JPS61153858A - Thermal recording and optical reproducing device - Google Patents
Thermal recording and optical reproducing deviceInfo
- Publication number
- JPS61153858A JPS61153858A JP27997684A JP27997684A JPS61153858A JP S61153858 A JPS61153858 A JP S61153858A JP 27997684 A JP27997684 A JP 27997684A JP 27997684 A JP27997684 A JP 27997684A JP S61153858 A JPS61153858 A JP S61153858A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- pit
- recording
- laser beam
- reproduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は記録媒体上にレーザービームを照射し、それに
より生じる熱及び必要に応じて印加される反転磁場を利
用して光学的性質の異なる微小なピットを形成し、ピッ
トの有無又はピット長により情報を記録し、記録された
情報は光学的に再生する記録兼再生装置の改良に関する
。Detailed Description of the Invention (Technical Field of the Invention) The present invention irradiates a laser beam onto a recording medium, and utilizes the heat generated by the laser beam and a reversal magnetic field applied as necessary to record microscopic particles with different optical properties. The present invention relates to an improvement in a recording and reproducing apparatus that forms pits, records information based on the presence or absence of pits or the pit length, and optically reproduces the recorded information.
・(発明の背景)
・情報社会の進展に伴って、大容量の情報を高密度に記
録できる記録方式が求められ、ディスク状の記録媒体に
渦巻き状又は、同心円状の巾の狭いコ、−スを作り、そ
のコースに沿って微小なピット例えば@Iqクロン×長
さ最小2ミクロンのピットを形成し、このピットの′有
無又はピット長によって情報を記録する方式が開発され
友。・(Background of the invention) ・With the development of the information society, there is a need for a recording method that can record a large amount of information at high density. A method has been developed in which micro pits are formed along the course, such as pits with a minimum length of 2 microns, and information is recorded based on the presence or absence of these pits or the length of the pits.
゛そして、□ビットl形成する手段として、微小径に絞
っ次レーザービームを媒体に照射し、それによ゛′シ生
りる熱によシピットを形成する方式が開発されている。As a means for forming □ bits, a method has been developed in which a medium is irradiated with a laser beam focused to a minute diameter, and the resulting heat is used to form a cipit.
例えば、(イ)熱によって媒体を溶解又は昇華させ、く
ぼみt作シ、このくほみをビットとするもの、(ロ)熱
によって相転移を起こさせ、光学的性質例えば屈折率0
反射率が元の状態とは異なる゛区域を作り、この区域t
ビットとするもの、(ハ)熱によりて媒体の上向き又は
下向きに揃つ九垂直磁化の保磁力を低下させ、同時に反
転磁場を印加して磁化の向きを反転させ、その上でレー
ザービームの照射をとめて磁化の向きが元の状態とは反
対の区域を作シ、この区域をピットとするもの(光磁気
記録)、などの熱的情報記録方式が既に提案され、一部
実用化されている。For example, (a) a method in which the medium is melted or sublimated by heat to create a recess, and this recess is used as a bit;
Create an area where the reflectance is different from the original state, and
(c) Using heat to reduce the coercive force of the nine perpendicular magnetizations aligned upward or downward in the medium, at the same time applying a reversal magnetic field to reverse the direction of magnetization, and then irradiating the laser beam. Thermal information recording methods have already been proposed, and some have been put into practical use, such as one in which the magnetic field is stopped, an area is created where the direction of magnetization is opposite to the original state, and this area is used as a pit (magneto-optical recording). There is.
そして、こうして記録され九情報は、形成されたピット
が周囲とは光学的性質が相違することを利用して、媒体
にレーザービームを照射し、該媒体で反射されたビーム
tたは該媒体を透過したビームの光学的変化を検知する
ことにより再生される。尚、ここでは、ピットが単なる
「くぼみ」であり、その「くぼみ」のために回折や干渉
を起こし、「<はみ」がないと該回折や干渉を起こさな
い場合も光学的性質が相違することに含める。The information recorded in this way is created by irradiating the medium with a laser beam, taking advantage of the fact that the optical properties of the formed pits are different from the surrounding areas, and then using the beam reflected by the medium or the medium. It is reproduced by detecting optical changes in the transmitted beam. In this case, the optical properties are different even if the pit is just a "dent" and the "dent" causes diffraction or interference, and if there is no "<", the diffraction or interference does not occur. Include in that.
ところで、このような熱的記録光学的再生方式に便用さ
れる装置が記録と再生で別々では不便である友め、同一
の装置で兼用されることが多い。By the way, since it is inconvenient to use separate devices for recording and reproduction in such a thermal recording optical reproduction method, the same device is often used for both purposes.
