JPS61154191A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPS61154191A JPS61154191A JP27629684A JP27629684A JPS61154191A JP S61154191 A JPS61154191 A JP S61154191A JP 27629684 A JP27629684 A JP 27629684A JP 27629684 A JP27629684 A JP 27629684A JP S61154191 A JPS61154191 A JP S61154191A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- layer
- laser device
- optical confinement
- mixed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
- H01S5/3432—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、半導体レーザ素子に関し、特に光閉じ込め
とキャリア閉じ込めを分けて行なうSCH構造のレーザ
の性能向上に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor laser device, and particularly to improving the performance of a laser having an SCH structure in which optical confinement and carrier confinement are performed separately.
第3図は例えばJ、Appl、Phys、並、322
(1974)に示された従来の5eparate Co
nfinement Hetero −5tructu
re (S CH)レーザの断面図であり、図におい
て、1ば上部電極、2はP+ −GaAsコンタクト層
、3はp AlxGa1−zAsクラッド層、4はp
−AlyGaHb−3As光閉じ込め層、5はGaAs
活性層、6はn−AjlyGal−pAS光閉じ込め層
であり、活性層5と光閉じ込め層4.6との界面かへテ
ロ界面となっている。7ばn−AlxGa1z Asク
ラッド層、8はn+ −GaAs基板、9は下部電極で
ある。ただし上記AJGaAs層中のAj+の混晶比x
、yはx>yである。また第4図はそのエネルギーギャ
ップ及び屈折率分布を示す図である。Figure 3 shows, for example, J, Appl, Phys, average, 322
(1974), the conventional 5eparate Co
nfinement Hetero -5tructu
2 is a cross-sectional view of a re (S CH) laser, in which 1 is an upper electrode, 2 is a P+-GaAs contact layer, 3 is a p AlxGa1-zAs cladding layer, and 4 is a p
-AlyGaHb-3As optical confinement layer, 5 is GaAs
The active layer 6 is an n-AjlyGal-pAS optical confinement layer, and the interface between the active layer 5 and the optical confinement layer 4.6 is a heterointerface. 7 is a n-AlxGa1z As cladding layer, 8 is an n+-GaAs substrate, and 9 is a lower electrode. However, the mixed crystal ratio x of Aj+ in the above AJGaAs layer
, y is x>y. Moreover, FIG. 4 is a diagram showing the energy gap and refractive index distribution.
次に動作について説明する。電極1.9間にしきい値以
上の電流を流すと活性層5において電子に閉じ込められ
る。このようにキャリアを薄い活性層5q!−1光をよ
り広い光閉じ込め層4.6に有効に閉じ込めることがで
き、そのため、より低いしきい値電流をもった半導体レ
ーザが得られる。Next, the operation will be explained. When a current of a threshold value or more is passed between the electrodes 1 and 9, electrons are trapped in the active layer 5. In this way, carriers are formed in a thin active layer 5q! -1 light can be effectively confined in the wider optical confinement layer 4.6, and therefore a semiconductor laser with a lower threshold current can be obtained.
しかるに、従来のSCHレーザは以上のように光閉じ込
め層をつくるためにAlxGa1−χAsからなるクラ
ッド層よりもAj+の組成の小さなA11 y G a
(−1A sでキャリア閉じ込めを行なわねばならず
、この場合AβGaAsの組成比yを大きくするとエネ
ルギーギャップが大きく、屈折率が小さくなるというよ
うにエネルギーギャップと屈折率の両者は該組成比yを
決めると、ともに自動的に決まってしまい、独立に変え
ることができなかった。そのため例えば光閉じ込めを有
効に行なうために光閉じ込め層の屈折率を決めると光閉
じ込め層と活性層の十分なエネルギーギャップの差を得
ることができず、光閉じ込め層へのキャリアのリークが
生じ、しきい値電流等の温度特性が悪い等の問題点があ
った。However, in the conventional SCH laser, in order to create the optical confinement layer as described above, A11 y Ga with a smaller Aj+ composition than the cladding layer made of AlxGa1-χAs is used.
