[go: up one dir, main page]

JPS61153117A - Magnetic filter - Google Patents

Magnetic filter

Info

Publication number
JPS61153117A
JPS61153117A JP59280158A JP28015884A JPS61153117A JP S61153117 A JPS61153117 A JP S61153117A JP 59280158 A JP59280158 A JP 59280158A JP 28015884 A JP28015884 A JP 28015884A JP S61153117 A JPS61153117 A JP S61153117A
Authority
JP
Japan
Prior art keywords
magnetic
chamber
particles
magnetic particles
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59280158A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kitora
木藤良 善久
Shiro Nakamura
史朗 中村
Akira Ichikawa
晃 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59280158A priority Critical patent/JPS61153117A/en
Publication of JPS61153117A publication Critical patent/JPS61153117A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/029High gradient magnetic separators with circulating matrix or matrix elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/284Magnetic plugs and dipsticks with associated cleaning means, e.g. retractable non-magnetic sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To separate continuously magnetic particles trapped by magnetic lines by inducing the magnetic particles trapped by the magnetic lines from the first chamber into the second chamber, rotating a couple of electrically conductive disks to reduce the magnetism of the second chamber and introducing a washing liq. into the second chamber. CONSTITUTION:A liq. introduced through an inflow pipe 2 is passed between magnetic lines 9 vibrated by a vibrator 10, and trapped by the magnetic lines. Magnetic particles are repeatedly adhered to and separated from the magnetic lines, transported on the magnetic lines in the direction of an X axis, passed through the through-holes of a partition body 6, and induced into the second chamber 8. A couple of electrically conductive disks 11 are rotated at high speed to reduce periodically the magnetism in the second chamber, washing water is simultaneously allowed to flow to release easily the magnetic particles from the magnetic lines and the particles are discharged through a water discharge pipe 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、流体中に混入している微小な磁性粒子を、
磁力によって連続的に分N除去する磁気フィルタに関す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is a method for removing minute magnetic particles mixed in a fluid.
This relates to a magnetic filter that continuously removes N by magnetic force.

〔従来の技術〕[Conventional technology]

第6図は、従来の磁気フィルタの構造を示す構成図であ
る。図において(14)Fi環状の励磁コイルで、磁束
の帰路となるリターンフレーム(15)の内部に配置さ
れ中央部分にフィルタ容器(16)が装着されている。
FIG. 6 is a block diagram showing the structure of a conventional magnetic filter. In the figure, (14) Fi is an annular excitation coil arranged inside a return frame (15) which serves as a return path for magnetic flux, and a filter container (16) is attached to the central part.

フィルタ容器(16)の内部には複数の磁性線で形成さ
れたフィルタエレメント(17)が装着されている。フ
ィルタ容器(16)には流入管(18)および流出管(
19)が連通し、流入管(18)には洗浄水流出管(2
0)が、また流出管(19)には洗浄水流入管(21)
が継がっておりそれぞれの管には弁v18゜V1G+V
20+V2□がfXシつけられている。なお、矢印は流
体の流れを示す。以下同様とする。
A filter element (17) made of a plurality of magnetic wires is mounted inside the filter container (16). The filter container (16) has an inflow pipe (18) and an outflow pipe (
19) are connected, and the inflow pipe (18) is connected to the wash water outflow pipe (2
0), but the outflow pipe (19) also has a wash water inflow pipe (21).
are connected, and each pipe has a valve v18゜V1G+V
20+V2□ is marked with fX. Note that arrows indicate fluid flow. The same shall apply hereinafter.

次に作用°について説明する。第4図において勅、磁コ
イル(14)に通電すると、フィルタ容器(16)の液
流方向に平行に磁束が発生し、フィルタニレメン) (
17)を構成している磁性線が磁化され、その周囲に強
い磁場勾配を形成し、いわゆる高勾配磁気フィルタが形
成される。この状態で磁性粒子を含む液を流入管(18
)を介して供給すればフィルタエレメント(17)を通
過する聞く液に含まれる磁性粒子は、磁性線に捕捉され
、磁性粒子を分離された液は流出管(19)を経て排出
される。このときVll、Vllのみ開き、弁V!o、
VHは閉じティる。
Next, the effect will be explained. In Fig. 4, when the magnetic coil (14) is energized, a magnetic flux is generated parallel to the liquid flow direction in the filter container (16).
17) is magnetized and forms a strong magnetic field gradient around it, forming a so-called high-gradient magnetic filter. In this state, the liquid containing magnetic particles is introduced into the inlet tube (18
), the magnetic particles contained in the liquid that passes through the filter element (17) are captured by the magnetic wires, and the liquid from which the magnetic particles have been separated is discharged through the outflow pipe (19). At this time, only Vll and Vll are opened, and valve V! o,
VH closes.

