[go: up one dir, main page]

JPS6115382A - Clamp element - Google Patents

Clamp element

Info

Publication number
JPS6115382A
JPS6115382A JP59136757A JP13675784A JPS6115382A JP S6115382 A JPS6115382 A JP S6115382A JP 59136757 A JP59136757 A JP 59136757A JP 13675784 A JP13675784 A JP 13675784A JP S6115382 A JPS6115382 A JP S6115382A
Authority
JP
Japan
Prior art keywords
ceramic
voltage
insulator
clamp
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59136757A
Other languages
Japanese (ja)
Inventor
Kunio Yamada
邦雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59136757A priority Critical patent/JPS6115382A/en
Publication of JPS6115382A publication Critical patent/JPS6115382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • H10N30/505Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は物体のクランプに用いられる積層圧電セラミッ
ククランプ素子に関Tる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laminated piezoelectric ceramic clamping element used for clamping objects.

(従来技術) 従来の圧電体を使用したクランプ素子は、圧電体に印加
した電界に伴う歪を利用したものであり、その1つのタ
イプの構成を第1図に示す。i1図に示す円筒状素子の
内、外面に銀コーティングにより電極が被着され、この
電極を介して素子内に電界が印加されたとき、径方向に
収縮が生じ、円筒状素子内に挿入された円筒形状を有す
るシャフトをクランプするものである。Slはスイッチ
である。
(Prior Art) A conventional clamp element using a piezoelectric body utilizes strain caused by an electric field applied to the piezoelectric body, and the configuration of one type thereof is shown in FIG. Electrodes are coated with silver on the inner and outer surfaces of the cylindrical element shown in Figure i1, and when an electric field is applied inside the element through these electrodes, contraction occurs in the radial direction and the element is inserted into the cylindrical element. This clamps a shaft having a cylindrical shape. Sl is a switch.

もう一つのタイプは第2図に示す中空状積層型圧電素子
である。第2図は断面概略図である。中空状積層型圧電
素子は第2図を参照すると、多数の内部を極層1がセラ
ミック内部に層状に埋め込まれており、素子端面で露出
している。この露出している内部電極層を一層おきに絶
縁体2で覆い、この上から外?fiS を極3,4が被
着ぜしめられているため、各内部電極層は互に電気的に
並列に接続されることになる。またこれらの素子はその
、曜み方向に分極処理が施されているために、外部電極
間に電圧が印加されると、その電圧の大きさに比例して
、厚み方向に伸び、従って径方向に縮み、中空内に挿入
された円筒形状を有するシャフトをクランプするもので
ある。
Another type is the hollow laminated piezoelectric element shown in FIG. FIG. 2 is a schematic cross-sectional view. Referring to FIG. 2, the hollow laminated piezoelectric element has a large number of internal pole layers 1 embedded in a ceramic layer in a layered manner and exposed at the end surfaces of the element. This exposed internal electrode layer is covered every other layer with an insulator 2, and then exposed from above. Since the fiS poles 3 and 4 are deposited, the internal electrode layers are electrically connected in parallel to each other. In addition, since these elements are polarized in the lateral direction, when a voltage is applied between the external electrodes, they expand in the thickness direction in proportion to the magnitude of the voltage, and therefore extend in the radial direction. This clamps a cylindrical shaft inserted into the hollow.

(従来技術の問題) 以上〕ホべた構成を有する2つのタイプの円筒状素子の
うち、円筒状素子の内、外面に銀コーテイングをこより
、内部電極を被着せしめたタイプの素子をこおいて問題
となるのは圧電材料の伸縮量を大きくする上での技術的
制約である。圧電材料の伸縮率は電界強度にはぼ比例す
るため、セラミック素子の肉厚を大きくして伸酪量を稼
ごうとすれは大きな1に圧を必要とする。従って、第1
図に示す円筒状素子の寸法は上に述べた印加電圧のほか
、機械的強度、円筒状素子とシャフトの均一なかみ合い
を得るための容易さ等を勘案して定められる。
(Problems with the prior art) Of the two types of cylindrical elements with the above-mentioned configuration, the type in which the inner and outer surfaces of the cylindrical element are coated with silver and the internal electrodes are coated is used. The problem is the technical constraints in increasing the amount of expansion and contraction of piezoelectric materials. Since the expansion/contraction rate of piezoelectric materials is approximately proportional to the electric field strength, increasing the thickness of the ceramic element and increasing the amount of expansion requires a large pressure. Therefore, the first
The dimensions of the cylindrical element shown in the figure are determined by taking into account the applied voltage mentioned above, mechanical strength, ease of obtaining uniform engagement between the cylindrical element and the shaft, etc.