(Carrier confinement must be carried out at -1A s, and in this case, as the composition ratio y of AβGaAs is increased, the energy gap becomes larger and the refractive index becomes smaller. Both the energy gap and the refractive index determine the composition ratio y. Therefore, for example, when determining the refractive index of the optical confinement layer in order to effectively confine light, it is necessary to maintain a sufficient energy gap between the optical confinement layer and the active layer. There were problems such as carrier leakage to the optical confinement layer and poor temperature characteristics such as threshold current.
この発明は、上記のような間一点を解消するためになさ
れたもので、SCH構造を有するものにおいて低いしき
い値電流が得られるとともに温度特性のよい半導体レー
ザ素子を得ることを目的とする。The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor laser device having an SCH structure that can obtain a low threshold current and have good temperature characteristics.
2つの極薄の半導体層を交互に積層してなる44妙壺蜘
憂脅半導体超格子を用いたものである。It uses a 44-dimensional semiconductor superlattice formed by alternately stacking two extremely thin semiconductor layers.
〔作用〕
この発明においては、SCH構造の半導体レーザ素子に
おいて、光閉じ込め層に半導体超格子を用いるようにし
たから、活性層と光閉じ込め眉間のスムーズなヘテロ界
面が得られ、しかも光閉じ込め層のエネルギーギャップ
と屈折率を各々独立に変え得ることかで°きる。そのた
め例えば、光閉じ込め層に用いた半導体超格子の実効的
なエネルギーギャップを活性層のエネルギーギャップよ
り所定値以上大きいものとすれば、キャリアは活性層で
閉じ込められ、しかもこの場合光閉じ込め層の屈折率を
クラッド層の屈折率より大きくすれば、光は光閉じ込め
層と活性層とに有効に閉じ込められる。[Function] In this invention, since a semiconductor superlattice is used for the optical confinement layer in the semiconductor laser device with the SCH structure, a smooth hetero interface between the active layer and the optical confinement eyebrow can be obtained, and the optical confinement layer has a smooth heterointerface. This can be achieved by being able to change the energy gap and refractive index independently. Therefore, for example, if the effective energy gap of the semiconductor superlattice used for the optical confinement layer is larger than the energy gap of the active layer by a predetermined value, carriers will be confined in the active layer, and in this case, the optical confinement layer will refract the carriers. When the refractive index is made larger than the refractive index of the cladding layer, light is effectively confined in the optical confinement layer and the active layer.
以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
本発明は上述のように光閉じ込め層に半導体超格子を用
いたもので、これにより光閉じ込め層のエネルギーレベ
ルと屈折率を各々独立に変え得るものであるが、その−
例として光閉じ込め層の実効的エネルギーギャップとク
ラッド層のエネルギーギャップとをほぼ同じとした実施
例を第1図に示す。第1図において、21は上部電極、
22はP十〇 a A sコンタクト層、23はp−A
JxGa7−zAsクラッド層、24はA!AsとGa
Asからなるp型にドープされ″た半導体超格子光閉じ
込め層であり、これは人オーダーの極薄のAlAsとG
aAsの2層の単結晶半導体層を交互に積層したもので
ある。25はGaAs活性層、26はAlAsとG a
A sからなるn型にドープされた半導体超格子光閉
じ込め層であり、活性層25と光閉じ込め層24.26
との界面かへテロ界面となっている。27はn−AIt
xGa、−、xAsAsクラッド28はn”−GaAs
基板、29は下部電極である。また第2図は活性層25
.半導体超格子光閉じ込め層24.26、クラッド層2
3.27のエネルギーギャップと屈折率分布を示す。な
お、エネルギーギャップの図において、半導体超格子光
閉じ込め層24.26の実効的なエネルギーギャップは
点線で示しである。As mentioned above, the present invention uses a semiconductor superlattice for the optical confinement layer, and this allows the energy level and refractive index of the optical confinement layer to be changed independently.
As an example, FIG. 1 shows an embodiment in which the effective energy gap of the optical confinement layer and the energy gap of the cladding layer are approximately the same. In FIG. 1, 21 is an upper electrode;
22 is a P10 a As contact layer, 23 is a p-A
JxGa7-zAs cladding layer, 24 is A! As and Ga
This is a p-type doped semiconductor superlattice optical confinement layer made of As.
