[go: up one dir, main page]

JPS61154496A - Rotating speed controller - Google Patents

Rotating speed controller

Info

Publication number
JPS61154496A
JPS61154496A JP59275903A JP27590384A JPS61154496A JP S61154496 A JPS61154496 A JP S61154496A JP 59275903 A JP59275903 A JP 59275903A JP 27590384 A JP27590384 A JP 27590384A JP S61154496 A JPS61154496 A JP S61154496A
Authority
JP
Japan
Prior art keywords
temperature
signal
fan motor
thyristor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59275903A
Other languages
Japanese (ja)
Inventor
Mario Hamaguchi
浜口 真理雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59275903A priority Critical patent/JPS61154496A/en
Publication of JPS61154496A publication Critical patent/JPS61154496A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To obtain the linearity of control even in a low speed rotating range by controlling ON or OFF in the low speed rotating range, and controlling the ON/OFF control period proportionally to the temperature of an object to be cooled. CONSTITUTION:When a fan motor 8 is disposed in a stable high speed rotating range control, a Zener diode 10 is OFF. Thus, a thyristor 7 is controlled in phase in response to a temperature detection signal A. Since the diode 10 is turned ON in the low speed range, a current is flowed to a resistor 9 to generate a potential difference across the resistor 9. Thus, an error voltage V1 is generated in a differential amplifier 5. A comparator 13 compares the voltage V1 with a triangular wave signal V2, and generates a pulse (e). A conduction angle signal C fed from the comparator 5 is supplied to a trigger pulse generator 5 during a period that an AND gate 14 is gated by the pulse (e), and the thyristor 7 is controlled ON or OFF at the prescribed period during the output of the signal (e).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は位相角制御されるファンモータの回転数制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotation speed control device for a fan motor whose phase angle is controlled.

〔従来の技術〕[Conventional technology]

第4図は凝縮器用ファンモータ雪の従来の回転数制御装
置である。同図において、1は凝縮器の配管に設けられ
たサーミスタ、2は温度検出回路でつて、サーミスタt
の出力値を取込んで凝縮器の凝縮温度Tに反比例した電
圧信号(以下、温度検出信号と云う)Aを発生する。3
は同期回路である。この同期回路3は交流電源4の電圧
の半サイクルに同期した三角波信号Bを発生する。5は
比較回路であって、温度検出信号Aと三角波信号Bとを
比較して、A>Bなる間、導通角信号(位相制御信号)
Cを発生する。6はトリガー回路であって、導通角信号
Cを受は該導通角信号Cに同期してトリガーパルスを発
生し、サイリタス7のゲートに供給する。このサイリス
タ7はファンモータ8と直列に接続されており、交流電
源4から給電されるファンモータへの入力電圧を位相制
御する。
FIG. 4 shows a conventional rotation speed control device for a condenser fan motor. In the figure, 1 is a thermistor installed in the pipe of the condenser, 2 is a temperature detection circuit, and the thermistor t
A voltage signal (hereinafter referred to as a temperature detection signal) A that is inversely proportional to the condensing temperature T of the condenser is generated. 3
is a synchronous circuit. This synchronization circuit 3 generates a triangular wave signal B synchronized with a half cycle of the voltage of the AC power supply 4. 5 is a comparison circuit which compares the temperature detection signal A and the triangular wave signal B, and outputs a conduction angle signal (phase control signal) while A>B.
Generate C. Reference numeral 6 denotes a trigger circuit which receives the conduction angle signal C, generates a trigger pulse in synchronization with the conduction angle signal C, and supplies it to the gate of the thyritus 7. This thyristor 7 is connected in series with the fan motor 8 and controls the phase of the input voltage to the fan motor supplied with power from the AC power source 4.

第5図(a)に、凝縮温度Tと温度検出信号Aの関係を
示し、第5図(blに温度検出信号A、三角波信号B及
び導通角信号Cの関係を示す。また、第6図に凝縮温度
Tとファンモータの回転数nの関係を示す。
FIG. 5(a) shows the relationship between the condensing temperature T and the temperature detection signal A, and FIG. shows the relationship between the condensing temperature T and the rotation speed n of the fan motor.

