[go: up one dir, main page]

JPS61149822A - Correcting device for phase error - Google Patents

Correcting device for phase error

Info

Publication number
JPS61149822A
JPS61149822A JP28083484A JP28083484A JPS61149822A JP S61149822 A JPS61149822 A JP S61149822A JP 28083484 A JP28083484 A JP 28083484A JP 28083484 A JP28083484 A JP 28083484A JP S61149822 A JPS61149822 A JP S61149822A
Authority
JP
Japan
Prior art keywords
angle
value
correction
sine wave
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28083484A
Other languages
Japanese (ja)
Other versions
JPH0410974B2 (en
Inventor
Masato Hara
正人 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP28083484A priority Critical patent/JPS61149822A/en
Publication of JPS61149822A publication Critical patent/JPS61149822A/en
Publication of JPH0410974B2 publication Critical patent/JPH0410974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To attain real-time, high-precision phase correction by a simple data processing system through simple operation by inputting a known phase difference and a coefficient of correction to a storage device, and multiplying its output value by a sine wave signal and thus calculating an angle correcting value. CONSTITUTION:A sine wave detector 2 and a cosine wave detector 3 are connected to an encoder 1 and their detected values are inputted to an angle computing element 6 through A/D converters 4 and 5 respectively to calculate the angle value. A phase difference setting switch 7 for inputting the known phase difference, on the other hand, is provided and its set value and coefficient K of correction are stored in a storage device 8. The absolute value of the sine wave signal is similar to an angle measurement error curve, so the output value of the storage device 8 and the output value of the A/D converter 4 are inputted to a multiplier 9 to obtain the angle correcting value. This angle correcting value is subtracted from the output of the angle computing element 6 by a subtracter 10 to obtain a corrected angle signal, which is displayed on a display device 11.

Description

【発明の詳細な説明】 a、技術分野 本発明は光学式エンコーダ等の測角値に含まれる位相誤
差を逐次自動的に補正しうる位相誤差の補正装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION a. Technical Field The present invention relates to a phase error correction device that can sequentially and automatically correct phase errors included in angle measurement values of an optical encoder or the like.

b、従来技術及びその問題点 光学式エンコーダは円周上に等間隔で配列された白黒パ
ターンを有する円板と、これに対向して回転する走査円
板とから成り、光電検出された少くとも一対の正弦波信
号と余弦波信号から回転角度を計測するものである。通
常、この測角値には角度誤差が含まれるが、これらの誤
差原因は多種多様である。その主たるものは、円板目盛
のピッチ誤差、走査円板上の一対の検出スリットの相対
的な位置ずれなどの円板製作上の誤差2円板の偏芯や両
日板が平行に配置されていないなどの機械的誤差1円板
を照明する光束の拡がり角や傾角などの光学的誤差であ
る。市販されている光学式エンコーダの場合には、光電
検出された正、余弦波を用いて目盛の1ピツチを4等分
して測角する比較的粗い精度であり、この場合の角度誤
差は可成りの程度許容される。これに反して、数秒単位
の測角精度を保証する精密なエンコーダにあっては測角
誤差をこの精度以下に抑制しなければならず、誤差原因
の排除は容易なことではない。上記の誤差要因のうち、
円板の製作上の誤差と組立調整に係わる機械的誤差は極
力排除しなければならないが皆無にすることはできず、
したがってエンコーダの測角精度、つまり目盛ピッチを
何分側しうるかはこれらの誤差によって制限されてしま
う。
b. Prior art and its problems An optical encoder consists of a disk having black and white patterns arranged at equal intervals on the circumference and a scanning disk rotating in opposition to the disk. The rotation angle is measured from a pair of sine wave signals and cosine wave signals. Normally, this angle measurement value includes angular errors, but the causes of these errors are diverse. The main causes are errors in the manufacturing of the disc, such as pitch errors in the disc scale, relative positional deviations between a pair of detection slits on the scanning disc, eccentricity of the disc, and problems in which the two discs are arranged in parallel. Mechanical errors such as no optical errors such as the spread angle and inclination angle of the light beam illuminating the disk. In the case of commercially available optical encoders, the angle is measured by dividing one pitch of the scale into four equal parts using photoelectrically detected positive and cosine waves.The accuracy is relatively rough, and the angle error in this case is possible. The extent of this is acceptable. On the other hand, in a precise encoder that guarantees angle measurement accuracy on the order of several seconds, the angle measurement error must be suppressed to less than this accuracy, and it is not easy to eliminate the cause of the error. Among the above error factors,
Errors in the manufacture of the disc and mechanical errors related to assembly and adjustment must be eliminated as much as possible, but they cannot be completely eliminated.
Therefore, the angle measurement accuracy of the encoder, that is, the degree to which the scale pitch can be varied, is limited by these errors.

