JPS61149623A - fluid coupling - Google Patents
fluid couplingInfo
- Publication number
- JPS61149623A JPS61149623A JP27854484A JP27854484A JPS61149623A JP S61149623 A JPS61149623 A JP S61149623A JP 27854484 A JP27854484 A JP 27854484A JP 27854484 A JP27854484 A JP 27854484A JP S61149623 A JPS61149623 A JP S61149623A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- torque
- working chamber
- drive shaft
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims description 43
- 230000008878 coupling Effects 0.000 title claims description 21
- 238000010168 coupling process Methods 0.000 title claims description 21
- 238000005859 coupling reaction Methods 0.000 title claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 34
- 238000001816 cooling Methods 0.000 claims description 19
- 238000007599 discharging Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 description 29
- 239000000498 cooling water Substances 0.000 description 14
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D35/00—Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
- F16D35/02—Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/02—Controlling of coolant flow the coolant being cooling-air
- F01P7/04—Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
- F01P7/042—Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using fluid couplings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Details Of Gearings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明は、冷却用ファンの流体継手に関する。[Detailed description of the invention] The present invention relates to a fluid coupling for a cooling fan.
従来、この種の流体継手は、特公昭!;g−215/2
号公報や特公昭5S−Uり7/号公報に例示されている
ように、エンジンによって回転される駆動軸に冷却用フ
ァンの取付部材を回転可能に取付け、取付部材に作動室
と貯留室を設け1作動室に収容したロータを駆動軸に取
付け、作動室の粘性流体を貯留室く排出する排出路と貯
留室の粘性流体ご作動室に供給する供給路を形成し、フ
ジエータ通過空気の温度が設定温度より低いと供給路を
閉鎖する弁機構を設けている。Conventionally, this type of fluid coupling was manufactured by Tokukosho! ;g-215/2
As exemplified in Japanese Patent Publication No. 5S-U-7/1987, a mounting member of a cooling fan is rotatably attached to a drive shaft rotated by an engine, and an operating chamber and a storage chamber are provided in the mounting member. The rotor accommodated in the working chamber is attached to the drive shaft, and a discharge passage for discharging the viscous fluid in the working chamber to the storage chamber and a supply passage for supplying the viscous fluid in the storage chamber to the working chamber are formed, and the temperature of the air passing through the fugiator is controlled. A valve mechanism is provided that closes the supply path when the temperature is lower than the set temperature.
そして、フジエータ通過空気の温度が設定温度より低い
と、供給路が閉鎖し1作動室の粘性流体の麓、ロータか
ら取付部材に伝達するトルク、取付部材の回転数がそれ
ぞれ減少して、冷却用ファンの回転数が減少する。また
1反対に、?ジエータ通過空気の温度が設定温度より高
いと、供給路が開放し、伝達トルクが増加して、ファン
の回転数が増加する、
ところが、ファンの回転数は上記のよりにオンオフ制御
されるので、ファンの回転数制御が粗く。When the temperature of the air passing through the fugiator is lower than the set temperature, the supply path is closed, and the torque transmitted from the rotor to the mounting member and the rotational speed of the mounting member are reduced, respectively, and the cooling Fan speed decreases. Also, on the contrary? When the temperature of the air passing through the radiator is higher than the set temperature, the supply path opens, the transmitted torque increases, and the fan rotation speed increases.However, since the fan rotation speed is controlled on and off according to the above, Fan speed control is rough.
ファンの回転数がエンジン温度に従って増減する理想状
態から著しくかけ離れている。エンジン温度が低いとき
には、ファンの回転数が十分に減少せず、M力損失が大
きく、また、エンジン温度が高いときには、ファンの回
転数が十分に増加せず。This is far from the ideal situation where the fan speed increases and decreases according to the engine temperature. When the engine temperature is low, the fan rotation speed is not sufficiently reduced, resulting in large M force loss, and when the engine temperature is high, the fan rotation speed is not sufficiently increased.
過熱の危険が高い。。High risk of overheating. .
本発明の目的は、上記のよりな欠点を有する従来品?改
良し、冷却用ファンの回転数制御を細かく行りことでる
る。The purpose of the present invention is to solve the problem of conventional products having more disadvantages than those mentioned above. This has been improved to allow for finer control of the rotation speed of the cooling fan.