そして、その場合には、光源を含め次光学系も兼用され
(但し、ビーム強度は記録時に強く再生時に弱くする)
、再生時には記録時の光学系の一部又は全部が利用され
る。その九め、記録媒体の照射面のビーム直径は、これ
まで記録時も再生時も同一で、媒体照射面に於けるビー
ムの断面形状は共に真円形でありto
ところで、従来の記録再生装置では、情報として、より
高周波の信号つまり(ビット長のよシ短いピット)音記
録して行くと、第2図に示すように再生信号振幅(実線
)が次第に対物レンズのMTF性能から求めた理論値(
破線)よりも低下して行くことが判明した。In that case, the secondary optical system including the light source is also used (however, the beam intensity is strong during recording and weak during playback).
During reproduction, part or all of the optical system used during recording is used. Ninth, the beam diameter of the irradiated surface of the recording medium has been the same during recording and reproduction, and the cross-sectional shape of the beam at the irradiated surface of the medium is both a perfect circle. As information is recorded, as higher frequency signals (pits with shorter bit lengths) are recorded, the reproduced signal amplitude (solid line) gradually increases to the theoretical value determined from the MTF performance of the objective lens, as shown in Figure 2. (
It turns out that the value decreases further than the dashed line).
尚、光学的再生方式では、再生信号振幅は、再生光の波
長と対物レンズのMTF性能で決まることが既に判明し
ている。Note that in the optical reproduction method, it has already been found that the reproduction signal amplitude is determined by the wavelength of the reproduction light and the MTF performance of the objective lens.
(発明の目的)
従って、本発明の目的は、同一の装置で記録再生を行な
うものに於いて、高周波信号を記録した場合にも再生信
号振幅を低下させず理論値に近ずけることにある。(Object of the Invention) Therefore, an object of the present invention is to make the reproduced signal amplitude close to the theoretical value without decreasing it even when recording a high frequency signal in the same device that performs recording and reproduction. .
(発明の概要)
高周波の信号は、それだけビット長が短かい訳であるが
、ビームの媒体照射面に於ける形状(B)と形成される
ピッ)(P)の形状との関係をビット長を変えて調べて
みたところ、第3図に示す如き関係i得友(第3図中の
矢印は媒体の移動方向を示す)。(Summary of the invention) High-frequency signals have a short bit length, but the relationship between the shape (B) on the medium irradiation surface of the beam and the shape of the formed pin (P) is determined by the bit length. When I investigated the relationship by changing , I found the relationship as shown in Figure 3 (the arrow in Figure 3 indicates the direction of movement of the medium).
即ち、ビット長が短かくなると、ピットの幅が狭くなる
傾向がある。That is, as the bit length becomes shorter, the width of the pit tends to become narrower.
このような傾向のでる理由について考えてみると、レー
ザービームの媒体照射面に於けるビーム断面の光強度分
布は、同心円状で周辺部に行くほど低くなる。Considering the reason for this tendency, the light intensity distribution of the beam cross section on the medium irradiation surface of the laser beam is concentric and becomes lower toward the periphery.
一方、ビームを「等速移動している媒体」に照射し九と
き、媒体上のある一点での温度は第4図に示すように上
昇し、照射されなくなると降下する。第4図の横軸は時
間(1)で、縦軸は媒体の温度(1)を示し、t =
oで照射を始め1 = 11で照射上める。このような
温度カーブのプロフィールは媒体の性質に依存する熱時
定数tτとすると、以下のような式でモデル化できる。On the other hand, when a beam is irradiated onto a medium moving at a constant velocity, the temperature at a certain point on the medium increases as shown in FIG. 4, and then decreases when the beam is no longer irradiated. The horizontal axis in Fig. 4 is time (1), the vertical axis is the temperature (1) of the medium, and t =
Start irradiation at o and increase irradiation at 1=11. The profile of such a temperature curve can be modeled by the following equation, assuming that the thermal time constant tτ depends on the properties of the medium.
(OtI≧t≧0のとき
T=T、(1−・戎)
(ロ)t>t、のとき
−1゜
T=T。(1−0/r)x、−(t−t、)/τ(To
は熱平衡時に到達する最高温度)この場合、媒体温度(
慣が媒体にピットを形成するために必要な最低温度(T
V)t−越えないと、ピットは形成されない。(When OtI≧t≧0, T=T, (1-・戎) (b) When t>t, -1°T=T. (1-0/r)x, -(t-t,) /τ(To
is the highest temperature reached at thermal equilibrium), in this case the medium temperature (
Minimum temperature required to form pits in the medium (T
V) If t- is not exceeded, pits will not be formed.