従来公知の誤差軽減法として円板の照明光束を故意に斜
入射させ、光電検出される正弦波信号に対する余弦波信
号の位相をπ/2に近づけるように補正するものがある
。また、走査格子を円板直径上に対称に設けて所謂対角
読みを行ない円板の偏芯の影響を除去すると共に、走査
信号に含まれる直流成分を相殺して信号振幅の平均化を
行ない両信号間の位相を補正する方法も遍く知られてい
る。
As a conventionally known error reduction method, there is a method in which the illumination light beam of the disk is intentionally made obliquely incident, and the phase of the cosine wave signal relative to the photoelectrically detected sine wave signal is corrected so as to approach π/2. In addition, the scanning grating is arranged symmetrically on the disk diameter to perform so-called diagonal reading to eliminate the influence of disk eccentricity, and to average the signal amplitude by canceling out the DC component included in the scanning signal. A method of correcting the phase between both signals is also widely known.

しかし、このような位相補正法には限度があり、上述の
如き精密エンコーダの場合には残留誤差が測角精度を低
下させることになる6 一方、目盛円板の全周に亘ってこの位相誤差がほぼ等量
であるとすると、この位相差を予かしめ測定しておき、
正弦及び余弦波信号を用いてこれを補正することが考え
られる。そのための具体的手段としては、両信号のフー
リエ解析を行い、その0次及び1火成分から各信号の直
流分、振幅及び位相差を求め、これらの情報を予かしめ
補正定数として測角器の電子回路内に記憶させておき。
However, there is a limit to such a phase correction method, and in the case of a precision encoder such as the one described above, the residual error will reduce the angle measurement accuracy.6 On the other hand, this phase error over the entire circumference of the scale disc are almost equal, measure this phase difference in advance,
It is conceivable to correct this using sine and cosine wave signals. The specific means for this is to perform Fourier analysis on both signals, find the DC component, amplitude, and phase difference of each signal from the zero-order and first-order components, and use this information as a pre-caulking correction constant for the goniometer. Store it in the electronic circuit.

測角時にオンラインで補正操作を行なわせれば良い。し
かし、この補正操作は繁雑であり、処理回路もやや複雑
で費用も嵩む。
It is sufficient to perform correction operations online during angle measurement. However, this correction operation is complicated, and the processing circuit is also somewhat complicated and expensive.

C0目 的 本発明は上述の点に鑑みてなされたものであり。C0 target The present invention has been made in view of the above points.

廉価なデータ処理系を用い簡単な補正操作で、しかも実
時間で高精度な位相補正が行なえる位相誤差補正装置を
提供することを目的とする。
It is an object of the present invention to provide a phase error correction device that can perform highly accurate phase correction in real time with a simple correction operation using an inexpensive data processing system.