磁性粒子は、フィルタニレメン) (17)に堆積スる
ので、次第に分離性能が低下する。このため一定時間間
隔をおいてフィルタを洗浄する必要がある。すなわち、
励磁コイル(1)の通電を止めて磁場を無くするととも
に弁V111+V19を閉じ、弁Ventvnを関き洗
浄水流入管(21)を介して洗浄水を供給し、フィルタ
エレメント(17)に堆積した磁性粒子を除去し、洗浄
水流出管(20)から排出して、フィルタを再生させ、
再びマill + V 19を開き、弁VentV21
を閉じて浄化すべき液を供給する。
As the magnetic particles accumulate on the filter membrane (17), the separation performance gradually deteriorates. For this reason, it is necessary to clean the filter at regular intervals. That is,
The excitation coil (1) is de-energized to eliminate the magnetic field, valves V111+V19 are closed, and the valve Ventvn is connected to supply cleaning water through the cleaning water inlet pipe (21) to remove the magnetic particles deposited on the filter element (17). is removed and discharged from the wash water outflow pipe (20) to regenerate the filter,
Open mill + V 19 again and valve VentV21
to supply the liquid to be purified.

上記のサイクルを繰シ返して磁性粒子を分離する。The above cycle is repeated to separate the magnetic particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の磁気フィルタは以上のように構成されて−るので
、フィルタエレメント(17) K堆積した磁性粒子を
除去しなければならず、励磁コイル(1)の電流を遮断
し、弁を開閉し、洗浄液でフィルタを洗浄しなければな
らない。りまシ、連続的に磁性粒子を含む液の分離除去
ができない。特に磁性粒子を含む欲の粒子濃度が高い場
合にはその頭皮も激シイためフィルタの稼動率が低下す
るなどの問題点があった。
Since the conventional magnetic filter is constructed as described above, the magnetic particles deposited on the filter element (17) must be removed by cutting off the current in the excitation coil (1), opening and closing the valve, The filter must be cleaned with a cleaning solution. Unfortunately, it is not possible to continuously separate and remove liquids containing magnetic particles. In particular, when the concentration of particles containing magnetic particles is high, the scalp becomes extremely sensitive, resulting in problems such as a decrease in the operating rate of the filter.

この発明は、かかる問題点を解決するためになされたも
ので、磁性粒子を含む流体から磁性粒子を連続的に分離
除去する磁気フィルタt−得ることを目的とする。
The present invention was made to solve this problem, and an object of the present invention is to provide a magnetic filter that continuously separates and removes magnetic particles from a fluid containing magnetic particles.

〔問題点で解決するための手段] この発明にかかる磁気フィルタは、容器を複数個の貫通
孔を有する仕切体で分離して、第1.第2の部屋を形成
し、複数の磁性線を仕切体の貫通孔を貫通して第1の部
屋と第2の部屋間に張シ、これらの磁性線に交差する磁
界を発生させて磁性粒子を磁性@に捕捉し、捕捉した磁
性粒子を第1の部屋から第2の部屋へ誘導し、磁性粒子
を磁性線から離脱させるときに第2の部屋を挾んで対向
する一対の導電性円盤を回転させて第2の部屋部分の磁
界を小さくシ、第2の部屋に洗浄用流体を流入させて磁
性粒子を磁性線よシ離脱排出させるものである。
[Means for Solving the Problems] The magnetic filter according to the present invention separates the containers by a partition having a plurality of through holes. A second chamber is formed, a plurality of magnetic wires are passed through the through-holes of the partition and stretched between the first and second chambers, and a magnetic field is generated that intersects these magnetic wires to generate magnetic particles. is captured in a magnetic @, the captured magnetic particles are guided from the first chamber to the second chamber, and when the magnetic particles are separated from the magnetic wire, a pair of conductive disks facing each other with the second chamber in between is inserted. The device is rotated to reduce the magnetic field in the second chamber, and a cleaning fluid is flowed into the second chamber to separate the magnetic particles from the magnetic wire and discharge them.