上記構成においては、ファンモータ8の回転数nが低下
すると、凝縮器の凝縮温度Tが上昇し、回転数nが上昇
すると凝縮温度Tは低下するが、温度検出信号Aのレベ
ルは凝縮温度Tが上昇すると低下し、低下すると増大す
る。
In the above configuration, when the rotation speed n of the fan motor 8 decreases, the condensation temperature T of the condenser increases, and when the rotation speed n increases, the condensation temperature T decreases, but the level of the temperature detection signal A When the value increases, it decreases, and when it decreases, it increases.

例えば、凝縮温度Tが低下して温度検出信号Aのレベル
が高くなると、導通角信号Cの信号中が狭くなり、トリ
ガーパルスPの発生位相が遅れるで、ファンモータ8の
給電電圧が低下して回転数nが低下する。この回転数n
の低下により凝縮温度Tは上昇し始め、これが回転数n
を増加させ、凝縮温度Tは低下するが、やがて凝縮温度
Tと平衡するある回転数nで安定する。
For example, when the condensing temperature T decreases and the level of the temperature detection signal A increases, the conduction angle signal C becomes narrower, the generation phase of the trigger pulse P is delayed, and the power supply voltage to the fan motor 8 decreases. The rotation speed n decreases. This rotation speed n
The condensing temperature T begins to rise due to the decrease in the rotation speed n.
increases, and the condensing temperature T decreases, but eventually stabilizes at a certain rotation speed n that is in equilibrium with the condensing temperature T.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、−次電圧が位相角制御されるファンモータ
では、その低速回転域におけるトルク低下が大きいため
に該低速回転域では制御の直線性が得られず、また、停
止回転数と再始動回転数との間に、第6図に示す如くき
ヒステリシスがあり低速回転域ではファンモータの制御
の安定性を欠くので、上記凝縮温度について所期の制御
特性が得られないと云う問題があった。
In this way, in a fan motor whose negative voltage is controlled by phase angle, the torque drop in the low-speed rotation range is large, so linearity of control cannot be obtained in the low-speed rotation range. There is a hysteresis between the fan motor and the rotation speed as shown in Figure 6, and the control of the fan motor lacks stability in the low speed rotation range, so there is a problem that the desired control characteristics regarding the condensing temperature cannot be obtained. Ta.

この発明は上記問題を解消するためになされたもので、
ファンモータの回転数を全速度範囲に亘り、被冷却対象
温度に対応して直線的に制御することができ上記温度の
制御特性を向上することができるファンモータの回転数
制御装置を得ることを目的とする。
This invention was made to solve the above problem.
It is an object of the present invention to obtain a fan motor rotation speed control device that can linearly control the rotation speed of a fan motor over the entire speed range in accordance with the temperature of the object to be cooled, and that can improve the temperature control characteristics. purpose.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するため、低速回転域では、
サイリスタの点弧位相を固定し、該点弧位相が固定され
る期間を温度検出信号のレベルに対応して制御する構成
としたものである。
In order to achieve the above object, this invention has the following advantages:
The firing phase of the thyristor is fixed, and the period during which the firing phase is fixed is controlled in accordance with the level of the temperature detection signal.

〔作用〕[Effect]

この発明においては、低速回転域では、サイリスタが一
定周期でオン・オフ制御され、オン・オフ制御される期
間即ちオン回数が温度に対応して増減されるので、温度
と回転数との間に直線性が確保される。
In this invention, in the low speed rotation range, the thyristor is controlled to be on/off at a constant cycle, and the period of on/off control, that is, the number of times it is turned on, is increased or decreased in accordance with the temperature, so that there is a difference between the temperature and the rotation speed. Linearity is ensured.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示したブロック図であり
、温度検出信号Aは抵抗9、ツェナーダイオード(ツェ
ナー電位■z)lOを介して比較回路5の反転入力側に
入力される。、11は差動増幅回路であって、抵抗9の
、両端の電圧を受けて誤差電圧v1を出力する。12は
三角波発生回路であって、交流電源4の電源部゛波数の
周期より十分に長い周期t1の三角波信号■2を発生す
る。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which a temperature detection signal A is inputted to the inverting input side of a comparator circuit 5 via a resistor 9 and a Zener diode (Zener potential z) lO. , 11 is a differential amplifier circuit which receives the voltage across the resistor 9 and outputs an error voltage v1. Reference numeral 12 denotes a triangular wave generating circuit which generates a triangular wave signal (2) having a period t1 sufficiently longer than the period of the wave number of the power supply section of the AC power source 4.