d、実施例の構成 第1図は本発明の一実施例を示すブロック図である。光
学式エンコーダ1に設けられた正弦波検出器2.余弦波
検出器3の出力は夫々A/D変換器4,5に接続されて
おり、これらA/D変換器4.5の出力は角度演算器6
に入力される0以上の構成は従来公知の一般的な測角器
に見られるものであるが、次に述べるデータ処理系が本
実施例の主要部分である。位相差設定スイッチ7は記憶
装置8に接続されている。この記憶装置8の出力と正弦
波信号のA/D変換器4の出力は共に乗算器9に入力さ
れる。更に乗算器9の出力と角度演算器6の出力は共に
減算器10に接続され、減算器10の出力は表示器11
に接続されている。
d. Configuration of Embodiment FIG. 1 is a block diagram showing an embodiment of the present invention. A sine wave detector 2 provided in the optical encoder 1. The outputs of the cosine wave detector 3 are connected to A/D converters 4 and 5, respectively, and the outputs of these A/D converters 4.5 are connected to an angle calculator 6.
The configuration of 0 or more inputted to is found in conventionally known general goniometers, but the data processing system described below is the main part of this embodiment. The phase difference setting switch 7 is connected to a storage device 8 . The output of this storage device 8 and the output of the sine wave signal A/D converter 4 are both input to a multiplier 9. Further, the output of the multiplier 9 and the output of the angle calculator 6 are both connected to a subtracter 10, and the output of the subtracter 10 is connected to the display 11.
It is connected to the.

e、実施例の作用 次に、上記構成の本発明一実施例を用いて正弦波信号と
余弦波信号の間の位相誤差を補正する方法について説明
する。ただし、このような位相誤差の補正を可能とする
ためには、エンコーダの目盛円板の1周(360’ )
に亘って、正弦波信号a 5inOに対する余弦波信号
bcos(θ+ψ)の位相誤差φがほぼ一定であり、し
かもこの位相誤差ψが予かしめ計測されて既知であるこ
とが前提である。
e. Effect of the Embodiment Next, a method for correcting the phase error between a sine wave signal and a cosine wave signal using an embodiment of the present invention having the above configuration will be described. However, in order to make it possible to correct such a phase error, one revolution (360') of the scale disc of the encoder must be
It is assumed that the phase error φ of the cosine wave signal b cos (θ+ψ) with respect to the sine wave signal a 5inO is approximately constant over the period, and that this phase error φ is pre-measured and known.

尚、上記a、bは振幅、θは位相角である。Note that a and b above are amplitudes, and θ is a phase angle.

この位相誤差φの発生原因は、主として目盛円板と走査
格子の製作上の目盛誤差に依存するから。
The cause of this phase error φ mainly depends on the scale error in manufacturing the scale disk and scanning grating.

エンコーダの機械的、光学的調整が高精度になされてい
れば、同一ロットの目盛円板と走査格子については位相
誤差ψはほぼ同一である。この事は実験によって充分に
確かめられている。
If the encoder is mechanically and optically adjusted with high precision, the phase error ψ will be almost the same for scale discs and scanning gratings from the same lot. This fact has been fully confirmed by experiment.

第2図は目盛円板の1ピツチ(位相2πに相当)内の位
相誤差ψの振舞を示す図である6正弦波信号12に対し
て余弦波信号13が位相誤差φだけ遅れているとき、刻
線1ピツチ内での位相誤差φに対する測角誤差曲線14
はπ/2及び3π/2近傍にピークを有する2周期の正
弦波状の変化を呈するが、0及びπにおける角度誤差Δ
θは殆んどゼロである。簡単な計算から明らかなように
1位相誤差ψ=1°当りの測角誤差は約0.27%に相
当する。上述のように、位相誤差ψが既知であればこの
測角誤差曲線14を各位相角θについて数値化し、この
値Δθで実際の測角値θ′=tan”” ’ (asi
nθ/bcos(θ+φ)〕を補正することは不可能で
はない、しかし1位相角θを細分化して膨大な量の全部
のサンプリング点に関する補正値Δθを装置内に記憶さ
せる事は極めて非現実的である。そこで本発明の位相誤
差補正装置においては、実際にリアルタイムで逐次計測
される正弦波信号を用いて測角誤差を補正しうろことが
示されるが、これが本発明の本質的な特徴である。
FIG. 2 is a diagram showing the behavior of the phase error ψ within one pitch (corresponding to a phase of 2π) of the scale disk. 6 When the cosine wave signal 13 lags behind the sine wave signal 12 by the phase error φ, Angle measurement error curve 14 for phase error φ within one pitch of marked line
exhibits a two-period sinusoidal change with peaks near π/2 and 3π/2, but the angular error Δ at 0 and π
θ is almost zero. As is clear from a simple calculation, the angle measurement error per phase error ψ=1° corresponds to about 0.27%. As mentioned above, if the phase error ψ is known, this angle measurement error curve 14 is digitized for each phase angle θ, and with this value Δθ, the actual angle measurement value θ'=tan""' (asi
nθ/bcos(θ+φ)], but it is extremely impractical to subdivide one phase angle θ and store a huge amount of correction values Δθ for all sampling points in the device. It is. Therefore, in the phase error correction device of the present invention, it is shown that the angle measurement error can be corrected using a sine wave signal that is actually sequentially measured in real time, and this is an essential feature of the present invention.