〔作用〕[Effect]

この発#!Aにおいては、磁性線に捕捉された磁性粒子
を第1の部屋から第2の部屋へ誘導し、磁性粒子を磁性
線から離脱させるときく第2の部屋を挾んで対向する一
対の導電性円盤を回転させて第2の部屋の磁界を小さく
シ、第2の部屋に洗浄用流体を流入させ磁性粒子を磁性
線から離脱排出させるから、磁性粒子を含む流体から連
続的にかつ効果的に磁性粒子を分離除去できる。
This release #! In A, a pair of conductive disks face each other with the second chamber in between to guide the magnetic particles captured by the magnetic wire from the first chamber to the second chamber and to separate the magnetic particles from the magnetic wire. The cleaning fluid is rotated to reduce the magnetic field in the second chamber, and the cleaning fluid is flowed into the second chamber to separate and expel the magnetic particles from the magnetic wire, thereby continuously and effectively removing magnetic particles from the fluid containing magnetic particles. Particles can be separated and removed.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図面について説明する。第1
図は、この発明の一実施例の磁気フィルタの構成を示す
平面図である。第2図はその正面図である。第3図はそ
のフィルタ容器(1部分の断面図であり導電性円盤を想
像線で示す。第1図。
An embodiment of the present invention will be described below with reference to the drawings. 1st
FIG. 1 is a plan view showing the configuration of a magnetic filter according to an embodiment of the present invention. FIG. 2 is a front view thereof. FIG. 3 is a cross-sectional view of a portion of the filter container, and the conductive disk is shown by an imaginary line. FIG.

第2図において、(1)はフィルタ容器で、非磁性材料
により形成されている。(2)は―性粒子を含む液体の
流入管、(3)は浄化され磁性粒子が除去された液体の
流出管、(4)は洗浄水の給水管、(5)は分離された
磁性粒子と洗浄水の排水管である。(6)は複数の貫通
孔を有する仕切体で、フィルタ容器(υを、磁性粒子を
含む液体が流入し磁性粒子を捕捉する第1の部屋(7)
と、捕捉された磁性粒子を離脱させる第2の部屋(8)
に分離するものである。(9)は上記仕切体の貫通孔を
貫通し、互いに平行になるようにフィルタ容器に両端を
固定された複数の磁性線、(10)はフィルタ容器(1
)内の液体及び磁性線を振動させるために、フィルタ容
器(1)に収シ付けられた振動子、(11)は第2の部
屋(8)を洗浄水が通過するときに、第2の部屋(8)
内の磁界を小さくするように、第2の部屋を挾んで対向
し高速回転する一対の導電性円盤であり、回転軸(12
)により一対の円盤は互いに連結している。(13) 
Fiフィルタ容器を介在して対向する一対の磁極で、発
生する磁界が複数の磁性線(9)に交差し、第1の部屋
から第2の部屋に向かって磁界の強さが単調増加するよ
うに両磁極の間隔が徐々に短かくなっている。なお、単
調増加とは磁界の強さの傾きが正または0である場合を
示す。
In FIG. 2, (1) is a filter container made of a non-magnetic material. (2) is an inflow pipe for liquid containing magnetic particles, (3) is an outflow pipe for purified liquid from which magnetic particles have been removed, (4) is a water supply pipe for cleaning water, and (5) is a separated magnetic particle and a drain pipe for washing water. (6) is a partition having a plurality of through holes, which separates the filter container (υ) into a first chamber (7) into which liquid containing magnetic particles flows and captures the magnetic particles.
and a second chamber (8) in which the captured magnetic particles are released.
It is separated into two parts. (9) is a plurality of magnetic wires that pass through the through-hole of the partition and are fixed at both ends to the filter container so as to be parallel to each other;
) A vibrator (11) housed in the filter container (1) is used to vibrate the liquid and magnetic lines in the second chamber (8) when the wash water passes through the second chamber (8). Room (8)
It is a pair of conductive disks that rotate at high speed while facing each other with a second chamber in between, so as to reduce the magnetic field inside.
), the pair of disks are connected to each other. (13)
The magnetic field generated by a pair of magnetic poles facing each other with the Fi filter container interposed intersects a plurality of magnetic lines (9), and the strength of the magnetic field increases monotonically from the first room to the second room. The distance between the two magnetic poles is gradually becoming shorter. Note that a monotonous increase refers to a case where the slope of the magnetic field strength is positive or zero.