従って、短いピラトラ形成させる九めにビームの照射時
間を短くすると、ビームの周辺部で照射された媒体の温
度は余り上がらずピットが形成されないことになる。そ
の結果、ピットの幅が、ビームの媒体照射面に於ける直
径よりも小さくなってしまうものと考えられる。Therefore, if the beam irradiation time is shortened to form a short pit, the temperature of the medium irradiated at the periphery of the beam will not rise so much and no pits will be formed. As a result, it is thought that the width of the pit becomes smaller than the diameter on the medium irradiation surface of the beam.
このような状況に於いて、同じビームを強度を落して再
生に使用すると、ビームの直径が形成されたピットの幅
よりも広い九めに、ビームの反射光又は透過光にはピッ
トの両側領域からの反射光又は透過光を含むことになる
。このことは、再生光の光学的性質の変化を利用する光
学的再生方弐罠於いては、再生光のコントラストの低下
を招くことになる。In such a situation, if the same beam is used for reproduction with reduced intensity, the diameter of the beam is wider than the width of the formed pit. This includes reflected light or transmitted light from. This results in a decrease in the contrast of the reproduced light in the optical reproduction method that utilizes changes in the optical properties of the reproduced light.
その結果、ピットからの再生光を光検出器などによって
電気信号に変換する方式においては、その再生電気信号
の振幅が低下する。例えば、ピットが再生光を反射する
領域で、ビット以外の領域が再生光を吸収する領域とす
ると、一般論を言えば媒体で反射された再生光は、ピッ
トとピットとの間では弱く、ピットでは強くなる。この
ような再生光が電気信号に変換されると、弱9強の再生
光に対応して、谷、山の波型の電気信号が得られる。As a result, in a method in which reproduced light from a pit is converted into an electrical signal by a photodetector or the like, the amplitude of the reproduced electrical signal decreases. For example, if a pit is an area that reflects reproduction light and an area other than the bit is an area that absorbs reproduction light, generally speaking, the reproduction light reflected by the medium is weak between the pits, and the reproduction light is weak between the pits. Then become stronger. When such reproduction light is converted into an electrical signal, an electrical signal having a wave shape of troughs and peaks is obtained corresponding to the reproduction light of weak 9-strong.
しかし、ピットからの再生光に基づく電気信号が弱めら
れると、山の高さが低くなり、結局波型の電気信号は振
幅が小さくなる。However, when the electric signal based on the reproduced light from the pit is weakened, the height of the peak becomes lower, and the amplitude of the wave-shaped electric signal eventually becomes smaller.
そこで、記録時にビーム直径を大きくして記録すること
が考えられるが、そうするとピットの長さが長くなって
、高周波信号が記録できなくなる矛盾が出てくる。Therefore, it is conceivable to record by increasing the beam diameter during recording, but this would create a contradiction in that the length of the pit would become longer, making it impossible to record high-frequency signals.
本発明者らは、鋭意研究の結果、記録時にビームラヒツ
トの幅方向にのみ広げ、つまりビームの断面形状を長円
とし、再生時には狭くしてピットの幅と等しいか又はそ
れより小さくすることを着想し、本発明を成すに至っ友
。こうすれば、ピットの長さ方向にはビーム径が小さい
ので高周波信号を記録でき、ピットの幅方向にはビーム
径が大きいので照射時間の短かい高周波信号でもビット
幅が狭くなることがなく、その結果再生信号振幅が低下
することがない。As a result of extensive research, the present inventors came up with the idea of widening the beam only in the width direction during recording, that is, making the cross-sectional shape of the beam elliptical, and narrowing it during playback to make it equal to or smaller than the width of the pit. This led to the realization of the present invention. In this way, since the beam diameter is small in the length direction of the pit, high-frequency signals can be recorded, and since the beam diameter is large in the width direction of the pit, the bit width will not become narrow even with high-frequency signals with a short irradiation time. As a result, the reproduced signal amplitude does not decrease.