13は比較回路であって、誤差電圧■1と三角波信号 
■2とを比較して、V2>Vlの間、パルスeを発生す
る。14はアンド回路であって、比較回路5と13の出
力を受は両出力が共にHレベルであるときにトリガーパ
ルス発生回路6に出力を送出する。
13 is a comparator circuit, which compares the error voltage ■1 and the triangular wave signal.
(2) Compared with 2, pulse e is generated while V2>Vl. 14 is an AND circuit which receives the outputs of the comparison circuits 5 and 13 and sends an output to the trigger pulse generation circuit 6 when both outputs are at H level.

なお、ツェナー電位Vzは、ファンモータ8の回転数特
性における第6図に示すヒステリシス領域近傍の回転数
ngに対応する温度検出信号Aの電圧レベルに相当する
Note that the Zener potential Vz corresponds to the voltage level of the temperature detection signal A corresponding to the rotation speed ng near the hysteresis region shown in FIG. 6 in the rotation speed characteristics of the fan motor 8.

この構成においては、前記凝縮温度Tがある温度TOよ
り高く、温度検出信号Aのレベルがツェナー電位Vzよ
り低い場合、即ち、ファンモータ8が制御の安定な高速
回転域にある場合には、該温度検出信号Aは比較回路5
で三角波j言号Bと比較され導通角信号Cがアンド回路
14に入力される。この時、ツェナーダイオード10は
オフしているので抵抗9には電流は流れず、該抵抗9の
両端電圧は零ボルトであるので、Vl<V2となり、比
較回路13の出力はHレベルにある。このため、アンド
回路14はゲートし、導通角信号Cはそのままアンド回
路14を通してトリガーパルス発生回路6に入力される
ので、サイリスタ7の点弧位相は、従来と同様に、温度
検出信号Aのレベル増減に対応して制御され、ファンモ
ータ8の回転数nは凝縮温度Tの温度の増減に比例して
増減する。
In this configuration, when the condensing temperature T is higher than a certain temperature TO and the level of the temperature detection signal A is lower than the Zener potential Vz, that is, when the fan motor 8 is in a stable high speed rotation range, Temperature detection signal A is the comparator circuit 5
The conduction angle signal C is compared with the triangular wave j word B and input to the AND circuit 14. At this time, since the Zener diode 10 is off, no current flows through the resistor 9, and the voltage across the resistor 9 is zero volts, so Vl<V2, and the output of the comparison circuit 13 is at H level. Therefore, the AND circuit 14 is gated, and the conduction angle signal C is directly input to the trigger pulse generation circuit 6 through the AND circuit 14, so that the firing phase of the thyristor 7 is set at the level of the temperature detection signal A, as in the conventional case. The rotation speed n of the fan motor 8 increases or decreases in proportion to the increase or decrease in the condensing temperature T.