Two single crystal semiconductor layers of aAs are alternately stacked. 25 is a GaAs active layer, 26 is AlAs and Ga
This is an n-type doped semiconductor superlattice optical confinement layer made of As, and includes an active layer 25 and an optical confinement layer 24.26.
The interface with this is a hetero interface. 27 is n-AIt
xGa, -, xAsAs cladding 28 is n''-GaAs
The substrate 29 is a lower electrode. In addition, FIG. 2 shows the active layer 25.
.. Semiconductor superlattice optical confinement layer 24, 26, cladding layer 2
It shows the energy gap and refractive index distribution of 3.27. In the energy gap diagram, the effective energy gap of the semiconductor superlattice optical confinement layers 24 and 26 is shown by a dotted line.
次に動作について説明する。Next, the operation will be explained.
この装置では、活性層25とクラッド層23゜27の間
の光閉じ込め層24.26に半導体超格子層を用い、そ
の実効的エネルギーギャップをクラフト層AjtxGa
l−zAs23.27とほぼ同じにしている。従ってこ
の光閉じ込め層24.26と活性層25との間には所定
値以上のエネルギーギャップの差があり、キャリアが活
性層25に落ち込んだあとキャリアが光閉じ込め層24
,26に戻る(リークする)ことはなく、キャリアに対
して十分な閉じ込め効果をはたす。一方、半導体超格子
光閉じ込め層24.26の屈折率は第2図のようにクラ
ッド層(Aj! xGa7−久As)23.27のそれ
より大きく、この光閉じ込め層とクラッド層間の屈折率
差によって光を光閉じ込め層24.26.活性層25の
3層に有効に閉じ込めることができる。In this device, a semiconductor superlattice layer is used as the optical confinement layer 24, 26 between the active layer 25 and the cladding layer 23.
It is almost the same as l-zAs23.27. Therefore, there is an energy gap difference of more than a predetermined value between the optical confinement layer 24, 26 and the active layer 25, and after the carriers fall into the active layer 25, the carriers enter the optical confinement layer
, 26 (leakage), and has a sufficient confinement effect on the carrier. On the other hand, the refractive index of the semiconductor superlattice optical confinement layer 24.26 is larger than that of the cladding layer (Aj! The light is trapped by the optical confinement layer 24.26. It can be effectively confined in the three layers of the active layer 25.
このように光閉じ込めについては従来法と同様であり、
一方、キャリア閉じ込めについては従来法に比べて十分
大きなエネルギー差で閉じ込めることができるためリー
ク電流は小さく、しきい値電流は低く、かつ温度特性の
よいビームの広がりの小さな半導体レーザが得られる
また活性層25とクラッド層23.27の間に半導体超
格子層を挿入しているためスムーズなヘテロ界面が形成
される。In this way, optical confinement is the same as the conventional method,
On the other hand, regarding carrier confinement, it is possible to confine carriers with a sufficiently large energy difference compared to conventional methods, so a semiconductor laser with low leakage current, low threshold current, and good temperature characteristics and small beam spread can be obtained. Since the semiconductor superlattice layer is inserted between the layer 25 and the cladding layers 23 and 27, a smooth heterointerface is formed.
さらに半導体超格子光閉じ込め層の周期、即ち゛各層の
厚さは、一般には100Å以下であるので、活性層厚も
その周期より小さくならなければ薄(することが可能で
あり、その場合量子効果が期待でき、さらに低しきい値
電流で温度特性がよく、ビーム広がりの小さい半導体レ
ーザが作製できる。Furthermore, since the period of the semiconductor superlattice optical confinement layer, that is, the thickness of each layer, is generally 100 Å or less, the active layer thickness can also be made thin as long as it is not smaller than the period, in which case quantum effects Furthermore, it is possible to fabricate a semiconductor laser with low threshold current, good temperature characteristics, and small beam spread.
なお、上記実施例では光閉じ込め層として、IA s
/ G a A s超格子を用いたが、AfGaAs/
G a A s超格子あるいはもっと一般的にAJX
Gal−z As/AjlyGa7−)As (x#y
)超格子を用いても同様の効果を得ることが可能である
。In addition, in the above embodiment, IA s is used as the optical confinement layer.
