  Ra8
n01      0゛0.1910    s   
  8i0x  5   0,22毫1 いずれも12
当り100μノのPt添加、※2700°Cで測定、測
定法の詳縄は表1と同一〇 第5図に、BaSnO3と 8rTi03  とを組み
合せた実施例と、TiO2とLaCoQ3とを組み合せ
た比較例の酸素感度を示す。測定は700°CのN2バ
ランス下で行い、n形ガス検出片(8)とp形ガス検出
片a0の抵抗値の比、(酸素分圧1%で1と規格化)、
を出力として示す。
Table 28i02 etc. addition effect T I Ba5nO100,18 2//8i01 3 0.223
tt tt 5 //4
// // 10 s
5 s z 20 ti
6 // GeO250,2157ti
ZrO25ti 8 tt HfO25//9 Ra8
n01 0゛0.1910s
8i0x 5 0,22km1 Both are 12
Addition of 100μ of Pt per layer, *Measured at 2700°C, details of the measurement method are the same as in Table 1. Figure 5 shows a comparison between an example of combining BaSnO3 and 8rTi03 and a combination of TiO2 and LaCoQ3. Example oxygen sensitivity is shown. The measurement was carried out under N2 balance at 700°C, and the ratio of the resistance values of the n-type gas detection piece (8) and the p-type gas detection piece a0 (normalized to 1 with an oxygen partial pressure of 1%),
is shown as output.

(F)  可燃性ガス感度 リーンバーン領域での検出誤差は、未反応の可燃性ガス
への感度と酸素感度とがバランスしないことから生ずる
(F) Combustible Gas Sensitivity Detection errors in the lean burn region arise from an imbalance between sensitivity to unreacted combustible gas and oxygen sensitivity.

COとN2とを代表するものとしてCOを、炭化水素類
を代表するものとしてプロピレンを用い、可燃性ガス感
度を表3に示す。なお試料9.10については、n形ガ
ス検出片(8)とp形ガス検出片α0の抵抗値の比の変
化を示す。
Table 3 shows the combustible gas sensitivity using CO as a representative of CO and N2 and propylene as a representative of hydrocarbons. Regarding sample 9.10, the change in the ratio of the resistance values of the n-type gas detection piece (8) and the p-type gas detection piece α0 is shown.

1  Ba8nOI    Pt  100   0.
98   0B52   Ba8n01       
 −”・        0.5      0.43
  Ra8n01    Pt 100   038 
 0.854  Ra8nOB           
 O,50,458rTiOB    Pt  100
   1J)2   1176 8rTi01    
      1f12  137  CaTi0@  
  Pt 100   102  128  CaTi
Os            11)2   159 
 Ba8nO1+   Pt  10G+    0.
96   0.738rTi01    Pt  10
0 10※TiO2+ ※1700℃で0fi4.6%を含むN2バランス糸で
測定、 ※2 ※印に比較例、 *3 ム8n03については5モル%の8i01を添加
、 ※41百ppmのCO中と、14 ppmのCO中の抵
抗値の比、 ※5 54ppmのプロピレン中と5百ppm のプロ
ピレン中の抵抗値の比。
1 Ba8nOI Pt 100 0.
98 0B52 Ba8n01
-”・0.5 0.43
Ra8n01 Pt 100 038
0.854 Ra8nOB
O,50,458rTiOB Pt 100
1J)2 1176 8rTi01
1f12 137 CaTi0@
Pt 100 102 128 CaTi
Os 11)2 159
Ba8nO1+ Pt 10G+ 0.
96 0.738rTi01 Pt 10
0 10*TiO2+ *Measured with N2 balance yarn containing 0fi4.6% at 1700℃, *2 Comparative example is marked with *, *3 5 mol% 8i01 is added for Mu8n03, *4100 ppm in CO , the ratio of the resistance value in 14 ppm CO, *5 The ratio of the resistance value in 54 ppm propylene and in 500 ppm propylene.

表3の試料9,10の結果を第6図に示す。The results for samples 9 and 10 in Table 3 are shown in FIG.

図の縦軸は、センサの出力をn形ガス検出片(8)とp
形ガス検出片αOの抵抗値の比として示したもので、可
燃性ガス濃度0.1%での値を規準とする。
The vertical axis of the figure shows the output of the sensor between the n-type gas detection piece (8) and the p-type gas detection piece (8).
It is expressed as a ratio of the resistance values of the shaped gas detection piece αO, and the value is based on the value at a combustible gas concentration of 0.1%.

TiO2とLaCoO3とを組み合せたものでは、可燃
性ガス感度が高い。これに対して、Ba8nCaと5r
TiOs  とを組み合せたものでは、感度は低く、か
つ酸素感度とバランスしている。プロピレンを例にこの
ことを示すと、4.6%の02中でプロピレン濃度を5
00からsoooppm  に増すことにより、出力は
27%低下する。プロピレン02との平衡を仮定すると
02濃度は4.4%から2.3%へ変化し、この変化へ
の酸素勾配から求めた出力変化の理論値も約27%で有
る。
A combination of TiO2 and LaCoO3 has high sensitivity to combustible gases. On the other hand, Ba8nCa and 5r
When combined with TiOs, the sensitivity is low and balanced with the oxygen sensitivity. To illustrate this using propylene as an example, the propylene concentration is 5% in 4.6% 02.
By increasing from 00 to soooppm, the output decreases by 27%. Assuming equilibrium with propylene 02, the 02 concentration changes from 4.4% to 2.3%, and the theoretical value of the output change calculated from the oxygen gradient due to this change is also about 27%.