逆に、凝縮温度Tがある温度TOより低下して温度検出
信号Aのレベルがツェナー電位Vzより高くなると、ツ
ェナーダイオード10がオンするので、抵抗9に電流が
流れて抵抗9゛の両端に電位差が生ずる。このため誤差
電圧■1が発生し、第3図に示す如きパルス信号eが発
生する。一方、比較回路5の反転入力に達する温度検出
信号Aのレベルは、第2図に示す如く、ツェナー電位V
zにクランプされるので、比較回路5が送出する導通角
信号Cは周期一定の所定巾のパルスとなり、該パルスC
は、第3図に示す如く、パルス信号eによりアンド回路
14がゲートされている期間、該アンド回路14を通し
てトリガーパルス発生回路6に供給され、サイリスタ7
は、パルス信号eの出力中、一定周期でオン・オフ制御
されるようになる。このパルス信号eのパルス中はt2
は凝縮温度Tの増大・減少に比例して(温度検出信号A
の減少・増大に伴い)増・減するので、ファンモータ8
の平均入力電圧は凝縮温度Tに比例し、ファンモータ8
の回転数nは凝縮温度Tに比例して直線的に増減する。
Conversely, when the condensation temperature T falls below a certain temperature TO and the level of the temperature detection signal A becomes higher than the Zener potential Vz, the Zener diode 10 is turned on, so a current flows through the resistor 9, creating a potential difference across the resistor 9. occurs. Therefore, an error voltage (1) is generated, and a pulse signal e as shown in FIG. 3 is generated. On the other hand, the level of the temperature detection signal A reaching the inverting input of the comparator circuit 5 is as shown in FIG.
z, the conduction angle signal C sent out by the comparator circuit 5 becomes a pulse with a constant period and a predetermined width, and the pulse C
As shown in FIG. 3, during the period when the AND circuit 14 is gated by the pulse signal e, is supplied to the trigger pulse generation circuit 6 through the AND circuit 14, and is applied to the thyristor 7.
is controlled to be turned on and off at regular intervals while the pulse signal e is being output. During the pulse of this pulse signal e, t2
is proportional to the increase/decrease of the condensing temperature T (temperature detection signal A
(according to the decrease/increase of), the fan motor 8
The average input voltage of the fan motor 8 is proportional to the condensing temperature T.
The rotation speed n increases or decreases linearly in proportion to the condensing temperature T.

このため、前記した第6図のヒステレシス現象は実質的
になくなり、低速回転域の制御特性が改善される。
Therefore, the hysteresis phenomenon described above in FIG. 6 is substantially eliminated, and the control characteristics in the low speed rotation range are improved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、ファンモータの低速回転
領域ではサイリスタの点弧位相を固定してオン・オフ制
御とし、このオン・オフ制御期間を被冷却対象の温度に
比例して制御する構成としたことにより、低速回転領域
においても制御の直線性を確保することができ、ヒステ
レシス現象を実質上なくして全速度領域にわたって安定
に制御することができるので、上記被冷却対象の温度制
御特性を向上することかて′きる。
As explained above, this invention has a configuration in which the firing phase of the thyristor is fixed in the low speed rotation region of the fan motor to perform on/off control, and the on/off control period is controlled in proportion to the temperature of the object to be cooled. As a result, linearity of control can be ensured even in the low speed rotation range, and hysteresis phenomenon can be virtually eliminated and stable control can be achieved over the entire speed range, improving the temperature control characteristics of the object to be cooled. I can't do anything.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は上記実施例におけるツェナーダイオードの作用を説明
するための線図、第3図は上記実施例における各部波形
図、第4図は従来の回転数制御装置のブロック図、第5
図(a)は凝縮温度一温度検出信号関係図、第5図(b
lは上記従来例における各部波形図、第6図は上記従来
例における温度−回転数特性図である。 図において、2一温度検出回路、3−・同期回路、5比
較回路、6− トリj炎ルス発生回路、7−サイリスタ
、8−・ファンモータ、9−抵抗、10−ツェナーダイ
オード、11・−差動増幅回路、12−・−三角波発生
回路、13−・−比較回路、14・−アンド回路。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a diagram for explaining the action of the Zener diode in the above embodiment, Fig. 3 is a waveform diagram of each part in the above embodiment, and Fig. 4 is a block diagram of a conventional rotation speed control device, No. 5
Figure (a) is a diagram showing the relationship between condensing temperature and temperature detection signal, and Figure 5 (b)
1 is a waveform diagram of each part in the conventional example, and FIG. 6 is a temperature-rotational speed characteristic diagram in the conventional example. In the figure, 2 - temperature detection circuit, 3 - synchronization circuit, 5 comparison circuit, 6 - flame pulse generation circuit, 7 - thyristor, 8 - fan motor, 9 - resistor, 10 - Zener diode, 11 - Differential amplifier circuit, 12-.-triangular wave generation circuit, 13-.-comparison circuit, 14-.-AND circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 被冷却対象の温度に対応してファンモータの入力電圧を
サイリスタにより位相角制御して該ファンモータの回転
数を制御する装置において、所定回転数以下の低速回転
域では上記サイリスタの点弧位相が固定されて該サイリ
タスがオン・オフ制御され、そのオン・オフ制御される
期間が上記温度に比例して増減されることを特徴とする
回転数制御装置。
In a device that controls the rotational speed of the fan motor by controlling the phase angle of the input voltage of the fan motor using a thyristor in accordance with the temperature of the object to be cooled, the firing phase of the thyristor is controlled in a low rotational speed range below a predetermined rotational speed. A rotation speed control device characterized in that the thyritus is controlled on and off while being fixed, and the period during which the on and off control is performed is increased or decreased in proportion to the temperature.
JP59275903A 1984-12-27 1984-12-27 Rotating speed controller Pending JPS61154496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275903A JPS61154496A (en) 1984-12-27 1984-12-27 Rotating speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275903A JPS61154496A (en) 1984-12-27 1984-12-27 Rotating speed controller