lia極(13)を対向して形成され九磁気空隙におい
て、2軸方向に発生する磁界はその強さがX軸方向に増
加するような勾配をもった分布となる。この磁気空隙に
あるフィルタ谷!! (1)内の磁性線(9)は磁化さ
れる。
In the nine magnetic gaps formed with the lia poles (13) facing each other, the magnetic fields generated in the biaxial directions have a gradient distribution in which the strength increases in the X-axis direction. Filter valley in this magnetic gap! ! The magnetic wire (9) in (1) is magnetized.

流入管(2)を通って流入した浄化すべき液体は磁性線
(9)の間を通過する。このとき磁界の強さと磁気勾配
の大きさに比例した磁気吸引力が磁性粒子に作用し、磁
性線(9)K捕捉される。捕捉された磁性粒子は液体の
流れで磁性線に付着したり離れたプする状急を繰シ返す
が、この繰シ返しをa1実にするために、フィルタ容器
(1) K固定されている振動子(10)によって磁性
線(9)を強制的にf2#させる〇一方、X軸方向く増
加する磁気勾配によって磁性粒子にはX軸方向の磁気力
が作用するので、磁性線に付着分離を繰シ返している磁
性粒子は磁性線(9)上をX軸方向く搬送されて仕切体
(6)の貫通孔を通過し、第2の部屋(8)K誘導され
る。
The liquid to be purified entering through the inlet pipe (2) passes between the magnetic wires (9). At this time, a magnetic attraction force proportional to the strength of the magnetic field and the magnitude of the magnetic gradient acts on the magnetic particles, and the magnetic line (9)K is captured. The captured magnetic particles repeatedly attach to and detach from the magnetic wire due to the flow of liquid, but in order to make this repetition a reality, the filter container (1) is fixed in vibration. The magnetic wire (9) is forced to f2# by the particle (10). On the other hand, due to the magnetic gradient increasing in the X-axis direction, a magnetic force in the X-axis direction acts on the magnetic particles, so they stick to the magnetic wire and separate. The magnetic particles repeating this are conveyed in the X-axis direction on the magnetic wire (9), pass through the through hole of the partition (6), and are guided into the second chamber (8) K.

第2の部屋(8)では、この部屋内の磁界を周期的に小
さくするように、第2の部屋(8)を挾んで対向する一
対の導電性円盤を周期的に高速回転させる。
In the second chamber (8), a pair of conductive disks facing each other with the second chamber (8) in between are periodically rotated at high speed so as to periodically reduce the magnetic field within this chamber.

これKよシ、磁性線(9)における磁性粒子を捕捉して
いた磁気吸引力が同期的に小さくなプ、これに同期して
洗浄水を流すことによって磁性粒子は磁性線から容易に
離脱し、排水管(5)を通して排出する。他方、磁性線
の闇を通過して磁性粒子を除去された液体は流出管(3
ンを通って流出する。
In this case, the magnetic attraction force that captured the magnetic particles in the magnetic wire (9) is synchronously reduced, and by flowing the cleaning water in synchronization with this, the magnetic particles can easily separate from the magnetic wire. , drain through the drain pipe (5). On the other hand, the liquid that has passed through the darkness of the magnetic lines and had its magnetic particles removed flows through the outflow pipe (3
It flows out through the tube.

第4図は、磁性線及び導電性円盤の位置と磁気勾配の関
係を示す磁界強度分布図である。第5図は導電性円盤の
高速回転よる磁束の遮蔽効果の説明図である。
FIG. 4 is a magnetic field strength distribution diagram showing the relationship between the positions of magnetic lines and conductive disks and magnetic gradients. FIG. 5 is an explanatory diagram of the magnetic flux shielding effect due to high speed rotation of the conductive disk.