/ GaAs superlattice was used, but AfGaAs/
G a A s superlattice or more generally AJX
Gal-z As/AjlyGa7-) As (x#y
) Similar effects can be obtained using a superlattice.
また、上記実施例では半導体超格子を用いた光閉じ込め
層をクラッド層とほぼ同じ実効的エネルギーギャップを
持つようにしたが、光閉じ込め層の実効的エネルギーギ
ャップはクラッド層のそれよりある程度低くても活性層
のそれより所定値以上大きくありさえすればキャリア閉
じ込めの効果が得られる。また本発明は光閉じ込め層に
半導体超格子を用いてスムーズなヘテロ界面を得られる
ようにしたものであるから、光閉じ込め層の屈折率をク
ラッド層のそれとほぼ同じにしたものも本発明の範囲に
含まれる。In addition, in the above embodiment, the optical confinement layer using a semiconductor superlattice was made to have almost the same effective energy gap as the cladding layer, but even though the effective energy gap of the optical confinement layer is lower than that of the cladding layer to some extent, As long as it is larger than that of the active layer by a predetermined value or more, a carrier confinement effect can be obtained. Furthermore, since the present invention uses a semiconductor superlattice in the optical confinement layer to obtain a smooth hetero-interface, it is within the scope of the present invention to make the refractive index of the optical confinement layer almost the same as that of the cladding layer. include.
以上のように、この発明によれば、光閉じ込め層に半導
体超格子を用いたので、スムーズな活性層界面をもった
半導体レーザ素子が得られ、また光閉じ込め屑の実効的
エネルギーギャップを活性層のそれより所定値以上大き
いものとすれば、低しきい値電流で、温度特性が良(、
ビーム広がりの小さい半導体レーザ素子が得られる効果
がある。As described above, according to the present invention, since a semiconductor superlattice is used for the optical confinement layer, a semiconductor laser device with a smooth active layer interface can be obtained, and the effective energy gap of optical confinement debris can be reduced by reducing the effective energy gap between the active layer and the active layer. If it is larger than that by a predetermined value or more, the threshold current is low and the temperature characteristics are good (,
This has the effect of providing a semiconductor laser element with small beam spread.
第1図はこの発明の一実施例による半導体レー′ ザ
素子の断面図、第2図はそのエネルギーギャップ及び屈
折率分布を示す図、第3図は従来のSCH半導体レーザ
の断面図、第4図はそのエネルギーギャップ及び屈折率
分布を示す図である。
25・・・活性層、24・・・p型にドープされたA!
AsとGaAsからなる半導体超格子光閉じ込め層、2
6・・・n型にドープされたAJ!AsとGaASから
なる半導体超格子光閉じ込め層、23.27・・・クラ
ブト層。
なお図中、同一符号は同−又は相当部分を示す。FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing its energy gap and refractive index distribution, FIG. 3 is a sectional view of a conventional SCH semiconductor laser, and FIG. The figure shows the energy gap and refractive index distribution. 25...active layer, 24...p-type doped A!
Semiconductor superlattice optical confinement layer consisting of As and GaAs, 2
6...AJ doped to n-type! Semiconductor superlattice optical confinement layer made of As and GaAS, 23.27...Crabt layer. In the drawings, the same reference numerals indicate the same or equivalent parts.
Claims (11)
CH(Separate Confinement H
eterostruc−ture)構造を有し、活性層
の上下に配置される光閉じ込め層に、相異なる半導体か
らなる2つの極薄の半導体層を交互に積層してなる半導
体超格子を用いたことを特徴とする半導体レーザ素子。(1) Optical confinement and carrier confinement are performed separately
CH(Separate Confinement H
It is characterized by using a semiconductor superlattice formed by alternately stacking two extremely thin semiconductor layers made of different semiconductors in the optical confinement layer placed above and below the active layer. A semiconductor laser device.