従りて、本発明は高速で移動する記録媒体にレーザービ
ームを照射し、照射により生じる熱及び必要に応じて印
加する反転磁場により前記媒体上にピットを形成し、こ
のピットの有無又はピット長により情報を記録し、記録
され几情報は、高速で移動する記録媒体に対し記録時の
光学系の一部又は全部を利用してレーザービーム七照射
し、該媒体で反射された又は該媒mt−透過したレーザ
ービームの光学的変化を検知することKより再生する熱
的記録光学的再生装置罠おいて、記録時には、レーザー
ビームの媒体照射面における断面形状が媒体の移動方向
に対し直角々方向に長径を有する長円のレーザービーム
を用い、再生時には形成されたピットの幅と等しいか又
はそれより小さい断面形状を有するレーザービームを用
いることを特徴とする装置。Therefore, the present invention irradiates a recording medium moving at high speed with a laser beam, forms pits on the medium using heat generated by the irradiation and a reversal magnetic field applied as necessary, and determines the presence or absence of the pits and the length of the pits. The recorded information is recorded by irradiating a recording medium that moves at high speed with a laser beam using part or all of the optical system at the time of recording, and is reflected by the medium. - Detecting optical changes in the transmitted laser beam In a thermal recording optical reproducing device that reproduces data from K, during recording, the cross-sectional shape of the laser beam on the medium irradiation surface is perpendicular to the direction of movement of the medium. An apparatus characterized in that an elliptical laser beam having a major axis is used, and during reproduction, a laser beam having a cross-sectional shape equal to or smaller than the width of a formed pit is used.
を提供する。I will provide a.
媒体照射面に於けるビーム断面形状を、記録時に幅広(
長円)Kセ再生時には狭くする具体的手法としては、光
路中にシリンドリカルレンズを挿入し、非点収差を生じ
させ記録時と再生時で媒体とピックアップの対物レンズ
との距離を変えることにより、記録時にデフォーカス状
態、再生時にフォーカス状II+(最小錯乱円状態〕と
する方法が、新たな部材はシリンドリカルレンズだけで
済むので、最も好ましい。シリンドリカルレンズの挿入
に代えて、元々ピックアップ光学系の一部に使用されて
いるビームスプリッタ−(プリズム型)や対物レンズな
どを、円筒面に仕上げても非点収差が得られ、同様の効
果がもたらされる。そのほか、音響光学効果を利用した
A10変謂器を光路中に挿入し、電気信号によってA1
0変調器による光の回折規現象を制御し、再生時には、
単一の真円ビームを発生させ、記録時には、近接してい
くつかの光ビーム1r発生させることにより、擬似的な
長円ビームを発生させる事が出来る。The beam cross-sectional shape at the medium irradiation surface is widened (
A specific method for narrowing the optical path during playback is to insert a cylindrical lens into the optical path, create astigmatism, and change the distance between the medium and the objective lens of the pickup during recording and playback. The most preferable method is to use a defocused state during recording and a focused state II+ (circle of least confusion state) during playback, since the only new component required is a cylindrical lens.Instead of inserting a cylindrical lens, it is possible to Astigmatism can be obtained even if the beam splitter (prism type) and objective lens used in the section are finished with cylindrical surfaces, and the same effect can be achieved. A1 is inserted into the optical path, and A1
The diffraction phenomenon of light is controlled by the 0 modulator, and during reproduction,
By generating a single perfect circular beam and, during recording, generating several light beams 1r in close proximity, a pseudo-elliptical beam can be generated.
以下、光磁気の場合を実施例として本宛@t−A本的に
説明する。Hereinafter, the magneto-optical case will be explained in detail as an example.
(実施例)
まず、本実施例の光磁気記録再生装置の全体構成を第5
図に示す。図中、(1)はディスク状の光磁気記録媒体
、(2)は媒体上回転させるためのスピンドルモーター
、 G)は半導体レーザー、(4)はレーザー駆動回路
、(5)はコリメーターレンズ、(6)は偏光板、(7
)はビームスプリッタ、 (8)はシリンドリカルレン
ズ%(9)は対物レンズ、Qlは対物し/ズ躯動系(、
対物レンズだけ上下する)、aυは外部磁界発生手段、
0は偏光板、a3は集光レンズ、■は光電変換素子であ
る。(Example) First, the overall configuration of the magneto-optical recording and reproducing apparatus of this example is explained in the fifth example.
As shown in the figure. In the figure, (1) is a disk-shaped magneto-optical recording medium, (2) is a spindle motor for rotating the medium, G) is a semiconductor laser, (4) is a laser drive circuit, (5) is a collimator lens, (6) is a polarizing plate, (7
) is the beam splitter, (8) is the cylindrical lens, % (9) is the objective lens, and Ql is the objective/z rotational system (,
only the objective lens moves up and down), aυ is the external magnetic field generating means,
0 is a polarizing plate, a3 is a condensing lens, and ■ is a photoelectric conversion element.