Publications (1)

Publication Number Publication Date
JPS61154496A true JPS61154496A (en) 1986-07-14

Family

ID=17562039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275903A Pending JPS61154496A (en) 1984-12-27 1984-12-27 Rotating speed controller

Country Status (1)

Country Link
JP (1) JPS61154496A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336197U (en) * 1986-08-21 1988-03-08
JPH01248996A (en) * 1988-02-15 1989-10-04 Robert Bosch Gmbh Temperature regulator of electric motor
EP0540874A2 (en) * 1991-11-08 1993-05-12 Whirlpool Europe B.V. Operating and control device for a motor-driven fan in a refrigerator, particularly of the forced air circulation
KR100473268B1 (en) * 2002-07-03 2005-03-08 엘지전자 주식회사 Apparatus for controlling cooling fan speed depending upon temperature of device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336197U (en) * 1986-08-21 1988-03-08
JPH01248996A (en) * 1988-02-15 1989-10-04 Robert Bosch Gmbh Temperature regulator of electric motor
JP2983551B2 (en) * 1988-02-15 1999-11-29 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Electric motor temperature adjustment device
EP0540874A2 (en) * 1991-11-08 1993-05-12 Whirlpool Europe B.V. Operating and control device for a motor-driven fan in a refrigerator, particularly of the forced air circulation
EP0540874A3 (en) * 1991-11-08 1993-06-02 Whirlpool Europe B.V. Operating and control device for a motor-driven fan in a refrigerator, particularly of the forced air circulation
KR100473268B1 (en) * 2002-07-03 2005-03-08 엘지전자 주식회사 Apparatus for controlling cooling fan speed depending upon temperature of device

Similar Documents

Publication Publication Date Title
US4459529A (en) Power factor control circuit for AC motors
KR890013465A (en) Thermal flow sensor
US4319174A (en) Stepper motor drive system
JPS61154496A (en) Rotating speed controller
JPS5928159B2 (en) Excitation adjustment device
JPH02246769A (en) power control circuit
JPH01170395A (en) Controller for fan motor
JPS6035890B2 (en) circuit constant generator
JPH08101722A (en) Phase control device
JPH0412792Y2 (en)
JP2744474B2 (en) DC motor speed control circuit
JPS62160091A (en) Rotating speed control circuit for fan motor
JP2739298B2 (en) Power control device and power supply device
JP2931185B2 (en) Inverter dead time compensation circuit
JPH0723035Y2 (en) Pulse current generator power supply
JP2935762B2 (en) DC motor speed controller
JPH0412798Y2 (en)
JP2960745B2 (en) Pulse width modulation signal generation circuit
JPS6137455B2 (en)
JPS60144802A (en) Speed controller
JPH09331689A (en) Speed control circuit for motor
JP2656546B2 (en) Phase locked oscillator
KR940007447Y1 (en) Arrangement for speed regulation of ac motor
JPH0521122Y2 (en)
JPH09308284A (en) Motor revolution controller