のエネルギーギャップより所定値以上大きい実効的エネ
ルギーギャップを持つことを特徴とする特許請求の範囲
第1項記載の半導体レーザ素子。(2) The semiconductor laser device according to claim 1, wherein the semiconductor superlattice used for the optical confinement layer has an effective energy gap that is larger than the energy gap of the active layer by a predetermined value or more.
なり、上記光閉じ込め層に用いた半導体超格子の2つの
極薄の半導体層は上記第1半導体と第2半導体からなる
ことを特徴とする特許請求の範囲第1項又は第2項に記
載の半導体レーザ素子。(3) The SCH structure is characterized by comprising a first semiconductor and a second semiconductor, and the two ultrathin semiconductor layers of the semiconductor superlattice used for the optical confinement layer are comprised of the first semiconductor and the second semiconductor. A semiconductor laser device according to claim 1 or 2.
体はGaAsであることを特徴とする特許請求の範囲第
3項記載の半導体レーザ素子。(4) The semiconductor laser device according to claim 3, wherein the first semiconductor is AlAs and the second semiconductor is GaAs.
であることを特徴とする特許請求の範囲第4項記載の半
導体レーザ素子。(5) The semiconductor laser device according to claim 4, wherein the active layer is thin enough to produce a quantum size effect.
第2半導体とからなる混晶半導体からなり、上記光閉じ
込め層に用いた半導体超格子の2つの極薄の半導体層は
上記第1半導体と第2半導体、上記第1半導体と混晶半
導体、又は上記第2半導体と混晶半導体からなることを
特徴とする特許請求の範囲第1項又は第2項に記載の半
導体レーザ素子。(6) The SCH structure is composed of a first semiconductor and a mixed crystal semiconductor consisting of the first semiconductor and a second semiconductor, and the two ultrathin semiconductor layers of the semiconductor superlattice used as the optical confinement layer are 3. The semiconductor laser device according to claim 1, comprising a semiconductor and a second semiconductor, the first semiconductor and a mixed crystal semiconductor, or the second semiconductor and a mixed crystal semiconductor.
体はGaAsであり、上記半導体超格子の2つの極薄の
半導体層はAlGaAs/GaAsからなることを特徴
とする特許請求の範囲第6項記載の半導体レーザ素子。(7) The first semiconductor is AlAs, the second semiconductor is GaAs, and the two ultrathin semiconductor layers of the semiconductor superlattice are made of AlGaAs/GaAs. The semiconductor laser device described in .
であることを特徴とする特許請求の範囲第7項記載の半
導体レーザ素子。(8) The semiconductor laser device according to claim 7, wherein the active layer is thin enough to produce a quantum size effect.
なる第1混晶半導体と、上記第1半導体及び第2半導体
からなる、上記第1混晶半導体と組成の異なる第2混晶
半導体からなり、上記光閉じ込め層に用いた半導体超格
子の2つの極薄の半導体層は上記第1混晶半導体と第2
混晶半導体からなることを特徴とする特許請求の範囲第
1項又は第2項に記載の半導体レーザ素子。(9) The SCH structure is made of a first mixed crystal semiconductor made of a first semiconductor and a second semiconductor, and a second mixed crystal semiconductor made of the first semiconductor and a second semiconductor and having a different composition from the first mixed crystal semiconductor. The two ultrathin semiconductor layers of the semiconductor superlattice used for the optical confinement layer are the first mixed crystal semiconductor and the second semiconductor layer.
The semiconductor laser device according to claim 1 or 2, characterized in that it is made of a mixed crystal semiconductor.
Asであり、上記第2混晶半導体はAlyGa_1_−
_yAsであり、上記半導体超格子の2つの極薄の半導
体層はAlxGa_1_−_yAs/AlyGa_1_
−_xAs(x≠y)からなることを特徴とする特許請
求の範囲第9項記載の半導体レーザ素子。(10) The first mixed crystal semiconductor is AlxGa_1_-_x
As, and the second mixed crystal semiconductor is AlyGa_1_-
_yAs, and the two ultrathin semiconductor layers of the semiconductor superlattice are AlxGa_1_-_yAs/AlyGa_1_
-_xAs (x≠y), the semiconductor laser device according to claim 9.