目安について述べると、内径11m、肉厚1閣のセラミ
ック素子に600V程度の電圧を印加して2〜3μの内
径の変化を得ている。すなわち第1図に2いて、セラミ
ック素子は600 V程度の電圧を印加したとき、径方
向に縮小してシャフトを拘束することになる。その場合
2〜3μしか縮小しないため、該セラミック素子および
シャフトのサイズのバラツキの許容範囲は小さく、セラ
ミック素子とシャフトの均一なかみ合いを得るための加
工、組立等の製造技術は限界に近いものがある。−万、
セラミック素子の1口加電圧をさらに大きくして、伸k
j量を稼ぐことは、回路の安全対策および、より高速で
クランプ素子を動作させる上で好ましくない。すなわち
クランプ素子をより高速に動作させるためには、スイッ
チS1が高スピードで動作することが必要であり、トラ
ンジスタが用いられる。セラミック素子の印加電圧を大
きくすることは、等測的に高電圧で高スピードで動作す
るトランジスタの開発が必要である。第3図(a)およ
び(b)は電力用の合金形接合トランジスタの構造で、
エミッタ、コレクタの電流面積をできるたけ大きくして
、電流密度が過大にならないよう工夫されている。スイ
ッチング速度が早くなればなるほど、表皮効果の影椿で
、電極表面の近傍しか電流が流れなくなるため、さらに
電極の表面積を大きくする工夫が必要である。従って高
速で高耐圧のトランジスタζこなればなるほど、半導体
および電極の表面積も大きくなり、低耐圧のものに比べ
て歩留りも悪く高価になる。また複数個の低耐圧のトラ
ンジスタ4−mいて高電圧を分割してスイッチングさせ
る方法もあるか、ディレィの問題や各トランジスタのバ
ランスの問題を解決するための調整時間を必要とする。
As a guideline, a voltage of about 600 V is applied to a ceramic element with an inner diameter of 11 m and a wall thickness of 1 mm, thereby obtaining a change in the inner diameter of 2 to 3 μm. That is, when a voltage of about 600 V is applied to the ceramic element 2 in FIG. 1, it contracts in the radial direction and restrains the shaft. In that case, since the size is reduced by only 2 to 3μ, the tolerance for variations in the size of the ceramic element and shaft is small, and manufacturing technology such as processing and assembly to obtain uniform engagement between the ceramic element and shaft is close to its limit. be. Ten thousand,
By further increasing the voltage applied to each ceramic element, the elongation
Increasing the amount of j is undesirable from the viewpoint of circuit safety and operation of the clamp element at higher speed. That is, in order to operate the clamp element at a higher speed, the switch S1 needs to operate at a higher speed, and a transistor is used. Increasing the voltage applied to ceramic elements requires the development of transistors that operate isometrically at high voltages and at high speeds. Figures 3(a) and 3(b) show the structure of an alloy junction transistor for power use.
The current area of the emitter and collector is made as large as possible to prevent the current density from becoming excessive. As the switching speed becomes faster, current flows only near the electrode surface due to the skin effect, so it is necessary to further increase the surface area of the electrode. Therefore, the faster and higher the voltage resistance of the transistor ζ, the larger the surface area of the semiconductor and electrode, and the lower the yield and the higher the cost compared to a transistor with a lower voltage resistance. There is also a method of dividing and switching a high voltage using a plurality of low voltage transistors 4-m, which requires adjustment time to solve problems of delay and balance of each transistor.

以上述べた理由で、第1図に示したクイズの円筒状素子
は、肉厚を大きくしてシャフトを大きな力でクランプし
なければならない場合や、高速でクランプ素子を動作さ
せる場合には好ましくない。
For the reasons stated above, the cylindrical element shown in Figure 1 is not preferred when the wall thickness is large and the shaft must be clamped with a large force, or when the clamping element is operated at high speed. .

一万、第2図に示した中空状積層型圧電素子は、上に述
べた第1図に示した円筒状素子が有する欠点をすべて除
去している。すなわち、薄板状素子の厚み方向の表裏面
に電極を一体化した素子に電圧を並列に印加することに
より、電界強度を大にして全体としての歪をとり出すた
め、低′屯圧印加駆動に高歪の発生が可能である。
The hollow laminated piezoelectric element shown in FIG. 2 eliminates all the drawbacks of the cylindrical element shown in FIG. 1 described above. In other words, by applying a voltage in parallel to an element that integrates electrodes on the front and back surfaces of a thin plate element in the thickness direction, the electric field strength is increased and the overall strain is extracted. It is possible to generate high distortion.