ここでは記録時にビーム断面形状を長円するために、光
路中にシリンドリカルレンズ(8)ヲ装置する。シリン
ドリカルレンズ(8)が凸か凹か、また配置方向がトラ
ック方向に対して直角にするか平行にするかで、いくつ
かの実施態様が考えられるが、本実施例では、例えば凸
のシリンドリカルレンズを使用し、その度経線の方向(
収斂作用を持つ方向)ヲトラック方向に対して平行に配
置することにする。Here, a cylindrical lens (8) is installed in the optical path in order to make the cross-sectional shape of the beam oval during recording. Several embodiments are possible depending on whether the cylindrical lens (8) is convex or concave, and whether the arrangement direction is perpendicular or parallel to the track direction. and the direction of the degree meridian (
(direction that has a convergent effect) is arranged parallel to the track direction.
記録のプロセスについて説明すると、外部から入力され
た情報に基づいて駆動回路(4]から駆動電流がレーザ
ー(3)に入力され、それによりレーザービームが第6
図に示す如き発光をし友とする。発光したビームは、コ
リメーターレンズ(5)で平行光に修正し、次いで偏光
板(6)により直線偏光と成す。To explain the recording process, a drive current is input to the laser (3) from the drive circuit (4) based on information input from the outside, and the laser beam is thereby
It emits light as shown in the figure and becomes a friend. The emitted beam is corrected into parallel light by a collimator lens (5), and then made into linearly polarized light by a polarizing plate (6).
(但し、光源である半導体レーザ(3)からの出射光の
偏光度が十分高ければ偏光板(6)は省略してよい。)
この偏光ビームはビームスプリッタ(7)で反射させて
、シリンドリカルレンズ(8)ヲ経て対物レンズ(9)
によシ集光して媒体<1)に照射させる。この場合、媒
体面のビームスボッ)(By)は、対物レンズを媒体面
に近ずけてデフォーカス状態にすると、非点収差によシ
媒体の移動方向(トラック方向)に対して直角な方向(
ビットの幅方向)に径が延びた長円形状七なる。尚、記
録時は特にビームが偏光である必要はない。(However, if the degree of polarization of the light emitted from the semiconductor laser (3) that is the light source is sufficiently high, the polarizing plate (6) may be omitted.)
This polarized beam is reflected by a beam splitter (7), passed through a cylindrical lens (8), and then passed through an objective lens (9).
The light is focused and irradiated onto the medium <1). In this case, when the objective lens is brought close to the medium surface and brought into a defocused state, the beam focus (By) on the medium surface will change in the direction perpendicular to the moving direction (track direction) of the medium due to astigmatism.
It has an elliptical shape with a diameter extending in the width direction of the bit. Note that the beam does not need to be polarized during recording.
ビームの照射と同時に、外部磁界発生手段azにより反
転磁場【印加すると、反転磁化を有するビットが形成さ
れる。形成されたビットの形状とビームの媒体照射面に
於けるビーム断面形状との関係を第1図(a)に示す。Simultaneously with the beam irradiation, when a switching magnetic field is applied by the external magnetic field generating means az, a bit with switching magnetization is formed. The relationship between the shape of the formed bit and the cross-sectional shape of the beam on the medium irradiation surface is shown in FIG. 1(a).
図中、 (fly)は記録時のビーム断面形状を表わし
、P)はビット形状を表わし、矢印は媒体の移動方向を
示す。尚、(Br)は、従来の真円のビームスボッ)1
−示すと共に再生時の真円のビームスポットを示す。In the figure, (fly) represents the cross-sectional shape of the beam during recording, P) represents the bit shape, and the arrow indicates the direction of movement of the medium. In addition, (Br) is a conventional perfect circular beam subbox) 1
- and shows a perfectly circular beam spot during playback.
第1図(1)に示すように、記録時にビットの幅方向に
拡大させた長円形状のビームを使用するので、ピット長
が短い場合であっても、形成されるビットの幅は、再生
時のビーム断面直径よ)大きいか又は等しくなる。As shown in Figure 1 (1), an elliptical beam expanded in the width direction of the bit is used during recording, so even if the pit length is short, the width of the bit formed is be greater than or equal to the beam cross-sectional diameter.