第1発明は、エンジン温度の昇降に従ってファンの回転
数?増減するため、エンジン温度の上昇。The first invention is the rotation speed of the fan according to the rise and fall of the engine temperature? Due to increase or decrease, the engine temperature increases.
下降に従ってロータを駆動軸の軸芯方向に移動してロー
タ盤面のトルク伝達部と作動室内面のトルク伝達部間を
縮小、拡大する伝達トルク制御mixを設けたことを特
徴とする流体継手である。This fluid coupling is characterized by being provided with a transmission torque control mix that moves the rotor in the axial direction of the drive shaft as it descends to reduce or expand the distance between the torque transmission section on the rotor plate surface and the torque transmission section on the inside of the working chamber. .
第2発明Fi、上記の伝達トルク制御機構に加えて1両
トルク伝達部間が拡大するに従って供給路を絞る弁機構
を設けたことを特徴とする流体継手である。A second invention Fi is a fluid coupling characterized in that, in addition to the above-mentioned transmission torque control mechanism, a valve mechanism is provided that throttles the supply path as the distance between the two torque transmission parts increases.
次に1本発明の実施例について説明する。Next, one embodiment of the present invention will be described.
第1実施例(第1図と第コ■参照)
本例の流体継手は、第1図に示すよりに、駆動軸(1)
をエンジンの冷却水ポンプ(2)の軸(3)に連結して
いる。冷却水ポンプ(2)は、基板(4)に連設したス
リーブ(5)にポンプ軸(3)を挿通して玉軸受(6)
を介して支承し、基体(4)に取付は九ケーシング(7
)内に突出したポンプ軸(3)の一端に羽根車(8)を
嵌着している。スリーブ(5)外に突出したポンプ軸(
3)の他端には、駆動軸(1)の基端を連結し、ポンプ
軸(3)の他端に嵌着した7ウンジ(9)と駆動軸(1
)の基端に連設したフフンジuOにプーリ(lυを取付
け、ブー1711υニ図示シナいベルトを介してエンジ
ンのクランク軸?連結している。エンジンによって回転
される駆動N (1) K a、エンジン冷却用ファン
の円盤状取付部材口を玉軸受+13 を介して回転可能
に同芯状に取付け、取付部材(t′!J内に円盤状の作
動室Q4と円輪板状の貯留室(Lf9を同芯状に形成し
ている。作動室04内に突出した駆動軸のスプライン軸
部QQには、作動室04内の円盤状ロータαηの中・o
KW役したヌプライン孔(1&を摺嵌し、ロータαηを
駆動軸(1)に軸芯方向にのみ移動可能に取付けている
。駆動軸(1)の回転によって回転するロータαηの周
辺部盤面とこれに対面し九作動室04内面には、ラビリ
ンス型のトルク伝達部09.(ホ)を形成している。ロ
ータt1ηの回転によって回転トルクが伝達する取付部
材面には、第1団と第2図に示すよつに1作動室04内
のシリコン油のよりな粘性流体を貯留室OF9に排出す
る排出格闘と、貯留室09内の粘性流体を作動室114
1に供給する供給路唖を形成している。取付部材(功の
周辺部には1図示しないエンジン冷却ファンの羽根を取
付けている。1st embodiment (see Fig. 1 and ①) In the fluid coupling of this example, as shown in Fig. 1, the drive shaft (1)
is connected to the shaft (3) of the engine cooling water pump (2). The cooling water pump (2) is connected to a ball bearing (6) by inserting the pump shaft (3) into a sleeve (5) connected to the base plate (4).
The nine casings (7) are mounted on the base (4).
) An impeller (8) is fitted to one end of the pump shaft (3) that protrudes into the inside. The pump shaft (
The other end of the drive shaft (1) is connected to the base end of the drive shaft (1), and the drive shaft (1
) is attached to the pulley (lυ) connected to the base end of the engine (1711υ), which is connected to the engine crankshaft via a thin belt (not shown).The drive N (1) Ka, which is rotated by the engine The disc-shaped mounting member opening of the engine cooling fan is rotatably and concentrically mounted via a ball bearing +13, and a disc-shaped working chamber Q4 and a disc-shaped storage chamber ( Lf9 is formed concentrically.The spline shaft portion QQ of the drive shaft protruding into the working chamber 04 has a spline shaft portion QQ of the drive shaft protruding into the working chamber 04.