83−8)55ノージに掲載された電子通信圧電セラミ
ック素子は積層セラミックコンテンサの製造技術を応用
することで接着剤を使用しないで圧電セラミック阪を頃
層一体化するため、形状的な自由度も太合い上に、従来
の製造技術の欠点を全て克服した画期的な積層型圧電素
子である。従来の製造技術では、薄板を慣5するために
接着剤を1i)用するため生産性が悪い。コスト高であ
る。史に接着層が介在するために素子としての純粋かつ
一様な歪が採り出せないし、寿命等の信頼性に欠ける等
の欠点を有していた。
83-8) The electronic communication piezoelectric ceramic element published in No. 55 uses the manufacturing technology of multilayer ceramic capacitors to integrate the piezoelectric ceramic layers without using adhesives, so it has a high degree of freedom in shape. Moreover, it is an epoch-making multilayer piezoelectric element that overcomes all the shortcomings of conventional manufacturing techniques. In the conventional manufacturing technology, productivity is poor because adhesive is used to bond the thin plate. The cost is high. Due to the presence of an adhesive layer in the process, pure and uniform strain cannot be obtained as an element, and the device has drawbacks such as a lack of reliability such as a long life.

従って第2図に示した中空状積層型圧電素子は、焼結さ
れた積層型圧電素子に、中空状空隙を加工すれば得られ
ることになる。しかし、中7F状梢1〜型圧電素子の欠
点は、クランプ素子として用いた場合、内部πL極が短
絡し易く、短絡した場合(A、クランプ素子としての機
能を満足できなくなることである。すなわぢ、クランプ
素子のシャツIと接触するセラミ、り部および内部′電
極部分か、り間を短絡する。そして内部を極間が短絡し
た場合は、内部電極の一部又は全部が破損し、所要のク
ランプ素子としての機能を満足できなくなる。
Therefore, the hollow laminated piezoelectric element shown in FIG. 2 can be obtained by forming hollow voids in a sintered laminated piezoelectric element. However, the disadvantage of the medium 7F-shaped piezoelectric element is that when used as a clamp element, the internal πL pole is easily short-circuited, and if short-circuited (A), the function as a clamp element cannot be satisfied. Short-circuit between the ceramic, rib and internal electrode parts that contact the shirt I of the clamp element.If the internal electrodes are short-circuited, part or all of the internal electrodes will be damaged. It becomes impossible to satisfy the required function as a clamp element.

(発明の目的) 本発明は上記欠点を除き、効率よく低電圧で駆動できる
クランプ素子を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and provide a clamp element that can be efficiently driven at a low voltage.

(発明の構成) すなわち本発明は薄板状セラミ、りと内部電極とが交互
に復数潰層された素子であって素子側面に露出している
各内部電極層端部が一層おきに絶縁体で覆われ、該素子
側面jここの上から外部電極が形成され、さらに該素子
内部に円筒状空隙部が設けられ、かつ円筒状空隙m壁面
には絶縁体が形成されていることを特徴とするクランプ
素子である。
(Structure of the Invention) That is, the present invention is an element in which thin ceramic plates and internal electrodes are alternately layered, and the end portions of each internal electrode layer exposed on the side surface of the element are made of an insulator every other layer. , an external electrode is formed from above the side surface of the element, a cylindrical cavity is provided inside the element, and an insulator is formed on the wall surface of the cylindrical cavity. This is a clamp element that

(実施例) 次ζζ木発明の実施例について図面を参照して説明する
。第4図は本発明によるクランプ素子の断面概略図であ
る。第4図に3いてlは内部゛電極層でセラミック6の
内部に層状に埋め込まれており、電子側面で露出してい
る。この露出している内部 。
(Example) Next, an example of the ζζ tree invention will be described with reference to the drawings. FIG. 4 is a schematic cross-sectional view of a clamping element according to the invention. In FIG. 4, reference numeral 3 denotes an internal electrode layer, which is embedded in the ceramic 6 in a layered manner and is exposed on the electronic side. This exposed interior.

電極層を一層おきに絶縁体2で覆い、この上から5は8
i02の絶縁体で中空状空隙部を構成する内部電極部分
の1子端面とセラミック部分6の両方に付着されている
。付着は、減圧OVD法でSiH4とN、 0を500
℃で反応させて行った。またセラミック部分6はその厚
み方向に分極処理が施されているために、外部電極間に
電圧が印加されると、その電圧の大きさζこ比例して、
厚み方向に伸び、従って径方向に縮む。絶縁体5もセラ
ミック部分6に連動する。本実施例の中空状積層型圧電
素子の内径は11創であり、セラミック素子6の肉厚は
1闘、電極の間隔は50μm、電極3,4の厚みは50
μm、絶縁体5の肉厚は50μmである。本中空状積層
型圧電素子は100■程度の電圧を印加して2〜3μの
内径の変化が得られ、従来の第1図に示したタイプのク
ランプ素子に要する電圧のしの電圧で同等のクランプ機
能が得られた。また同サイズの第2図に示したタイプの
クランプ素子の寿命試験を比較した結果、寿命は100
倍に伸びた。
Every other electrode layer is covered with insulator 2, and from above 5 is 8
The i02 insulator is attached to both the single end face of the internal electrode portion constituting the hollow cavity and the ceramic portion 6. Attachment was carried out using the reduced pressure OVD method using 500% SiH4 and N.
The reaction was carried out at ℃. Furthermore, since the ceramic portion 6 is polarized in its thickness direction, when a voltage is applied between the external electrodes, the magnitude of the voltage is proportional to ζ.
It stretches in the thickness direction and therefore contracts in the radial direction. The insulator 5 is also interlocked with the ceramic part 6. The inner diameter of the hollow laminated piezoelectric element of this example is 11 mm, the thickness of the ceramic element 6 is 1 mm, the interval between electrodes is 50 μm, and the thickness of electrodes 3 and 4 is 50 μm.
The thickness of the insulator 5 is 50 μm. This hollow laminated piezoelectric element can change the inner diameter by 2 to 3μ by applying a voltage of about 100μ, and can achieve the same change at a voltage lower than that required for the conventional clamping element of the type shown in Figure 1. Clamp function was obtained. In addition, as a result of comparing the life test of the type of clamp element shown in Fig. 2 of the same size, the life is 100%.
It has doubled in size.

本実施例では、中空状空隙部を構成する内部電極ilX
分とセラミック部分の両方に絶縁体を付着したが、内部
電極部分に絶縁体を付着しても同等の効果が州られるこ
とは言うまでもない。
In this embodiment, the internal electrode ilX constituting the hollow cavity is
Although an insulator is attached to both the electrode portion and the ceramic portion, it goes without saying that the same effect can be obtained by attaching an insulator to the internal electrode portion.

(発明の詳細な説明) 本発明は以上説明したように中空状積層型圧電素子の中
空状空隙部を構成する内部電極部分あるいは内部電極部
分とセラミック部分の両方に絶縁体を付着した構成を体
用したため ])効率よく高歪量が採り出せるため、クランプ素子に
応用するとき発生歪の利用範囲に白山度があり、このた
め低電圧駆動化が可能である。
(Detailed Description of the Invention) As explained above, the present invention has a structure in which an insulator is attached to the internal electrode portion or both the internal electrode portion and the ceramic portion that constitute the hollow cavity of the hollow laminated piezoelectric element. Since a high amount of strain can be efficiently produced, there is a wide range of utilization of the generated strain when applied to a clamp element, and low-voltage driving is therefore possible.

2)1体焼成タイプの(冶層素子のため、量産性、信頼
性が尚い。
2) One-piece firing type (because it is a laminar element, it is less mass-producible and reliable.

3)絶縁物が4=J着されているため、摩耗した内部型
(lliiiを構成した金属が隣接した内部相極間を短
絡ぜす、長乃命化が可能である。
3) Since the insulator is attached with 4=J, the worn metal forming the internal mold (lliii) short-circuits the adjacent internal phase electrodes, allowing for a long life.

等の効果かあり、その経涌的、機0ヒ的、信頼性的波及
効果は甚大である・
The economic, opportunity, and credibility ripple effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の円筒状クランプ素子の靜、四国、第2図
は従来の中空状侑Nパリクランプ斜子の概略図、第3図
は電力用の合金形接合トランンスタの構成図、第4図は
本発明の実施例を示すクランプ素子の概略図である。 ■・・・・・・内)不電極層、 2.5・・・・・絶縁
体、3.4・・・・・・外部電極、  6・・・・・・
セラミック、30・・・・・・エミツト、   31・
°°・・=ルクグ、32・・・・・・ベース
Figure 1 is a schematic diagram of a conventional cylindrical clamp element, Shikoku; Figure 2 is a schematic diagram of a conventional hollow YN Paris clamp; The figure is a schematic diagram of a clamp element showing an embodiment of the present invention. ■・・・・・・Nonelectrode layer, 2.5・・・Insulator, 3.4・・・External electrode, 6・・・・・・
Ceramic, 30...Emitsuto, 31.
°°...=Rukugu, 32...Base

Claims (1)

【特許請求の範囲】[Claims] 薄板状セラミックと内部電極とが交互に複数積層された
素子であって素子側面に露出している各内部電極層端部
が一層おきに絶縁体で覆われ、該素子側面にこの上から
外部電極が形成され、さらに該素子内部に円筒状空隙部
が設けられ、かつ円筒状空隙部壁面には絶縁体が形成さ
れていることを特徴とするクランプ素子。
It is an element in which a plurality of thin ceramic plates and internal electrodes are alternately laminated, and the ends of each internal electrode layer exposed on the side of the element are covered with an insulator every other layer, and external electrodes are placed on the side of the element from above. What is claimed is: 1. A clamp element characterized in that a cylindrical cavity is formed inside the element, and an insulator is formed on a wall surface of the cylindrical cavity.
JP59136757A 1984-07-02 1984-07-02 Clamp element Pending JPS6115382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136757A JPS6115382A (en) 1984-07-02 1984-07-02 Clamp element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136757A JPS6115382A (en) 1984-07-02 1984-07-02 Clamp element

Publications (1)

Publication Number Publication Date
JPS6115382A true JPS6115382A (en) 1986-01-23

Family

ID=15182788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136757A Pending JPS6115382A (en) 1984-07-02 1984-07-02 Clamp element

Country Status (1)

Country Link
JP (1) JPS6115382A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237950U (en) * 1985-04-30 1987-03-06
JPH0282665A (en) * 1988-09-20 1990-03-23 Toto Ltd Piezoelectric actuator
JPH02269807A (en) * 1989-04-06 1990-11-05 Asahi Chem Ind Co Ltd Polyester multifilament and production thereof
JPH07176802A (en) * 1993-12-20 1995-07-14 Nec Corp Manufacture of piezoelectric actuator
US6411012B2 (en) 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same
JP2005086110A (en) * 2003-09-10 2005-03-31 Denso Corp Laminated piezoelectric element
EP1801894A1 (en) * 2005-12-23 2007-06-27 Delphi Technologies, Inc. Piezoelectric device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237950U (en) * 1985-04-30 1987-03-06
JPH0333084Y2 (en) * 1985-04-30 1991-07-12
JPH0282665A (en) * 1988-09-20 1990-03-23 Toto Ltd Piezoelectric actuator
JPH02269807A (en) * 1989-04-06 1990-11-05 Asahi Chem Ind Co Ltd Polyester multifilament and production thereof
JPH07176802A (en) * 1993-12-20 1995-07-14 Nec Corp Manufacture of piezoelectric actuator
US5568679A (en) * 1993-12-20 1996-10-29 Nec Corporation Method of manufacturing laminated piezoelectric actuator having cavity
US6411012B2 (en) 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same
JP2005086110A (en) * 2003-09-10 2005-03-31 Denso Corp Laminated piezoelectric element
EP1801894A1 (en) * 2005-12-23 2007-06-27 Delphi Technologies, Inc. Piezoelectric device

Similar Documents

Publication Publication Date Title
US6734603B2 (en) Thin layer composite unimorph ferroelectric driver and sensor
US7999446B1 (en) Piezoelectronic device and method of fabricating the same
JPS6115382A (en) Clamp element
JP2830724B2 (en) Manufacturing method of piezoelectric actuator
US3953920A (en) Method of making a transducer
JP2824116B2 (en) Multilayer piezoelectric actuator
JP2707782B2 (en) Multilayer piezoelectric element
JPS6127689A (en) Cylindrical piezoelectric ceramic element
JPH0334871B2 (en)
JPS60219972A (en) Fine movement device using laminated piezoelectric elements
US20150048720A1 (en) Piezoelectric actuator module and method of manufacturing the same
JP2001308347A (en) Method of manufacturing acceleration sensor
JPH03183371A (en) Multilayer piezoelectric actuator
JP3867823B2 (en) Manufacturing method of laminated piezoelectric element
JPS5858780A (en) Electrostrictive element
JPH0685451B2 (en) Multilayer piezoelectric bimorph element and method of using the same
JPH0888419A (en) Microactuator and manufacturing method thereof
JPS6378582A (en) Electromechanical conversion element
JPH01107583A (en) Manufacturing method of laminated piezoelectric actuator element
JPH06302836A (en) Manufacture of semiconductor strain sensor
JP2711870B2 (en) Multilayer piezoelectric actuator
JP3021972B2 (en) Multilayer piezoelectric element
JPH01161882A (en) Manufacture of laminated piezoelectric actuator element
JPS5913926A (en) Pyroelectric element
JPH0436231Y2 (en)