厚であることを特徴とする特許請求の範囲第10項記載
の半導体レーザ素子。(11) The semiconductor laser device according to claim 10, wherein the active layer is thin enough to produce a quantum size effect.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27629684A JPS61154191A (en) | 1984-12-27 | 1984-12-27 | Semiconductor laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27629684A JPS61154191A (en) | 1984-12-27 | 1984-12-27 | Semiconductor laser element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61154191A true JPS61154191A (en) | 1986-07-12 |
Family
ID=17567468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27629684A Pending JPS61154191A (en) | 1984-12-27 | 1984-12-27 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61154191A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248189A (en) * | 1987-04-02 | 1988-10-14 | Nec Corp | Semiconductor laser |
US4999844A (en) * | 1988-04-15 | 1991-03-12 | Omron Tateisi Electronics Co. | Semiconductor quantum well laser |
JPH04276682A (en) * | 1990-12-20 | 1992-10-01 | American Teleph & Telegr Co <Att> | Semiconductor laser device provided with it and its manufacture |
US5577061A (en) * | 1994-12-16 | 1996-11-19 | Hughes Aircraft Company | Superlattice cladding layers for mid-infrared lasers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145686A (en) * | 1984-01-09 | 1985-08-01 | Nec Corp | Semiconductor laser |
JPS60145687A (en) * | 1984-01-09 | 1985-08-01 | Nec Corp | Semiconductor laser |
JPS60189983A (en) * | 1984-03-12 | 1985-09-27 | Nec Corp | Semiconductor light emitting element |
JPS6110293A (en) * | 1984-06-25 | 1986-01-17 | Sharp Corp | Photo semiconductor device |
-
1984
- 1984-12-27 JP JP27629684A patent/JPS61154191A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145686A (en) * | 1984-01-09 | 1985-08-01 | Nec Corp | Semiconductor laser |
JPS60145687A (en) * | 1984-01-09 | 1985-08-01 | Nec Corp | Semiconductor laser |
JPS60189983A (en) * | 1984-03-12 | 1985-09-27 | Nec Corp | Semiconductor light emitting element |
JPS6110293A (en) * | 1984-06-25 | 1986-01-17 | Sharp Corp | Photo semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248189A (en) * | 1987-04-02 | 1988-10-14 | Nec Corp | Semiconductor laser |
US4999844A (en) * | 1988-04-15 | 1991-03-12 | Omron Tateisi Electronics Co. | Semiconductor quantum well laser |
JPH04276682A (en) * | 1990-12-20 | 1992-10-01 | American Teleph & Telegr Co <Att> | Semiconductor laser device provided with it and its manufacture |
US5577061A (en) * | 1994-12-16 | 1996-11-19 | Hughes Aircraft Company | Superlattice cladding layers for mid-infrared lasers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6218082A (en) | Semiconductor laser device | |
JPH0632339B2 (en) | Semiconductor laser | |
JPH0449691A (en) | Visible-ray laser diode | |
JPS6384186A (en) | Transverse junction stripe laser | |
JP2553731B2 (en) | Semiconductor optical device | |
JPH06334265A (en) | Quantum well semiconductor laser | |
JPS61154191A (en) | Semiconductor laser element | |
JPS60145687A (en) | Semiconductor laser | |
JP2758472B2 (en) | Light modulator | |
JPH0823136A (en) | Multiple quantum well semiconductor laser | |
JP2940158B2 (en) | Semiconductor laser device | |
JP2555984B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH0159753B2 (en) | ||
JPS60134489A (en) | Semiconductor laser device | |
JPS63120491A (en) | Semiconductor laser | |
JPH0474487A (en) | Semiconductor laser | |
JPH0513872A (en) | Hetero junction type semiconductor laser | |
JPH04320082A (en) | Semiconductor laser element | |
JPH04321290A (en) | Semiconductor laser | |
JP2945568B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0334591A (en) | Quantum well semiconductor laser element | |
JPH05226775A (en) | Semiconductor laser element | |
JPS62296582A (en) | Semiconductor laser device | |
JPS6211287A (en) | Semiconductor laser device | |
JPH05283790A (en) | Semiconductor laser |