The rotor αη is attached to the drive shaft (1) so that it can move only in the axial direction.The rotor αη is attached to the drive shaft (1) so that it can move only in the axial direction. Facing this, a labyrinth-type torque transmission section 09.(E) is formed on the inner surface of the nine working chamber 04.A first group and a third As shown in Fig. 2, the viscous fluid of silicone oil in the first working chamber 04 is discharged into the storage chamber OF9, and the viscous fluid in the storage chamber 09 is discharged into the working chamber 114.
It forms a supply path for supplying to 1. An engine cooling fan blade (not shown) is attached to the periphery of the mounting member (1).
駆動軸(1)先端のフフンジ(ハ)とこねに対面したロ
ータαη中10部盤面間には、第1図と第コ関に示すよ
つに、ロータαηの移動方向に伸縮するベローズ例を取
付けている。ポンプ軸(3)の羽根車(8)嵌着端内に
は、温度の上昇、下降に従って膨張、収縮するフレオン
ガスのような温度検出ガスを封入したガス室四を形成し
、ポンプ軸(3)と駆動軸(1)の軸芯位置くガス室(
イ)に連通したガス通路−を形成し。An example of a bellows that expands and contracts in the direction of movement of the rotor αη is installed between the front end of the drive shaft (1) and the rotor αη center plate facing the rotor, as shown in Fig. 1 and No. It is installed. A gas chamber 4 is formed in the end of the pump shaft (3) where the impeller (8) is fitted, which is filled with a temperature detection gas such as Freon gas that expands and contracts as the temperature rises and falls. and the gas chamber (
A gas passage communicating with (b) is formed.
ガス通路「6の端をベローズ(ハ)内に連通している。The end of gas passage ``6'' communicates with the bellows (c).
即ち、冷却水ポンプ(2)内の冷却水温度の上昇、下降
に従ってロータ(i力を駆動軸(1)の基端側、先端側
に移動してロータのトルク伝達部09と取付部材のトル
ク伝達部圀間を縮小、拡大する伝達トルク制御機構を設
けている。That is, as the temperature of the cooling water in the cooling water pump (2) rises and falls, the rotor (i) force is moved toward the base end and the distal end of the drive shaft (1), and the torque of the rotor's torque transmission part 09 and the mounting member is increased. A transmission torque control mechanism is provided to reduce or expand the transmission area.
本例の流体継手において、エンジンの駆動ニより駆動軸
(1)が回転すると、ロータUηが回転し、ロータのト
ルク伝達部09と取付部材のトルク伝達部−及びそれら
の間に侵入した粘性流体を経てロータαηの回転トルク
が取付部材Caに伝達し、卿付部材t+3が回転してエ
ンジン冷却用ファンが回転する。In the fluid coupling of this example, when the drive shaft (1) rotates due to the drive of the engine, the rotor Uη rotates, and the viscous fluid that has entered between the torque transmitting portion 09 of the rotor and the torque transmitting portion of the mounting member. The rotational torque of the rotor αη is transmitted to the mounting member Ca, the mounting member t+3 rotates, and the engine cooling fan rotates.
一方1作動室(14の粘性流体がロータ0力の回転によ
って排出路@を経て貯留室09に11出され、貯留室0
9の粘性流体が供給路に)を経て作動室α導に供給され
、また、駆動軸(])の回転によってポンプ軸(3)が
回転し、冷却水ボンデ(2)が作動する、冷却水ポンプ
(2)内の冷却水温度が上昇するに従って、ロータのト
ルク伝達部09と取付部材のトルク伝達部用量が縮小し
、両トルク伝達部09 、■の伝達面積の増加ないし伝
達面1間の減少によって伝達トルクが増加し、取付部材
(至)の回転数即ちエンジン冷却用ファンの回転数が増
加する。On the other hand, the viscous fluid in the working chamber 1 (14) is discharged into the storage chamber 09 through the discharge path @ by the rotation of the rotor with zero force, and the viscous fluid in the storage chamber 0
The viscous fluid of 9 is supplied to the working chamber α through the supply path), and the pump shaft (3) is rotated by the rotation of the drive shaft (]), and the cooling water cylinder (2) is operated. As the temperature of the cooling water in the pump (2) rises, the amount of torque transmitting parts of the rotor's torque transmitting part 09 and the mounting member decreases, and the transmission area of both torque transmitting parts 09 increases or the area between the transmitting surface 1 increases. Due to the decrease, the transmitted torque increases, and the rotational speed of the mounting member (to), that is, the rotational speed of the engine cooling fan increases.