L’−f−(3)を低パワーで発光させて、得られたレ
ーザービームtコリメーターレンズで平行光に直し、そ
れを偏光板(6)で直線偏光とする。この直!1IfI
A光ビームをビームスプリッタ−(7)で反射させて、
レンズ(8)を経て対物レンズ(9)で集光して媒体(
1)K照射させる。L'-f-(3) is caused to emit light at low power, and the resulting laser beam is converted into parallel light using a t-collimator lens, which is then converted into linearly polarized light using a polarizing plate (6). This straight! 1IfI
The A light beam is reflected by the beam splitter (7),
The light passes through the lens (8) and is focused by the objective lens (9) to the medium (
1) Irradiate with K.
この場合、対物レンズ(9)は記録時よシも遠ざけてフ
ォーカス状1!l(最小錯乱円状II)にすると、媒体
面のビームスボッ)(Br)は、ピッ)(P)の幅方向
に延びていた径が元に戻って狭くなシ真円となる。In this case, the objective lens (9) is moved further away than during recording, so that the objective lens (9) is in focus. When it is set to l (circle of least confusion II), the beam diameter (Br) on the medium surface returns to its original diameter extending in the width direction of the beam (P) and becomes a narrow perfect circle.
従りて、ビーム(Br)は第1図(b)に示すように、
短いビットのであっても、ビット両側の領域を照さない
。その次め媒体からの反射光もビット両側領域からの反
射光成分を含まず、再生信号振幅が低下することがない
。Therefore, the beam (Br) is as shown in FIG. 1(b).
Even short bits do not illuminate the area on either side of the bit. The reflected light from the next medium also does not include reflected light components from both side areas of the bit, so that the reproduced signal amplitude does not decrease.
媒体α)からの反射光は、再び対物レンズ(9)%レン
ズ(8)を経て、ビームスプリッタ−(7)に達し、そ
こを透過し、偏光板azt−通りて光電変換素子(IJ
K受光され、そζで電気信号に変換される。媒体0)は
ここでは光磁気記録媒体を使用しているので、゛ オ
ー
ビット(至)とそれ以外の領域とでは、磁気?効果によ
り反射光の偏光面が異なり、その結果、偏光板Qりによ
って、光量が、ビット(p)とそれ以外の領域とでは強
9弱と異なることになる。しかし、本発明によれば、ビ
ットからの光量が不正に低下又は増大することがないの
で、電気信号の振幅が不正に狭くならず、その結果、高
周波領域においても良好な信号再生が行なわれる。The reflected light from the medium α) passes through the objective lens (9)% lens (8) again, reaches the beam splitter (7), transmits there, passes through the polarizing plate azt-, and enters the photoelectric conversion element (IJ).
K light is received, and it is converted into an electrical signal at ζ. Media 0) here uses a magneto-optical recording medium, so there is no magnetic field between the orbit and other areas. The polarization plane of the reflected light differs depending on the effect, and as a result, depending on the polarizing plate Q, the amount of light differs between the bit (p) and the other areas by a strength of 9 or less. However, according to the present invention, since the amount of light from the bits does not decrease or increase illegally, the amplitude of the electrical signal does not become illegally narrowed, and as a result, good signal reproduction is performed even in the high frequency region.
尚、本実施例にシいては、非点収差を利用するため再生
時のビーム形状が真円となっ友が、形成されたビットの
幅と等しいか又はそれより小さいものであれば、形状は
特に制限されるものではない。また、本実施例ではシリ
ンドリカルレンズを固定し、対物レンズのみを上下に移
動させたが、これに限らず、7リンドリカルレンズと対
物レンズを一緒に上下に移動させる構成でも同様の効果
が得られる。In this embodiment, since the astigmatism is utilized, the beam shape during reproduction is a perfect circle, and if the width of the beam is equal to or smaller than the width of the formed bit, the shape will be There are no particular restrictions. In addition, in this example, the cylindrical lens was fixed and only the objective lens was moved up and down, but the same effect is not limited to this, and the same effect can be obtained with a configuration in which the 7 lindrical lens and the objective lens are moved up and down together. .
(発明の効果)
以上の通り、本発明によれば、記録時にビットの幅方向
にのみ拡大した長円形のビームを使用し、再生時には形
成されたピットの幅と等しいか又はそれよシ狭いビーム
を使用するので、ビット長が短くなっても(高周波信号
になっても)、再生信号振幅が低下することがなくなシ
、理論値に近ずく。(Effects of the Invention) As described above, according to the present invention, an oval beam expanded only in the width direction of the bit is used during recording, and a beam that is narrower than or equal to the width of the formed pit is used during reproduction. , even if the bit length becomes short (even if the signal becomes a high frequency signal), the reproduced signal amplitude does not decrease and approaches the theoretical value.