〔発明の効果〕〔Effect of the invention〕

この発明では、酸素に高感度で、未反応の可燃性ガスの
残存による検出誤差゛の小さい排ガスセンサが得られる
The present invention provides an exhaust gas sensor that is highly sensitive to oxygen and has a small detection error due to residual unreacted combustible gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の排ガスセンサの部分切り欠き部付き斜
視図、第2図はその長手方向断面図、第3図は実施例に
用いるn形ガス検出片の断面図である。 第4図は付帯回路のブロック図、第5図〜第6図は、実
施例の排ガスセンサの特性図で有る。 (2)・・・基体、(4)・・・セラミックス、(6)
・・・膜ヒータ、   (8)・・・n形ガス検出片、
QO・・・p形ガス検出片。 第5図 PO2(/−) 第6図 0.050.1   0.5 1.0 gas  conc(@ム)
FIG. 1 is a perspective view with a partial cutout of an exhaust gas sensor according to an embodiment, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is a sectional view of an n-type gas detection piece used in the embodiment. FIG. 4 is a block diagram of the auxiliary circuit, and FIGS. 5 and 6 are characteristic diagrams of the exhaust gas sensor of the embodiment. (2)...Substrate, (4)...Ceramics, (6)
...Membrane heater, (8)...N-type gas detection piece,
QO...p-type gas detection piece. Figure 5 PO2 (/-) Figure 6 0.050.1 0.5 1.0 gas conc (@mu)

Claims (1)

【特許請求の範囲】[Claims] (1)n形金属酸化物半導体を用いたn形ガス検出片と
、p形金属酸化物半導体を用いたp形ガス検出片とを組
み合せた排ガスセンサにおいて、前記n形金属酸化物半
導体はASnO_3_−_δ、(ここにAはBaおよび
Raからなる群の少くとも一員の元素を、δは非化学量
論的パラメータを現す)、で有り、 前記p形金属酸化物半導体はBTiO_3_−_δ、(
ここにBはSnおよびCaからなる群の少くとも一員の
元素を、δは非化学量論的パラメータを現す)、で有る
ことを特徴とする排ガスセンサ。
(1) In an exhaust gas sensor that combines an n-type gas detection piece using an n-type metal oxide semiconductor and a p-type gas detection piece using a p-type metal oxide semiconductor, the n-type metal oxide semiconductor is ASnO_3_ −_δ, (where A is at least a member of the group consisting of Ba and Ra, and δ represents a non-stoichiometric parameter), and the p-type metal oxide semiconductor is BTiO_3_−_δ, (
An exhaust gas sensor characterized in that B is at least a member of the group consisting of Sn and Ca, and δ represents a non-stoichiometric parameter.
JP28093484A 1984-12-27 1984-12-27 Exhaust gas sensor Granted JPS61155745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28093484A JPS61155745A (en) 1984-12-27 1984-12-27 Exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28093484A JPS61155745A (en) 1984-12-27 1984-12-27 Exhaust gas sensor

Publications (2)

Publication Number Publication Date
JPS61155745A true JPS61155745A (en) 1986-07-15
JPH053893B2 JPH053893B2 (en) 1993-01-18

Family

ID=17631958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28093484A Granted JPS61155745A (en) 1984-12-27 1984-12-27 Exhaust gas sensor

Country Status (1)

Country Link
JP (1) JPS61155745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022127A (en) * 2009-07-17 2011-02-03 Inko Son Safety-pin type electronic measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119592A (en) * 1974-08-09 1976-02-16 Nissan Motor Gasunodo kenshutsuki
JPS55165504A (en) * 1979-06-09 1980-12-24 Matsushita Electric Ind Co Ltd Temperature and humidity detecting elements and detector using same
JPS5689048A (en) * 1979-12-21 1981-07-20 Matsushita Electric Ind Co Ltd Exhaust gas sensor
JPS57106568A (en) * 1980-12-22 1982-07-02 Murata Manufacturing Co Moisture sensitive ceramic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119592A (en) * 1974-08-09 1976-02-16 Nissan Motor Gasunodo kenshutsuki
JPS55165504A (en) * 1979-06-09 1980-12-24 Matsushita Electric Ind Co Ltd Temperature and humidity detecting elements and detector using same
JPS5689048A (en) * 1979-12-21 1981-07-20 Matsushita Electric Ind Co Ltd Exhaust gas sensor
JPS57106568A (en) * 1980-12-22 1982-07-02 Murata Manufacturing Co Moisture sensitive ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022127A (en) * 2009-07-17 2011-02-03 Inko Son Safety-pin type electronic measuring device

Also Published As

Publication number Publication date
JPH053893B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
JPH11501730A (en) Gas sensor
US4658632A (en) Sensor
JP2811976B2 (en) Oxide semiconductor gas sensor
JPS61155745A (en) Exhaust gas sensor
JPS637342B2 (en)
JPS6152421B2 (en)
JPH053900B2 (en)
JPS6012575B2 (en) gas component detector
JPH053901B2 (en)
JPH052097B2 (en)
JPS61147149A (en) Lambda sensor
JP2008286569A (en) Sensor element, and gas sensor equipped with the sensor element
JPS60205343A (en) Air-fuel ratio detector for lean burn
JPS61147148A (en) Waste gas sensor
JPH053903B2 (en)
JPS61155945A (en) Oxygen sensor
JPS61147147A (en) Waste gas sensor
JPH0355784B2 (en)
JPH05256816A (en) Oxygen sensor and its manufacture
JPH051902B2 (en)
JPH0575266B2 (en)
JPS6080750A (en) Lean-burn type exhaust gas sensor
JPH052096B2 (en)
JPH053902B2 (en)
JPH0283442A (en) Oxygen sensor for internal combustion engine