また、反対に、冷却水a度が下降するに従って。Conversely, as the cooling water temperature decreases.
両トルク伝達部UC・、(至)間が拡大し、伝達面積の
減少ないし伝4面透間の増加によって伝達トルクが減少
し、エンジン冷却用ファンの凹fA数が減少する。The distance between both torque transmitting parts UC and (to) is enlarged, and the transmitted torque is decreased due to a decrease in the transmission area or an increase in the transmission surface clearance, and the number of recesses fA of the engine cooling fan is decreased.
第コ5j!施例(第3図と8gt図参照)本例の流体継
手は、前例のそれに、供給路辺を絞る弁機構を付設した
ものである。弁機構は、第3図と第≠図に示すよつに、
ロータ0ηに円輪板状の弁板@?供給路四の1jfi口
に対面して設けている。No. 5j! Embodiment (See Figures 3 and 8gt) The fluid coupling of this embodiment is the same as that of the previous example, but a valve mechanism for throttling the supply path is added. The valve mechanism is as shown in Figure 3 and Figure ≠.
A circular plate-shaped valve plate on the rotor 0η? It is provided facing the 1jfi port of supply path 4.
従って、両トルク伝達部(1g、(ホ)間が拡大するに
従って、弁板−が供給路(2)の開口に接近し、供給路
のが絞られて、供給路(2)から作動室04に供給され
る粘性流体の量が減少する。Therefore, as the distance between the two torque transmitting parts (1g, (E)) increases, the valve plate approaches the opening of the supply passage (2), and the supply passage is narrowed. The amount of viscous fluid supplied to is reduced.
本例の流体継手においては、冷却水ポンプ(2)内の冷
却水温度が下降するに従って、前例におけるのと同様に
1両トルク伝達部aS 、 W間が拡大し。In the fluid coupling of this example, as the temperature of the cooling water in the cooling water pump (2) decreases, the distance between the two torque transmitting parts aS and W increases as in the previous example.
伝達面積の減少ないし伝達面透間の増加によって伝iト
ルクが減少する一方1両トルク伝達部09゜■間の拡大
に従って、供給絡りが弁板翰で絞られ。As the transmission area decreases or the transmission surface clearance increases, the transmitted torque decreases, and as the distance between the two torque transmitting parts increases, the supply entanglement is narrowed down by the valve plate.
作動室04に供給される粘性流体の量が減少し1両トル
ク伝達部四、(イ)間に侵入する粘性流体の社が減少し
て伝達トρりが減少し、エンジン冷却用ファンの回転数
が十分に減少する。The amount of viscous fluid supplied to the working chamber 04 decreases, and the amount of viscous fluid that enters between the two torque transmitting parts 4 and (a) decreases, reducing the transmission torque and increasing the rotation of the engine cooling fan. The number decreases sufficiently.
また、反対に、冷却水温1度が上昇するに従って。Conversely, as the cooling water temperature increases by 1 degree.
前例におけるのと同様に、両トルク伝達邪曲、四間が縮
小し、伝達面積の増加ないし伝倖面透間の減少によって
伝達トルクが増加する一方、両トルク伝達部nl 、
Ca)間の縮小に従って、弁板翰が供給路(イ)の開口
から遠去かり、作動fi 1141に供給される粘性流
体の鷺が増加し、両トルク伝達部α9.鴫間に侵入する
粘性流体の量が増加して伝達トルクが増加シ、エンジン
冷却用ファンの回転数が十分に増加する。As in the previous example, both torque transmission parts nl and 4 are reduced, and the transmitted torque increases due to an increase in the transmission area or a decrease in the transmission surface clearance, while both torque transmission parts nl,
As the gap between α9 and Ca) is reduced, the valve plate moves away from the opening of the supply path (A), and the amount of viscous fluid supplied to the actuation fi 1141 increases, causing both torque transmission parts α9. The amount of viscous fluid that enters the gap increases, the transmitted torque increases, and the rotational speed of the engine cooling fan increases sufficiently.