第1図(a)は、本発明の実施例に従い記録した場合の
、ビーム(Bw)の媒体照射面における形状と、形成さ
れるビット伊)との関係を示す説明図である。
第1図(b)は、本発明の実施□例に従い再生した場合
の、ビーム(Br)の媒体照射面における形状と、形成
されたビット(ト)との関係を示す説明図である。
第2図は、従来の装置に従い記録し、再生した場合の、
情報信号の周波数に対する再生信号振幅の変化を示すグ
ラフであり、実線は実測値、破線は理論値を示す。
第3図は、従来の装置に従い記録した場合の、記録兼再
生ビーム(B)の媒体照射面における形状と、形成され
るビット便)との関係を示す説明図である。
I!4図は、媒体にビームを照射したときめ媒体面のあ
る一虚における、媒体温度(1)と経過時間(1)との
関係を示すグラフである。
第5図は、本発明の実施齢1かる光磁気記録再生装置の
全体構成を示す概念図である。
第6図は記録時のレーザービームの強度と経過時間との
関係を示すグラフである。
〔主要部分の符号の説明〕
Bw・・・記録時のビームの媒体照射面における形状B
r・・・再生時のビームの媒体照射面における形状B
・・・ビーム P・・・ビット
l ・・・記録媒体 3・・・レーザー5 ・・・コリ
メーターレンズ
6.12・・・偏光板
7 ・・・ビームスプリッタ−
8・・・7リンドリカルレンズ
9 ・・・対物レンズ
10 ・・・対物レンズ駆動系
13 ・・・集光レンズ
14 ・・・光電変換素子FIG. 1(a) is an explanatory diagram showing the relationship between the shape of the beam (Bw) on the medium irradiation surface and the bits formed when recording according to the embodiment of the present invention. FIG. 1(b) is an explanatory diagram showing the relationship between the shape of the beam (Br) on the medium irradiation surface and the formed bit (G) when reproducing according to the embodiment of the present invention. Figure 2 shows the results when recording and playing back using a conventional device.
It is a graph showing changes in reproduced signal amplitude with respect to the frequency of an information signal, where the solid line shows the measured value and the broken line shows the theoretical value. FIG. 3 is an explanatory diagram showing the relationship between the shape of the recording/reproducing beam (B) on the medium irradiation surface and the formed bit pattern when recording is performed using a conventional apparatus. I! FIG. 4 is a graph showing the relationship between the medium temperature (1) and the elapsed time (1) when the medium is irradiated with a beam and the surface of the medium is imaginary. FIG. 5 is a conceptual diagram showing the overall configuration of a magneto-optical recording/reproducing apparatus according to the first embodiment of the present invention. FIG. 6 is a graph showing the relationship between laser beam intensity and elapsed time during recording. [Explanation of symbols of main parts] Bw... Shape B of the beam on the medium irradiation surface during recording
r... Shape B on the medium irradiation surface of the beam during reproduction
...Beam P...Bit l...Recording medium 3...Laser 5...Collimator lens 6.12...Polarizing plate 7...Beam splitter 8...7 Lindrical lens 9...Objective lens 10...Objective lens drive system 13...Condensing lens 14...Photoelectric conversion element
Claims (1)
射により生じる熱及び必要に応じて印加する反転磁場に
より前記媒体上にピットを形成し、このピットの有無又
はピット長により情報を記録し、記録された情報は、高
速で移動する記録媒体に対し記録時の光学系の一部又は
全部を利用してレーザービームを照射し、該媒体で反射
された又は該媒体を透過したレーザービームの光学的変
化を検知することにより再生する熱的記録光学的再生装
置において、記録時には、レーザービームの媒体照射面
における断面形状が媒体の移動方向に対し直角な方向に
長径を有する長円のレーザービームを用い、再生時には
形成されたピットの幅と等しいか又はそれより小さい断
面形状を有するレーザービームを用いることを特徴とす
る装置。A recording medium moving at high speed is irradiated with a laser beam, and pits are formed on the medium by the heat generated by the irradiation and a reversal magnetic field applied as necessary, and information is recorded based on the presence or absence of the pits or the length of the pits. The recorded information is obtained by irradiating a recording medium that moves at high speed with a laser beam using part or all of the optical system during recording, and by calculating the optical information of the laser beam that is reflected by or transmitted through the medium. In a thermal recording optical reproducing device that performs reproduction by detecting a change, during recording, an elliptical laser beam whose cross-sectional shape at the medium irradiation surface has a major axis in a direction perpendicular to the direction of movement of the medium is used. . An apparatus characterized in that during reproduction, a laser beam having a cross-sectional shape equal to or smaller than the width of the formed pit is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27997684A JPS61153858A (en) | 1984-12-26 | 1984-12-26 | Thermal recording and optical reproducing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27997684A JPS61153858A (en) | 1984-12-26 | 1984-12-26 | Thermal recording and optical reproducing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61153858A true JPS61153858A (en) | 1986-07-12 |