この正弦波信号としては、第1図に示したA/D変換器
4でディジタル化されたものを利用する。
As this sine wave signal, one digitized by the A/D converter 4 shown in FIG. 1 is used.

第3図は正弦波信号と測角誤差曲線を対比させたもので
ある。
FIG. 3 compares the sine wave signal and the angle measurement error curve.

正弦波信号15の絶対値(実線16)を測角誤差曲線1
4と比較すると、双方の波形がほぼ類似していることに
気付く。したがって次の乗算(補正値Δθ)=lasi
nθIX(既知の位相誤差φ)×(係数k)    ・
・・・・・(1)を行なうと、この量は近似的に測角誤
差曲線に一致することが判る。尚、この補正値の符号は
位相誤差設定値の符号と同一に選ぶ。
The absolute value (solid line 16) of the sine wave signal 15 is expressed as the angle measurement error curve 1.
4, it is noticed that both waveforms are almost similar. Therefore, the next multiplication (correction value Δθ) = lasi
nθIX (known phase error φ) × (coefficient k) ・
When (1) is performed, it is found that this amount approximately matches the angle measurement error curve. Note that the sign of this correction value is selected to be the same as the sign of the phase error setting value.

いま、エンコーダの目盛円板の一周に亘る総刻線数を1
6200本とすると刻線1ピツチは角度801に相当す
る。上述のように位相誤差φ=1″当たりの測角誤差は
約0.27%であるから、係数には0.0027X80
’ =0.22’となる。一方−I(asinθのA/
D変換値)1は21 ビット内の定数であり。
Now, the total number of marking lines around the scale disk of the encoder is 1.
If there are 6200 lines, one pitch of the score line corresponds to an angle of 801. As mentioned above, the angle measurement error per phase error φ=1″ is approximately 0.27%, so the coefficient is 0.0027×80
'=0.22'. On the other hand -I(A/ of asinθ
D conversion value) 1 is a constant within 21 bits.

例えばこのA/D変換の最大値を定数200に設定する
ことができる。
For example, the maximum value of this A/D conversion can be set to a constant 200.

再び第1図を参照して本発明一実施例の作用を説明する
Referring again to FIG. 1, the operation of one embodiment of the present invention will be explained.

位相差設定スイッチ7は符号(±)を含めて4ビツトの
ディジットスイッチである。既知の位相差ψと設定ビッ
ト値の対応は または のように設定する。ビット値7には実際の装置に関して
考えうる最大位相差ψwaxを対応させる。
The phase difference setting switch 7 is a 4-bit digit switch including the sign (±). The correspondence between the known phase difference ψ and the set bit value is set as or. Bit value 7 corresponds to the maximum phase difference ψwax that can be considered for the actual device.