第4図において、磁性線に捕捉された磁性粒子を第1の
部屋から第2の部屋へ誘導するときは、磁界強度HOの
分布は曲線Aとなり第1の部屋から第2の部屋にかけて
単調増加している。一方、第2の部屋に誘導された磁性
粒子を磁性線から離脱させるときは、@2の部屋(8)
を挾んで対向する一対の導電性円盤(11)を高速回転
させる。これくより、磁界強度HOの分布は曲線Bのよ
うに第2の部屋の部分が減少する。すなわち、第5図に
おけるように1等電性円[(11)を挾んで磁極(13
)を配置して、円盤(11)を高速回転させると、円盤
内にうず電流が流れ磁極間の磁束と逆方向の磁束を誘起
し、その結果、磁極間の磁束は遮蔽されることになるか
らである。なお、この磁束遮[効果は導電性円盤がより
高速く回転するほど顕著である。
In Figure 4, when magnetic particles captured by magnetic lines are guided from the first room to the second room, the distribution of the magnetic field strength HO becomes curve A and increases monotonically from the first room to the second room. are doing. On the other hand, when the magnetic particles induced in the second chamber are separated from the magnetic wire,
A pair of conductive disks (11) facing each other are rotated at high speed. As a result, the distribution of the magnetic field strength HO decreases in the second room as shown by curve B. That is, as shown in FIG. 5, a magnetic pole (13
) is placed and the disk (11) is rotated at high speed, eddy current flows within the disk and induces magnetic flux in the opposite direction to the magnetic flux between the magnetic poles, and as a result, the magnetic flux between the magnetic poles is shielded. It is from. Note that this magnetic flux shielding effect becomes more pronounced as the conductive disk rotates faster.

この第2の部屋における磁界の減少にともなって洗浄水
を第2の部屋へ流通させて第2の部屋の磁性粒子を磁性
線から離脱させて排出する。その後、一対の導電性円盤
(11)の回転を止めて磁界強度Hoの分布を再び曲線
ムに戻す。これを、*b返して磁性粒子の誘導と離脱が
行われる。
As the magnetic field in the second chamber decreases, the cleaning water is caused to flow into the second chamber, causing the magnetic particles in the second chamber to separate from the magnetic wire and be discharged. Thereafter, the rotation of the pair of conductive disks (11) is stopped and the distribution of the magnetic field strength Ho returns to the curve M again. This is returned *b to induce and detach the magnetic particles.

なお、上ε実施例では、磁性粒子誘導手段として振動子
による磁性線の振動及びX軸方向く単調増加する磁気勾
配を使用しているが、磁性線と平行方向で仕切体の方向
にゆっくり反対方向く強く振動させ買性力によシ粒子を
第1の部屋から第2の部屋へ移動させてもよい。また、
仕切体の貫通孔においては浄化すべき液体の一部がX軸
方向に流れているのでその流体抵抗力をiwJあるいF
i磁気勾配と合わせて使用しても上記の例と同様の効果
を奏する。
In the above ε embodiment, vibration of the magnetic wire by a vibrator and a magnetic gradient that increases monotonically in the The particles may be moved from the first chamber to the second chamber by vibrating strongly in the direction and by the attractive force. Also,
In the through-hole of the partition, part of the liquid to be purified flows in the X-axis direction, so the fluid resistance force is expressed as iwJ or F.
Even when used in conjunction with the i-magnetic gradient, the same effect as in the above example is achieved.

上と実施例では、磁性粒子a尋手段として、X軸方向く
単調増加する磁気勾配を利用したが、磁性粒子が第1の
部屋から第2の部屋へ引き寄せられるように第1の部屋
から第2の部屋へ磁界を移動させてもよい。
In the above and Examples, a magnetic gradient that increases monotonically in the X-axis direction is used as a means for attracting magnetic particles. The magnetic field may be moved to the second room.