Family
ID=17618564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27997684A Pending JPS61153858A (en) | 1984-12-26 | 1984-12-26 | Thermal recording and optical reproducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61153858A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427058A (en) * | 1987-07-23 | 1989-01-30 | Nec Corp | Magneto-optical recording and reproducing device |
JPH0246547A (en) * | 1988-08-08 | 1990-02-15 | Sharp Corp | Magneto-optical memory device |
JPH02278544A (en) * | 1989-04-19 | 1990-11-14 | Hitachi Ltd | Magneto-optical recording method |
US5270987A (en) * | 1988-02-08 | 1993-12-14 | Hitachi, Ltd. | Magneto-optical recording and reproducing method, magneto-optical memory apparatus and magneto-optical recording medium therefor |
US5272684A (en) * | 1989-08-01 | 1993-12-21 | Mitsubishi Denki Kabushiki Kaisha | Information recording method and information recording apparatus for magneto-optic recording information medium |
US5546364A (en) * | 1988-07-20 | 1996-08-13 | Sharp Kabushiki Kaisha | Magneto-optical memory apparatus utilizing edges or recording mark to manage data |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4893348A (en) * | 1972-03-10 | 1973-12-03 |
-
1984
- 1984-12-26 JP JP27997684A patent/JPS61153858A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4893348A (en) * | 1972-03-10 | 1973-12-03 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427058A (en) * | 1987-07-23 | 1989-01-30 | Nec Corp | Magneto-optical recording and reproducing device |
US5270987A (en) * | 1988-02-08 | 1993-12-14 | Hitachi, Ltd. | Magneto-optical recording and reproducing method, magneto-optical memory apparatus and magneto-optical recording medium therefor |
US5546364A (en) * | 1988-07-20 | 1996-08-13 | Sharp Kabushiki Kaisha | Magneto-optical memory apparatus utilizing edges or recording mark to manage data |
JPH0246547A (en) * | 1988-08-08 | 1990-02-15 | Sharp Corp | Magneto-optical memory device |
JPH02278544A (en) * | 1989-04-19 | 1990-11-14 | Hitachi Ltd | Magneto-optical recording method |
US5272684A (en) * | 1989-08-01 | 1993-12-21 | Mitsubishi Denki Kabushiki Kaisha | Information recording method and information recording apparatus for magneto-optic recording information medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5956296A (en) | Information reproducing apparatus for reproducing information by magnetic wall movement | |
JPH07192287A (en) | Optical pickup device | |
JPS61153858A (en) | Thermal recording and optical reproducing device | |
US6122229A (en) | Magneto-optically recorded data readout system | |
US5644556A (en) | Magneto-optical disk having cellularly divided regions with alternating directions of magnetization and method of initializing direction of magnetization of magneto-optical disk prior to recording of information | |
JPS63187439A (en) | Magneto-optical recording method | |
US5966347A (en) | Apparatus and method for reproducing data from a magneto-optic recording medium | |
JPH06105509B2 (en) | Magneto-optical recording / reproducing device | |
JPS60243832A (en) | Optical information detecting device | |
JPH1092046A (en) | Magnetooptical information reproducing device | |
JP2966612B2 (en) | Information playback device | |
JPH03273545A (en) | Magneto-optical recording and reproducing device | |
JPS6113461A (en) | Magneto-optical recording and reproducing method | |
JP3960675B2 (en) | Optical head | |
US5706263A (en) | Method and apparatus for high-density reproduction | |
JP2840794B2 (en) | Optical pickup device | |
JPH04368647A (en) | Optical magnetic head device and optical magnetic recording method | |
JPS61206947A (en) | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type | |
JPH11232718A (en) | Magneto-optical head and magneto-optical recording device | |
JPH06162594A (en) | Magneto-optical recorder and reproducer | |
JPH1092033A (en) | Optical information recording and reproducing device | |
JPH0369041A (en) | Optical recording and reproducing method | |
JPH0233750A (en) | Information recording method and device and information recording and reproducing method and device | |
JPH0991707A (en) | Optical recording information reproducing device | |
JPH05120752A (en) | Magneto-optical recording method and magneto-optical recording device |