この位相差φは上述の定数にと共に電源投入時に記憶装
置8に読込まれる。逐次入力する正弦波信号は、A/D
変換器4でデジタル化されて記憶袋!!8の内容と共に
乗算器9に入力し、乗算器9で(1)式に示した補正値
が計算される。一方、角度演算器6では位相誤差ψを含
む現実の測角値θ′=tan−1(asinθ/bco
s(θ+ψ)〕が計算される。この測角値θ′は減算器
10において、乗算器9の出力を用いて減算θ0=〔(
測角値θ′)−(補正値Δ0)〕がなされる。このθ。
This phase difference φ is read into the storage device 8 together with the above-mentioned constants when the power is turned on. The sequentially input sine wave signal is A/D
The memory bag is digitized with converter 4! ! 8 is input to the multiplier 9, and the multiplier 9 calculates the correction value shown in equation (1). On the other hand, in the angle calculator 6, the actual angle measurement value θ' including the phase error ψ=tan-1(asinθ/bco
s(θ+ψ)] is calculated. This angle measurement value θ' is subtracted in the subtracter 10 using the output of the multiplier 9, θ0=[(
Angle measurement value θ′)−(correction value Δ0)] is calculated. This θ.

が位相誤差を補正した真の測角値であり、表示器11に
よって00が表示される。
is the true angle measurement value with the phase error corrected, and 00 is displayed on the display 11.

先にも述べたように1本発明の位相誤差補正装置の補正
法は、正弦波信号を利用した近似解法である。そこで、
この方法によっても補正し切れない残留誤差を検討する
As mentioned above, the correction method of the phase error correction device of the present invention is an approximate solution method using a sine wave signal. Therefore,
Let us examine the residual errors that cannot be corrected even with this method.

第4図は測角誤差曲線と残留誤差曲線を示したものであ
る。
FIG. 4 shows the angle measurement error curve and the residual error curve.

いま第4図(a)において1位相誤差が20°の場合の
測角誤差曲線17から、上述の数値例(lピッチ80’
 )を採用すると、補正前の角度誤差は最大で4.41
に相当する。この誤差を係数k =0.22’/deg
を用いて補正した後の残留誤差曲線18が示されている
が、この残留誤差は正値が小さく負値側へ大きく偏倚し
ている。これは、余弦波信号が正弦波信号に対してψだ
けずれていることに加えて、正弦波信号の絶対値を用い
た近似補正が関与して生じた現象である。そこで、残留
誤差が正負ともに平衡するように係数kを0.18’ 
/deg、即ち上述の係数k =0.22’ /dec
の約80%に選ぶと、第4図(b)の残留誤差曲線19
を得る。この残留誤差曲線19から、当初の測角誤差Δ
O=4.4′が±11に軽減されている様子がうかがえ
る。
Now, from the angle measurement error curve 17 when one phase error is 20° in FIG. 4(a), the above numerical example (l pitch 80'
), the maximum angular error before correction is 4.41
corresponds to This error is calculated by coefficient k = 0.22'/deg
A residual error curve 18 is shown after correction using , but this residual error has small positive values and is largely biased toward negative values. This is a phenomenon caused by the fact that the cosine wave signal is deviated from the sine wave signal by ψ, as well as the approximation correction using the absolute value of the sine wave signal. Therefore, the coefficient k is set to 0.18' so that the residual error is balanced in both positive and negative directions.
/deg, i.e. the above coefficient k =0.22' /dec
, the residual error curve 19 in Figure 4(b)
get. From this residual error curve 19, the initial angle measurement error Δ
It can be seen that O=4.4' is reduced to ±11.

仮に、刻線1ピツチ(go’ )を16分割して5秒読
みのエンコーダを実現させたとすると、その測角精度は
±1′である。尚、ここに例示した位相誤差20°は現
行の装置に関しては考えうる最悪条件下のものであり、
目盛円板製作上の配慮、組立調整時の機械的、光学的配
慮等を払うならば残留誤差は更に軽微なものとなり得る
Assuming that a 5-second reading encoder is realized by dividing one pitch (go') of the marked line into 16 parts, the angle measurement accuracy is ±1'. Note that the phase error of 20° illustrated here is under the worst possible conditions for current equipment.
If consideration is given to the production of the scale disk and mechanical and optical considerations during assembly and adjustment, the residual error can be made even smaller.

f、効 果 以上のように本発明に係る位相誤差補正装置によれば、
比較的簡単で廉価な電子回路系で、演算時間もごく短か
く測角値の補正をオンラインで実現することができる。
f, Effect As described above, according to the phase error correction device according to the present invention,
With a relatively simple and inexpensive electronic circuit system, the calculation time is extremely short, and angle measurement value correction can be realized online.