上記実施例では、l性線は、仕切体の貫通孔を貫通し互
いに千行くなるようにフィルタ容器に両端を固定されて
いるが、網目状に組まれてフィルタ容I!にその端を固
定されているものでもよい。
In the above embodiment, the l-type wires pass through the through-holes of the partition and are fixed at both ends to the filter container so that they are 1,000 rows apart from each other. The end may be fixed to the

上記実施例では、磁性粒子を含む液体が磁気フィルタを
通過したが、磁性粒子を含む気体でもよいO 上記実施例では、洗浄用流体を、導電性円盤の高速回転
に同期して第2の部屋内に流入させたが、導電性円盤の
回転に関係なく常時流入させてもよい。
In the above example, the liquid containing magnetic particles passed through the magnetic filter, but a gas containing magnetic particles may also be used. However, it may be allowed to flow constantly regardless of the rotation of the conductive disk.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明し九とおり、複数個の貫通孔を有す
る仕切体によシ区切られ、第1.第2の部屋を形成した
容器、上記仕切体の貫通孔を貫通して第1の部屋と第2
の部屋間に張られた複数の磁性線、第1の部屋と第2の
部屋間に張られたこれらの磁性線に交差する磁界を発生
させ、磁性粒子を含む流体を第1の部屋に流入させて、
上記磁性線間を通過する闇に、上記磁性線で磁性粒子を
捕捉する手段、これらの磁性粒子を上記磁性線に沿って
第1の部屋から第2の部屋に引き寄せる磁性粒子#を導
手段、及び磁性粒子を上記磁性線から離脱させるとき第
2の部屋の磁界を小さくするように第2の部屋を挾んで
対向する一対の導電性円盤を回転させ、第2の部屋に洗
浄用流体を流入させて、第2の部屋よシ洗浄用流体とと
もに磁性粒子を排出させる磁性粒子離脱手段とを備えた
ので、磁性粒子を含んだ流体から連続的に磁性粒子を分
離でき、従来のものに比べ、フィルタの稼動率が高くな
るという効果がある。
As described above, this invention is divided into two parts by a partition body having a plurality of through holes. A container forming a second chamber is inserted through the through hole of the partition body to form a first chamber and a second chamber.
A magnetic field is generated that intersects multiple magnetic wires stretched between the first and second chambers, and a fluid containing magnetic particles flows into the first chamber. Let me,
means for trapping magnetic particles with the magnetic wires in the darkness passing between the magnetic wires; means for guiding the magnetic particles to attract the magnetic particles from the first room to the second room along the magnetic wires; and rotating a pair of conductive disks facing each other with the second chamber in between so as to reduce the magnetic field in the second chamber when separating the magnetic particles from the magnetic wire, and flowing a cleaning fluid into the second chamber. In addition, since the second chamber is equipped with a magnetic particle separation means for discharging the magnetic particles together with the cleaning fluid, the magnetic particles can be continuously separated from the fluid containing magnetic particles, and compared to conventional methods, This has the effect of increasing the operating rate of the filter.

なお、第2の部屋の部分の磁界を導電性円盤の回@によ
シ周期的に小さくシ、これに同期して洗浄用流体を第2
の部屋内に流入させるならば、洗浄用流体の量が少をく
て済み、磁性粒子の凝縮に効果がある。
Note that the magnetic field in the second chamber is periodically reduced by the rotation of the conductive disk, and in synchronization with this, the cleaning fluid is supplied to the second chamber.
If the cleaning fluid is allowed to flow into the room, the amount of cleaning fluid can be reduced and it is effective in condensing the magnetic particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の磁気フィルタの構成を示
す平面図、第2図はその正面図、第3図はそのフィルタ
容器部分の断面図、第4図は磁性線及び導電性円盤の位
置と凪気勾配の関係を示す磁界強度分布図、第5図は導
電性円盤の高速回転による磁束の遮蔽効果の説明図、第
6図は従来の磁気フィルタの構造を示す構成図である。 図忙おいて(1)はフィルタ容器、(6)は仕切体、(
ηは第1の部屋、(8)雌第2の部屋、(9)は磁性線
、(lO)は振動子、(11)は導電性円盤、(13)
は磁界発生手段でこの場合は磁極である。 なお、各図中同一符号は同一または相当部分を示す。 第1図 第2図 第3図 第4図 第6図 第6図
Fig. 1 is a plan view showing the configuration of a magnetic filter according to an embodiment of the present invention, Fig. 2 is a front view thereof, Fig. 3 is a sectional view of the filter container portion, and Fig. 4 is a magnetic wire and conductive disk. Fig. 5 is an explanatory diagram of the magnetic flux shielding effect due to high-speed rotation of the conductive disk, and Fig. 6 is a configuration diagram showing the structure of a conventional magnetic filter. . In the figure, (1) is a filter container, (6) is a partition body, (
η is the first chamber, (8) the female second chamber, (9) is the magnetic wire, (lO) is the oscillator, (11) is the conductive disk, (13)
is a magnetic field generating means, which in this case is a magnetic pole. Note that the same reference numerals in each figure indicate the same or corresponding parts. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)複数個の貫通孔を有する仕切体により区切られ、
第1、第2の部屋を形成した容器、上記仕切体の貫通孔
を貫通して第1の部屋と第2の部屋間に張られた複数の
磁性線、第1の部屋と第2の部屋に張られたこれらの磁
性線に交差する磁界を発生させ、磁性粒子を含む流体を
第1の部屋に流入させて、上記磁性線間を通過する間に
、上記磁性線で磁性粒子を捕捉する手段、これらの磁性
粒子を上記磁性線に沿つて第1の部屋から第2の部屋に
引き寄せる磁性粒子誘導手段、及び磁性粒子を上記磁性
線から離脱させるときに第2の部屋の磁界を、小さくす
るように第2の部屋を挾んで対向する一対の導電性円盤
を回転させ、第2の部屋に洗浄用流体を流入させて、第
2の部屋より洗浄用流体とともに磁性粒子を排出させる
磁性粒子離脱手段とを備えた磁気フイルタ。
(1) Separated by a partition having multiple through holes,
A container forming a first and second chamber, a plurality of magnetic wires extending between the first chamber and the second chamber through the through hole of the partition, the first chamber and the second chamber. A magnetic field is generated that intersects these magnetic wires stretched over the magnetic wires, and a fluid containing magnetic particles flows into the first chamber, and the magnetic particles are captured by the magnetic wires while passing between the magnetic wires. means for attracting these magnetic particles from the first chamber to the second chamber along the magnetic line; and magnetic particle guiding means for reducing the magnetic field in the second chamber when the magnetic particles are separated from the magnetic line. A pair of conductive disks facing each other with a second chamber in between are rotated so that a cleaning fluid flows into the second chamber, and the magnetic particles are discharged from the second chamber together with the cleaning fluid. A magnetic filter comprising a detachment means.
(2)磁性粒子誘導手段は、磁性粒子が第1の部屋から
第2の部屋へ引き寄せられるように複数の磁性線に交差
する磁界を第1の部屋から第2の部屋に向かつて単調増
加させるものである特許請求の範囲第1項記載の磁気フ
イルタ。
(2) The magnetic particle guiding means monotonically increases the magnetic field that intersects the plurality of magnetic lines from the first room to the second room so that the magnetic particles are attracted from the first room to the second room. A magnetic filter according to claim 1, which is a magnetic filter.
(3)磁性粒子誘導手段は、磁性粒子が第1の部屋から
第2の部屋へ引き寄せられるように第1の部屋から第2
の部屋へ移動する磁界を発生させるものである特許請求
の範囲第1項記載の磁気フイルタ。
(3) The magnetic particle guiding means is configured to move the magnetic particles from the first chamber to the second chamber so that the magnetic particles are attracted from the first chamber to the second chamber.
The magnetic filter according to claim 1, which generates a magnetic field that moves into a room.
(4)磁性粒子誘導手段は、複数の磁性線に振動を与え
るものである特許請求の範囲第2項または第3項記載の
磁気フイルタ。
(4) The magnetic filter according to claim 2 or 3, wherein the magnetic particle guiding means imparts vibration to a plurality of magnetic lines.
(5)複数の磁性線が網目状に組まれた特許請求の範囲
第1項ないし第4項の何れかに記載の磁気フイルタ。
(5) A magnetic filter according to any one of claims 1 to 4, in which a plurality of magnetic wires are arranged in a mesh shape.
JP59280158A 1984-12-26 1984-12-26 Magnetic filter Pending JPS61153117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59280158A JPS61153117A (en) 1984-12-26 1984-12-26 Magnetic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59280158A JPS61153117A (en) 1984-12-26 1984-12-26 Magnetic filter

Publications (1)

Publication Number Publication Date
JPS61153117A true JPS61153117A (en) 1986-07-11

Family

ID=17621121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59280158A Pending JPS61153117A (en) 1984-12-26 1984-12-26 Magnetic filter

Country Status (1)

Country Link
JP (1) JPS61153117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221411A (en) * 1986-03-20 1987-09-29 Agency Of Ind Science & Technol Magnetic force separator
US4784767A (en) * 1986-03-20 1988-11-15 Director General, Agency Of Industrial Science And Technology Magnetic separator for fluids
US6229673B1 (en) 1992-01-20 2001-05-08 Fujitsu Limited Magnetic head assembly with contact-type head chip mounting and electrically connecting arrangements
US6744603B1 (en) 1998-11-13 2004-06-01 Tdk Corporation Write/read head supporting mechanism, and write/read system
WO2011058033A1 (en) * 2009-11-11 2011-05-19 Basf Se Method for concentrating magnetically separated components from ore suspensions and for removing said components from a magnetic separator at a low loss rate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221411A (en) * 1986-03-20 1987-09-29 Agency Of Ind Science & Technol Magnetic force separator
US4784767A (en) * 1986-03-20 1988-11-15 Director General, Agency Of Industrial Science And Technology Magnetic separator for fluids
US6229673B1 (en) 1992-01-20 2001-05-08 Fujitsu Limited Magnetic head assembly with contact-type head chip mounting and electrically connecting arrangements
US6744603B1 (en) 1998-11-13 2004-06-01 Tdk Corporation Write/read head supporting mechanism, and write/read system
WO2011058033A1 (en) * 2009-11-11 2011-05-19 Basf Se Method for concentrating magnetically separated components from ore suspensions and for removing said components from a magnetic separator at a low loss rate
CN102725066A (en) * 2009-11-11 2012-10-10 巴斯夫欧洲公司 Method for concentrating magnetically separated components from ore suspensions and for removing said components from a magnetic separator at a low loss rate
US8646613B2 (en) 2009-11-11 2014-02-11 Basf Se Method for concentrating magnetically separated components from ore suspensions and for removing said components from a magnetic separator at a low loss rate

Similar Documents

Publication Publication Date Title
US4941969A (en) Method of and an apparatus for the separation of paramagnetic particles in the fine and finest particle size ranges in a high-intensity magnetic field
US3477948A (en) Magnetic filter and method of operating same
US4217213A (en) Device for the separation of minute magnetizable particles, method and apparatus
US2329893A (en) Magnetic device for the purification of fluids
US4784767A (en) Magnetic separator for fluids
JPS61153117A (en) Magnetic filter
DE50210315D1 (en) HIGH GRADIENT MAGNETIC FILTERS AND METHOD FOR SEPARATING WEAK MAGNETIZABLE PARTICLES FROM LIQUID MEDIA
RU2263548C1 (en) Method of extraction of magnetic particles and a magnetic separator for its realization
JPS5952509A (en) Magnetic separation apparatus
JP2011056369A (en) Magnetic separator, and magnetic separation system
JP2005007358A (en) Magnetic separation device
JPH02273559A (en) Electromagnetic dust collection apparatus
JPS6344403B2 (en)
JPS61278317A (en) Magnetic filter
JPS6241772B2 (en)
EP1127622A3 (en) Low intensity magnetic separator
JPH09327635A (en) Magnetic separating apparatus
JPH07275619A (en) Magnetic filter
JPS5440365A (en) Magnetic separating filter
JP3851175B2 (en) Magnetic separation device and magnetic separation method
JPS60183019A (en) Magnetic filter
Kubota et al. Numerical Simulation on Behaviour of Magnetic Beads in Magnetic Filter for Medical Protein Screening System using High Gradient Magnetic Separation
JP2006297264A (en) Magnetic separation method and water treatment method
JPS6231130Y2 (en)
JPH02303505A (en) High gradient magnetic separator of continuously changing flow velocity