なお、前例におけるのと同一部分には、第3図と第ψ図
に同一符号を付する。Note that the same parts as in the previous example are given the same reference numerals in FIG. 3 and FIG. ψ.
第3実施例(第5図と@6図参照)
本例の流体継手は、前例のそれを一部変更したものであ
る。取付部材(6)内の作動室a4と貯留室頭の位置は
前後に入替え、ロータ07)周辺部盤面とこれに対面し
た作動室側内面のトルク伝達部(19、(4)をロータ
(【ηの前側に移し、ロータqηの中む部盤面に取付け
たカップ形状の取付#t(至)と駆動軸(1)の先端間
に円筒状の60−ズ(ハ)をガス通路(櫓に連通して取
付けている。供給路(2)の開口には、ローダ0ηの盤
面を対面している。その他の点は、前例におけるのと同
一でろるので、第5図と@4!21に同一符号?付して
説明を省略する。Third Embodiment (See Figures 5 and 6) The fluid coupling of this example is a partial modification of the previous example. The positions of the working chamber a4 and the head of the storage chamber in the mounting member (6) are swapped back and forth, and the torque transmitting parts (19, (4) on the inner surface of the working chamber side facing the peripheral panel of the rotor 07) are connected to the rotor ([ Move the cylindrical 60-z (c) to the front side of the rotor qη between the cup-shaped mounting #t (to) attached to the inner panel surface of the rotor qη and the tip of the drive shaft (1). The opening of the supply path (2) faces the board of the loader 0η.Other points are the same as in the previous example, so see Figure 5 and @4!21. The same reference numerals are used to omit the explanation.
本例の流体継手においては、冷却水温度の上昇、下降に
従ってロータ(171が移動する方向が前例におけるの
と逆になっている。また、供給路(2)の開口を絞るの
に、前例における弁板に代えて、ロータ面を用いている
。In the fluid coupling of this example, the direction in which the rotor (171) moves as the cooling water temperature rises and falls is opposite to that in the previous example. A rotor surface is used instead of a valve plate.
@μ賽施例(第7図と第g図参照)
本例の流体継手は、@例のそれにおける伝達トルク制御
機構の一部管変更したものである。ポンプ軸(310羽
根車(8)嵌着端内のガス室?シリンダ室(至)に変更
し、ポンプ軸(3)と駆動軸(1)の軸芯位置のガス通
路をロッド孔軸に変更し、シリンダ室−にピストン翰?
摺嵌し、ピヌトンのロッド■Pロッド孔(イ)に挿通し
、駆動@(1)の先端から突出したロッド(dの先端を
ベローズに代えてロータα力の取付部(支)に固定し、
シリンダ室(至)のロッド■側の室にピストン四を押圧
する螺施ばねGηを嵌込み、シリンダ室四の反対側の室
に、温度の昇降に従って伸縮するバイメタルのようなj
黒度検出コイル四分嵌込み、シリンダ室四の温度検出コ
イル(至)嵌込室に冷却水の出入口(2)を設けている
。その他の点は。@μ Example (see Figures 7 and g) The fluid coupling of this example is one in which part of the transmission torque control mechanism of the example @ has been changed. Change the gas chamber in the fitting end of the pump shaft (310 impeller (8) to the cylinder chamber (to), and change the gas passage at the axis position of the pump shaft (3) and drive shaft (1) to the rod hole axis. Is there a piston in the cylinder chamber?
Slide it into the pinuton rod ■P and insert it into the rod hole (a), and fix the rod (d) protruding from the tip of the drive@(1) to the attachment part (support) of the rotor α force instead of a bellows. ,
A threaded spring Gη that presses the piston 4 is fitted into the chamber on the rod ■ side of the cylinder chamber (to), and a bimetal-like spring Gη that expands and contracts as the temperature rises and falls is inserted into the chamber on the opposite side of the cylinder chamber 4.
A cooling water inlet/outlet (2) is provided in the chamber in which the blackness detection coil is fitted into the fourth cylinder chamber and the temperature detection coil (toward) in the fourth cylinder chamber is fitted. Other points.
前例におけるのと同一であるので、第7図と第ざ■に同
一符号を付して説明を省略する。Since it is the same as in the previous example, the same reference numerals are given to FIG.
本例の流体継手においてFi、冷却水温度の上昇。In the fluid coupling of this example, Fi is an increase in cooling water temperature.
下降に従って、ピストン四がpラド■側、その度対偶に
摺動し、ロフト…と取付S!(至)を介してロータαη
が駆動軸(1)の軸芯方向に移動してロータ盤面のトル
ク伝達部a9と作動室内面のトルク伝達部員間が縮小、
拡大する。As it descends, piston 4 slides to the p rad ■ side, and each time it slides to the opposite side, loft... and installation S! (to) rotor αη through
moves in the axial direction of the drive shaft (1), and the distance between the torque transmitting member a9 on the rotor plate surface and the torque transmitting member on the inner surface of the working chamber is reduced.
Expanding.
その他の実施例(第2因参照)
本例の流体継手は、第り図に示すよりに、ロータnηの
盤面と作動室Q4の内面に形成したフビリンス型のトル
ク伝達部Qg、■の突条と溝の断面形状を矩形に代えて
三角形にしたものである。Other Examples (Refer to the second cause) The fluid coupling of this example has a fubilinth-type torque transmission part Qg formed on the plate surface of the rotor nη and the inner surface of the working chamber Q4, as shown in FIG. The cross-sectional shape of the groove is triangular instead of rectangular.
このトルク伝達部01 、(1)においては、ロータα
ηの軸芯方向移動量に対する伝達トルクの変化量が小さ
く、ロータαηの取付装置の調整が容易である、上記の
各実施例においては、エンジン温度として、エンジンの
冷却水の温度を用いているが、エンジンのオイルの温度
を用いてもよい。In this torque transmission section 01, (1), the rotor α
In each of the above embodiments, in which the amount of change in the transmitted torque with respect to the axial movement of η is small and the adjustment of the attachment device for the rotor αη is easy, the temperature of the engine cooling water is used as the engine temperature. However, the temperature of the engine oil may also be used.
発明の作用効果
第1発明においては、エンジン温度が上昇するに従って
、両トルク伝達部間が縮小し、トルク伝達面積の増加な
いしトルク伝達面透間の減少によって伝達トρりが増加
し、冷却用ファンの取付部材の回転数が増加し、また、
エンジン温度が下降するに従って1両トルク伝達部間が
拡大し、トルク伝達面積の減少ないしトルク伝達面透間
の増加によって伝達トルクが減少し、冷却用ファンの取
付部材の回転数が減少する。Effects of the Invention In the first invention, as the engine temperature rises, the space between the two torque transmission parts decreases, and the transmission torque increases due to an increase in the torque transmission area or a decrease in the torque transmission surface clearance. The rotation speed of the fan mounting member increases, and
As the engine temperature decreases, the distance between the two torque transmitting parts increases, the torque transmitting area decreases or the torque transmitting surface gap increases, so the transmitted torque decreases, and the rotational speed of the cooling fan mounting member decreases.
従って、冷却用ファンの回転数は、エンジン温度の上昇
、下降に従って増7X1.減少するに)で、オンオフ制
御される従来品に比し、細かく制御される。Therefore, the rotation speed of the cooling fan increases as the engine temperature increases and decreases by 7X1. compared to conventional products that are controlled on and off.
第2発明においては、エンジン温度が下降するに従って
1両トρり伝達部間が拡大し、トルク伝達面積の減少な
いしトルク伝達面透間の増加によって伝達トルクが減少
すると共に1両トルク伝達部間の拡大に従って、供給路
が絞られ、作動室に供給される粘性流体の量が減少し1
両トルク伝達部間に侵入する粘性流体の量が減少して伝
達トルクが減少し、冷却用ファンの取付部材の回転数が
十分に減少する。また、エンジン温度が上昇するに従っ
て、両トルク伝達部間が縮小し、トルク伝達面積の増加
ないしトルク伝達面透間の減少によって伝達トルクが増
加すると共に1両トルク伝達部間の縮小に従って1作動
室に供給される粘性流体の量が増加し1両トルク伝達部
間に侵入する粘性流体の量が増加して伝達トルクが増加
し、冷却用ファンの取付部材の回転数が十分に増加する
。In the second invention, as the engine temperature decreases, the distance between the two torque transmitting parts increases, and the transmitted torque decreases due to a decrease in the torque transmitting area or an increase in the torque transmitting surface clearance. As the viscous fluid expands, the supply path is narrowed and the amount of viscous fluid supplied to the working chamber decreases.
The amount of viscous fluid that enters between the two torque transmitting parts is reduced, the transmitted torque is reduced, and the rotational speed of the mounting member of the cooling fan is sufficiently reduced. In addition, as the engine temperature rises, the space between both torque transmitting parts decreases, and the transmitted torque increases due to an increase in the torque transmitting area or a decrease in the torque transmitting surface clearance, and as the distance between the two torque transmitting parts decreases, one working chamber decreases. The amount of viscous fluid supplied to the cooling fan increases, the amount of viscous fluid that enters between the two torque transmitting parts increases, the transmitted torque increases, and the rotational speed of the cooling fan mounting member increases sufficiently.
従って、冷却用ファンの回転数は、トルク伝達部の面積
ないし透間と粘性流体の量の増減によって制御されるの
で、トルク伝達部の面積ないし透間の増減によって制御
される@/発明に比し、1!に細かく制御される。Therefore, the rotation speed of the cooling fan is controlled by increasing or decreasing the area of the torque transmitting part or the gap between the holes and the amount of viscous fluid. S-1! is closely controlled.
第1図社本発明の鳩/1jii施例の流体継手の縦断側
面図であり%第2図は第1閲の1−1線断面図である。
@3図は第2実施例の流体継手の縦断側面図であり、第
1図は第3図のff−IV線断面■である。
第5図は第3突施例の流体継手の縦断側面図であり、第
6図は第5□□□の■−vts所面図でるる。
第7図は第ダ冥施例の流体継手の縦断側面図であり、第
にMは第7図の■−■線断面図であるや第り図はその他
の′4!施例の流体継手の縦断部分側面■である、Fig. 1 is a vertical sectional side view of a fluid coupling according to an embodiment of the present invention, and Fig. 2 is a sectional view taken along the line 1-1 of the first view. Figure 3 is a vertical side view of the fluid coupling of the second embodiment, and Figure 1 is a cross section taken along line ff-IV in Figure 3. FIG. 5 is a vertical sectional side view of the fluid coupling of the third projecting embodiment, and FIG. 6 is a side view of the ■-vts of the fifth □□□. FIG. 7 is a vertical sectional side view of the fluid coupling of the second embodiment, and M is a sectional view taken along the line ■-■ in FIG. 7. This is a side view of the longitudinal section of the example fluid coupling.
Claims (2)
ンの取付部材を回転可能に取付け、取付部材に粘性流体
入りの作動室を設け、作動室に収容した盤状のロータを
駆動軸に軸芯方向にのみ移動可能に取付け、駆動軸の回
転によつて回転するロータの盤面とこれに対面した作動
室の内面にトルク伝達部を形成し、エンジン温度の上昇
、下降に従つてロータを軸芯方向に移動してロータ盤面
のトルク伝達部と作動室内面のトルク伝達部間を縮小、
拡大する伝達トルク制御機構を設けたことを特徴とする
流体継手。(1) A cooling fan mounting member is rotatably attached to the drive shaft rotated by the engine, a working chamber containing viscous fluid is provided in the mounting member, and a plate-shaped rotor housed in the working chamber is attached to the drive shaft. It is mounted so that it can move only in the axial direction, and a torque transmission part is formed on the rotor plate that rotates with the rotation of the drive shaft and the inner surface of the working chamber facing it, and the rotor changes as the engine temperature rises and falls. Moves in the axial direction to reduce the distance between the torque transmission part on the rotor plate surface and the torque transmission part on the inside of the working chamber.
A fluid coupling characterized by being provided with an expanding transmission torque control mechanism.
ンの取付部材を回転可能に取付け、取付部材に作動室と
貯留室を設け、作動室に収容した盤状のロータを駆動軸
に軸芯方向にのみ移動可能に取付け、作動室の粘性流体
を貯留室に排出する排出路と貯留室の粘性流体を作動室
に供給する供給路を形成し、駆動軸の回転によつて回転
するロータの盤面とこれに対面した作動室の内面にトル
ク伝達部を形成し、エンジン温度の上昇、下降に従つて
ロータを軸芯方向に移動してロータ盤面のトルク伝達部
と作動室内面のトルク伝達部間を縮小、拡大する伝達ト
ルク制御機構を設け、両トルク伝達部間が拡大するに従
つて供給路を絞る弁機構を設けたことを特徴とする流体
継手。(2) A cooling fan mounting member is rotatably attached to the drive shaft rotated by the engine, an operating chamber and a storage chamber are provided in the mounting member, and a plate-shaped rotor housed in the operating chamber is attached to the drive shaft. A rotor that is mounted so as to be movable only in the core direction and forms a discharge passage for discharging viscous fluid from the working chamber into the storage chamber and a supply passage for supplying the viscous fluid from the storage chamber to the working chamber, and is rotated by the rotation of the drive shaft. A torque transmission section is formed on the surface of the rotor panel and the inner surface of the working chamber facing it, and as the engine temperature rises and falls, the rotor moves in the axial direction to transmit torque between the torque transmission section on the rotor disk surface and the inner surface of the working chamber. 1. A fluid coupling characterized by being provided with a transmission torque control mechanism that reduces and expands the distance between the two torque transmitting portions, and a valve mechanism that throttles the supply path as the distance between the two torque transmitting portions increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27854484A JPS61149623A (en) | 1984-12-24 | 1984-12-24 | fluid coupling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27854484A JPS61149623A (en) | 1984-12-24 | 1984-12-24 | fluid coupling |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61149623A true JPS61149623A (en) | 1986-07-08 |
Family
ID=17598735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27854484A Pending JPS61149623A (en) | 1984-12-24 | 1984-12-24 | fluid coupling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61149623A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938331A (en) * | 1988-09-27 | 1990-07-03 | Aisin Seiki Kabushiki Kaisha | Fluid coupling for engine cooling system |
EP1674752A1 (en) * | 2004-12-23 | 2006-06-28 | BorgWarner Inc. | Viscous fluid clutch |
-
1984
- 1984-12-24 JP JP27854484A patent/JPS61149623A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938331A (en) * | 1988-09-27 | 1990-07-03 | Aisin Seiki Kabushiki Kaisha | Fluid coupling for engine cooling system |
EP1674752A1 (en) * | 2004-12-23 | 2006-06-28 | BorgWarner Inc. | Viscous fluid clutch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007698B1 (en) | Temperature-sensitive fluid type fan coupling apparatus | |
US4238016A (en) | Viscous fluid coupling device | |
US4629046A (en) | Fluid friction clutch | |
US3191733A (en) | Torque transmitting fluid coupling | |
US3174600A (en) | Temperature-responsive fluid clutch | |
US4570771A (en) | Viscous fluid coupling having centrifugal valve means | |
US4295550A (en) | Viscous fluid coupling device | |
US3262528A (en) | Variable fluid torque coupling | |
US4544053A (en) | Temperature-responsive fluid coupling device | |
JPS6065917A (en) | Method and device for controlling output speed of fluid friction clutch | |
SE463777B (en) | refrigerant | |
US6530748B2 (en) | Enhanced fan and fan drive assembly | |
US5101949A (en) | Temperature sensitive fluid-type fan coupling device | |
KR940005980B1 (en) | Coupling device | |
JPH0361852B2 (en) | ||
KR940004913B1 (en) | Thermostatic Fluidized Fan Coupling Device | |
US5139125A (en) | Temperature sensitive type fluid fan coupling apparatus | |
US3227254A (en) | Fluid coupling | |
JPS588834A (en) | Fluid shearing coupling device | |
JPH0261653B2 (en) | ||
US4266645A (en) | Fluid shear coupling | |
US4269295A (en) | Torque transmitting fluid couplings | |
US4555004A (en) | Temperature responsive fluid coupling device | |
GB2131919A (en) | Fluid-friction coupling for a cooling fan of an internal combustion engine | |
JPS61149623A (en) | fluid coupling |