尚、上記実施例では光学式エンコーダのみについて説明
したが、本発明に係る位相誤差補正装置は、一対の正弦
波、余弦波の信号を処理する計測装置1例えば磁気式エ
ンコーダ、モアレ縞による計数スケール、平渉縞計測器
等に遍わく応用しうるちのである。
Although only an optical encoder has been described in the above embodiment, the phase error correction device according to the present invention is applicable to a measuring device 1 that processes a pair of sine wave and cosine wave signals, such as a magnetic encoder, a counting scale using moiré fringes, etc. , and is widely applied to instruments for measuring interference fringes.

【図面の簡単な説明】[Brief explanation of the drawing]

、 第1図は本発明一実施例を示すブロック図、第2図
は目盛円板lピッチ内の位相誤差φの変化を示す図、第
3図は正弦波信号と測角誤差曲線を対比させた図、第4
図(a)、(b)は測角誤差曲線と残留誤差曲線を示し
た図である。 1・・・エンコーダ   2・・・正弦波検出器3・・
・余弦波検出器   4,5・・・A/D変換器6・・
・角度演算器   7・・・位相差設定スイッチ8・・
・記憶装置19・・・乗算器   IO・・・減算器1
1・・・表示器
, Figure 1 is a block diagram showing one embodiment of the present invention, Figure 2 is a diagram showing changes in phase error φ within the l pitch of the scale disc, and Figure 3 is a diagram comparing the sine wave signal and the angle measurement error curve. Figure 4
Figures (a) and (b) are diagrams showing angle measurement error curves and residual error curves. 1... Encoder 2... Sine wave detector 3...
・Cosine wave detector 4, 5...A/D converter 6...
・Angle calculator 7...Phase difference setting switch 8...
・Storage device 19... Multiplier IO... Subtractor 1
1...Display device

Claims (1)

【特許請求の範囲】[Claims] 光学式エンコーダ等による回転角度の測定装置において
、既知の位相差を入力する位相差設定スイッチと、前記
エンコーダの回転に伴って発生する正弦波信号をデジタ
ル信号に変換するA/D変換器と、前記位相差設定スイ
ッチの出力と補正係数を記憶する記憶装置と、該記憶装
置の出力と前記A/D変換器の出力の乗算を行ない角度
補正値を出力する乗算器と、該乗算器の出力で測角値を
補正する減算器とより成る位相誤差補正装置。
A rotation angle measuring device using an optical encoder or the like, comprising: a phase difference setting switch that inputs a known phase difference; and an A/D converter that converts a sine wave signal generated as the encoder rotates into a digital signal; a storage device that stores the output of the phase difference setting switch and a correction coefficient; a multiplier that multiplies the output of the storage device and the output of the A/D converter to output an angle correction value; and an output of the multiplier. A phase error correction device consisting of a subtracter that corrects the angle measurement value.
JP28083484A 1984-12-24 1984-12-24 Correcting device for phase error Granted JPS61149822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28083484A JPS61149822A (en) 1984-12-24 1984-12-24 Correcting device for phase error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28083484A JPS61149822A (en) 1984-12-24 1984-12-24 Correcting device for phase error

Publications (2)

Publication Number Publication Date
JPS61149822A true JPS61149822A (en) 1986-07-08
JPH0410974B2 JPH0410974B2 (en) 1992-02-27

Family

ID=17630632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28083484A Granted JPS61149822A (en) 1984-12-24 1984-12-24 Correcting device for phase error

Country Status (1)

Country Link
JP (1) JPS61149822A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502399A1 (en) * 1994-01-28 1995-10-19 Mitsubishi Electric Corp Position reporting device with detection of an absolute position and associated method for error correction
GB2335045B (en) * 1997-11-28 2001-09-26 Mitutoyo Corp Phase delay correction system
US6301550B1 (en) 1997-11-28 2001-10-09 Mitutoyo Corporation Phase delay correction system
JP2006194861A (en) * 2004-12-16 2006-07-27 Alps Electric Co Ltd Compensation value calculation method of angle detection sensor, and angle detecting sensor using this
WO2007060840A1 (en) * 2005-11-28 2007-05-31 Mitsubishi Electric Corporation Position detection error correcting method
JP2017517746A (en) * 2014-04-10 2017-06-29 コリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス Measurement method of vibration displacement using state variation principle
JPWO2020152761A1 (en) * 2019-01-22 2021-09-09 三菱電機株式会社 A rotation angle detection device and an electric power steering device including the rotation angle detection device.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502399A1 (en) * 1994-01-28 1995-10-19 Mitsubishi Electric Corp Position reporting device with detection of an absolute position and associated method for error correction
DE19502399C2 (en) * 1994-01-28 1998-04-09 Mitsubishi Electric Corp Method for correcting errors in a position sensor
GB2335045B (en) * 1997-11-28 2001-09-26 Mitutoyo Corp Phase delay correction system
US6301550B1 (en) 1997-11-28 2001-10-09 Mitutoyo Corporation Phase delay correction system
DE19854983B4 (en) * 1997-11-28 2012-03-01 Mitutoyo Corp. Phase-delay correction system
JP2006194861A (en) * 2004-12-16 2006-07-27 Alps Electric Co Ltd Compensation value calculation method of angle detection sensor, and angle detecting sensor using this
JPWO2007060840A1 (en) * 2005-11-28 2009-05-07 三菱電機株式会社 Position detection error correction method
KR100955549B1 (en) 2005-11-28 2010-04-30 미쓰비시덴키 가부시키가이샤 Position detection error correction method
JP4602411B2 (en) * 2005-11-28 2010-12-22 三菱電機株式会社 Position detection error correction method
US8091003B2 (en) 2005-11-28 2012-01-03 Mitsubishi Electric Corporation Position detection error correcting method
WO2007060840A1 (en) * 2005-11-28 2007-05-31 Mitsubishi Electric Corporation Position detection error correcting method
JP2017517746A (en) * 2014-04-10 2017-06-29 コリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス Measurement method of vibration displacement using state variation principle
JPWO2020152761A1 (en) * 2019-01-22 2021-09-09 三菱電機株式会社 A rotation angle detection device and an electric power steering device including the rotation angle detection device.

Also Published As

Publication number Publication date
JPH0410974B2 (en) 1992-02-27

Similar Documents

Publication Publication Date Title
CN1773220B (en) Encoder output signal correction apparatus and method
US6304079B1 (en) Incremental rotary encoder for measuring horizontal or vertical angles
US6922899B2 (en) Rotary encoder
AU2006336718B2 (en) Rotary encoder
EP0874223B1 (en) Interpolation circuit for encoder
US4524347A (en) Position encoder
US7958620B2 (en) Method of producing a rotary encoder
CN110940371B (en) Calibration method, device and equipment of rotary magnetoelectric encoder
US4518859A (en) Angle measuring device with line sensor
Masuda et al. An automatic calibration system for angular encoders
WO2021017075A1 (en) Position determination method, apparatus and device for hybrid encoder, and readable storage medium
US10337911B2 (en) Method for measuring vibration displacement using state variation principle
JPH0643892B2 (en) Correcting device for angle measurement error
Just et al. Comparison of angle standards with the aid of a high-resolution angle encoder
JPS61149822A (en) Correcting device for phase error
US11573103B2 (en) Angle detector
JP2002250639A (en) Absolute position detection encoder
JP5902891B2 (en) Encoder and calibration method
JP7203584B2 (en) absolute rotary encoder
CN112697190A (en) Dynamic calibration method for grating moire signal phase-locked subdivision errors
KR101341073B1 (en) Optical encoder
JPH02272310A (en) Rotation angle measuring instrument
Axenenko Automatic Error Correcting in Angular Transducers
Aksenenko et al. Digital signal processing in angle-to-digital conversion
SU719744A1 (en) Apparatus for accurately positioning parts for straightening

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees