JPS61141529A - Forming of fluorine resin - Google Patents
Forming of fluorine resinInfo
- Publication number
- JPS61141529A JPS61141529A JP26294984A JP26294984A JPS61141529A JP S61141529 A JPS61141529 A JP S61141529A JP 26294984 A JP26294984 A JP 26294984A JP 26294984 A JP26294984 A JP 26294984A JP S61141529 A JPS61141529 A JP S61141529A
- Authority
- JP
- Japan
- Prior art keywords
- die
- temperature
- sheet
- heated
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/034—Organic insulating material consisting of one material containing halogen
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はポリテトラフルオロエチレン(以後PTFEと
略記する)等のテトラフルオロエチレン(以後TFEと
略記する)を主体としたフッ素樹脂の成形法に係る。更
に詳しくは、PTF[E等のフッ素樹脂を延伸して、電
気的、機械的性質に優れたシートを成形する方法に係る
。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for molding fluororesin mainly made of tetrafluoroethylene (hereinafter abbreviated as TFE) such as polytetrafluoroethylene (hereinafter abbreviated as PTFE). It depends. More specifically, the present invention relates to a method of stretching a fluororesin such as PTF[E to form a sheet with excellent electrical and mechanical properties.
これまでPTPEシートはPTFH成形用粉末を予備成
形(圧縮成形)→焼成→冷却の三基本工程を経て成形し
た平面、あるいは円筒形成形品を切削して製造するのが
一般的である。このPTFI!切削シートの電気的性質
及び機械的性質等の性質は、原料であるPTFH成形用
粉末及び成形条件の差によって著るしく変化することが
知られているが、その理由はPTFI!の溶融粘度が著
るしく高く、この結果、切削シート中にボイド(空孔)
が残るためとされている。Until now, PTPE sheets have generally been manufactured by cutting a flat or cylindrical product formed by molding PTFH molding powder through three basic steps: preforming (compression molding) → firing → cooling. This PTFI! It is known that the electrical properties, mechanical properties, and other properties of a cut sheet vary significantly depending on the raw material PTFH molding powder and the molding conditions.The reason for this is that PTFI! has a significantly high melt viscosity, resulting in voids in the cutting sheet.
It is said that this is because the
現在、慣用的に行われている切削シートの電気絶縁性及
び引張り強さ等の向上方法は、原料としてPTPE成形
用微粉末を使用し、できるだけ緻密な成形品作り(特公
昭34−10177) 、これを切削するものである。Currently, the conventional method of improving the electrical insulation properties and tensile strength of cut sheets is to use fine powder for PTPE molding as a raw material to make molded products as dense as possible (Japanese Patent Publication No. 34-10177). This is what is cut.
更に高い電気絶縁性及び引張り強さを期待する場合には
、上記切削シートをロールを用いて圧延し、ボイドを減
少せしめる方法がとられる(特公昭44−16287.
特開昭54−61259等)。If even higher electrical insulation and tensile strength are expected, a method is used in which the cut sheet is rolled using rolls to reduce voids (Japanese Patent Publication No. 44-16287.
JP-A-54-61259, etc.).
しかしながら、ロールによる圧延処理はロールの表面状
態、例えば細い傷及び歪がシートの表面状態及び厚みの
不均一性に直接影響し、ひいてはフィルムの電気的及び
機械的性質に影響を及ぼすと共に製品収率を著るしく低
下させることになるため、加工精度の高い高価な特殊ロ
ールを使用することが不可欠の要件となり、それでも収
率は低く、経済的に不利である。又、特に薄いシートを
得るために圧延率を高めた場合にはシートに破壊が生じ
易くなり、圧延破壊を防ぐために高温で圧延を行う場合
には圧延ロールが膨張し、ロール表面に歪が発生し、シ
ートの厚みが不均一になるという欠点があり、圧延法に
よる表面状態の良好な極薄シートの成形は困難であった
。However, in the rolling process using rolls, the surface conditions of the rolls, such as fine scratches and distortions, directly affect the surface condition and thickness non-uniformity of the sheet, which in turn affects the electrical and mechanical properties of the film and reduces the product yield. Therefore, it is essential to use expensive special rolls with high processing precision, and even then, the yield is low and it is economically disadvantageous. In addition, when the rolling rate is increased to obtain a particularly thin sheet, the sheet is likely to break, and when rolling is performed at high temperatures to prevent rolling breakage, the rolling roll expands and distortion occurs on the roll surface. However, there is a drawback that the thickness of the sheet becomes non-uniform, and it is difficult to form an ultra-thin sheet with a good surface condition by a rolling method.
本発明は、一般に使用されているPTPI!シートの機
械的性質、電気的性質、透明性等を改良した2軸延伸シ
ートを成形法を提供することを目的とする。The present invention utilizes commonly used PTPI! The object of the present invention is to provide a method for forming a biaxially stretched sheet with improved mechanical properties, electrical properties, transparency, etc.
本発明は溶融点温度付近に加熱されたフッ素樹脂の予備
成形品を、潤滑されたダイ内で加圧下に延伸せしめるこ
とを特徴とするフッ素樹脂の成形法である。The present invention is a fluororesin molding method characterized by stretching a fluororesin preform heated to near its melting point temperature in a lubricated die under pressure.
本発明に述べるシートとは、いわゆるシート及びフィル
ムを総称し、本発明では1−から10日厚程度のシート
、好ましくは10Imから5鶴厚のシートを成形するに
適した方法である。The sheet mentioned in the present invention is a general term for so-called sheets and films, and the present invention is a method suitable for forming a sheet having a thickness of about 1 to 10 days, preferably a sheet having a thickness of 10 to 5 inches.
本発明に述べるフッ素樹脂とはPTFI!あるいはTF
Bを主体とした共重合体であり、共重合体ではTFEが
90重量%以上、更に好ましくは95重量%以上の重合
体である。共重合成分としてはへキサフルオロプロピレ
ン、パーフロロアルキルビニルエーテル、エチレン等で
ある。しかし、本発明で特に好ましいフッ素樹脂はPT
FI!ホモポリマー、あるいはTPBが98重量%以上
の共重合体であり、これ等PTFHの重量平均分子量が
100万以上の超高分子量体である。The fluororesin mentioned in the present invention is PTFI! Or TF
It is a copolymer mainly composed of B, and the copolymer has a TFE content of 90% by weight or more, more preferably 95% by weight or more. Copolymerization components include hexafluoropropylene, perfluoroalkyl vinyl ether, and ethylene. However, a particularly preferred fluororesin in the present invention is PT
FI! It is a homopolymer or a copolymer containing 98% by weight or more of TPB, and these PTFH are ultra-high molecular weight materials having a weight average molecular weight of 1 million or more.
フッ素樹脂の予備成形品とは、上記のフッ素樹脂の加圧
、融着した成形品で、主に平板状の予備成形品であり、
2軸延伸に適した形状をしている。A fluororesin preform is a pressurized and fused molded product of the above fluororesin, and is mainly a flat preform.
It has a shape suitable for biaxial stretching.
本発明で述べる潤滑されたダイ内で加圧下に延伸すると
は、ダイ内表面に潤滑剤が存在する圧縮ダイあるいは押
出ダイ内で、圧縮力あるいは押出力により樹脂素地をプ
ラグフローさせて延伸することである。ダイ内で加圧成
形する方法には圧縮成形と押出成形が良好に使用できる
。圧縮成形では、溶融点付近に加熱されたPTFE予備
成形品を圧縮してプラグフローさせて延伸し、配向成形
品をそのま一加圧状態で安定化させ、次いで成形品をダ
イより取り出す、安定化させるとは、冷却固化させるか
、あるいは結晶化に適した温度に保ち、十分に結晶化さ
せてから取り出すことである。押出成形では、溶融点付
近に加熱されたPTFI!予備成形品を押出ダイ内で押
出圧力によりプラグフローさせる。横幅が広がり、厚み
が縮小した形状にされた押出ダイ内へPTFI!を押出
すことにより延伸できる。Stretching under pressure in a lubricated die as described in the present invention refers to stretching the resin base material by causing a plug flow using compressive force or extrusion force in a compression die or extrusion die in which a lubricant is present on the inner surface of the die. It is. Compression molding and extrusion molding can be favorably used as a method of pressure molding within a die. In compression molding, a PTFE preform heated to around its melting point is compressed and stretched by plug flow, the oriented molded product is stabilized as it is under pressure, and then the molded product is taken out from the die and stabilized. "To crystallize" means to cool and solidify the material, or to maintain it at a temperature suitable for crystallization, and to take it out after sufficiently crystallizing it. In extrusion molding, PTFI is heated near its melting point! The preform is caused to plug flow in the extrusion die by extrusion pressure. PTFI into the extrusion die, which has a shape with increased width and reduced thickness! It can be stretched by extruding.
本発明に述べる加圧下とは10kg/−以上の圧力下、
好ましくは50kg/cj以上、更に好ましくは80k
g / cIA以上2000ksr/d以下の高圧下に
延伸するものである。圧縮成形あるいは押出成形で本発
明法で成形する場合、成形品の厚さが薄くなると成形に
必要な加圧力が著るしく太き(なり、安定なプラグフロ
ー成形が困難になる。この様な場合、予備成形品を2層
以上積層して成形し、成形後各層を剥離することが好ま
しい、予備成形品の積層は成形後容易に剥離できる様に
積層することが必要であり、積層する予備成形品の界面
に、剥離シートを置いたり、剥離剤を塗布したりするこ
とが好ましい、剥離シートとしてはフッ素樹脂と加熱時
に非接着性の異樹脂シートが用いられる。#離シートは
成形時の粘度がフッ素樹脂に近いことが好ましく、一般
に分子量が大きく、且つ融点が高い異樹脂シートが良好
に使用できる。剥離剤としては、シリコン油、金属石鹸
等の、フッ素樹脂が互に融着するのを阻止できる液体、
固体が使用できる。Under pressure described in the present invention means under a pressure of 10 kg/- or more,
Preferably 50kg/cj or more, more preferably 80k
It is stretched under high pressure of not less than g/cIA and not more than 2000 ksr/d. When molding is performed using the method of the present invention by compression molding or extrusion molding, as the thickness of the molded product becomes thinner, the pressure required for molding increases significantly (and this makes stable plug flow molding difficult. In this case, it is preferable to laminate two or more layers of preforms and then peel each layer after molding. It is necessary to laminate the preforms in such a way that they can be easily peeled off after molding. It is preferable to place a release sheet or apply a release agent on the interface of the molded product.As the release sheet, a sheet of a different resin that does not adhere to the fluororesin when heated is used. It is preferable that the viscosity is close to that of the fluororesin, and in general, a sheet of a different resin with a large molecular weight and a high melting point can be used successfully.As a release agent, silicone oil, metal soap, etc., which can fuse the fluororesins together, can be used. liquid that can prevent
Solids can be used.
ダイ内表面は樹脂素地が滑らかに流動できるだけの平滑
性が必要であり、急激な流れの変化があるダイは好まし
くない。The inner surface of the die must be smooth enough to allow the resin base to flow smoothly, and a die with sudden changes in flow is not preferred.
ダイ内表面を潤滑状態にするには、ダイ内表面に潤滑剤
を塗布するか、あるいは及びダイ内表面と素地の界面に
潤滑剤を練込んだシートを存在させることにより潤滑状
態にすることができる。The inner surface of the die can be brought into a lubricated state by applying a lubricant to the inner surface of the die or by providing a sheet containing a lubricant at the interface between the inner surface of the die and the substrate. can.
潤滑剤を塗布することが最も一般的である。Applying lubricant is the most common.
本発明に述べる潤滑剤とは、成形時に於ける粘度が50
00ボイズ以下、好ましくは1000ボイズ以下の流体
であり、例えば流動パラフィン、ポリジメチルシロキサ
ン等の各種シリコーン油、ステアリン酸金属塩等の各種
脂肪酸金属塩、各種界面活性剤、ポリエチレングリコー
ル、低分子量ポリエチレン、これ等の各流体の混合物等
の他、一般に使用されている潤滑剤が使用できる。The lubricant described in the present invention has a viscosity of 50% during molding.
00 voids or less, preferably 1000 voids or less, such as liquid paraffin, various silicone oils such as polydimethylsiloxane, various fatty acid metal salts such as stearic acid metal salts, various surfactants, polyethylene glycol, low molecular weight polyethylene, In addition to mixtures of these fluids, commonly used lubricants can be used.
本発明で述べる溶融点温度付近とは、樹脂の溶融点(1
と略記する)の付近であり、(’11−40℃)より高
< (’l1i−60℃)より低い範囲が良好に使用
できる。(’f!+−40℃)より低い温度ではPTF
Bの粘度が大きく延伸が行われに(〜、(’&+60℃
)以上になると、PTFEの分解が始る。本発明で最も
好ましい成形温度は1〜ll+50℃)の範囲の温度で
あり、この範囲でPTFEの結晶化度が低くなった状態
で高圧下に急冷却しつ\延伸せしめるのが最も好ましい
。The vicinity of the melting point temperature described in the present invention refers to the melting point (1
), and a range higher than ('11-40°C) < lower than ('l1i-60°C) can be used satisfactorily. ('f!+-40℃) At lower temperatures, PTF
The viscosity of B is large and stretching is difficult (~, ('&+60℃)
), PTFE begins to decompose. The most preferable forming temperature in the present invention is a temperature in the range of 1 to 1+50° C.), and it is most preferable to rapidly cool the PTFE under high pressure and stretch it in this range, with the degree of crystallinity of the PTFE being low.
本発明で述べる延伸とは、1軸延伸、あるいは2軸延伸
であり、好ましくは2軸延伸で、縦、横の延伸倍率がは
り等しい2軸延伸である。延伸倍率は必要に応じて適度
に選定できるが、面積比で1.1倍か320倍程度が良
好に使用できる。更に好ましくは2倍から15倍である
。Stretching described in the present invention refers to uniaxial stretching or biaxial stretching, preferably biaxial stretching, in which the longitudinal and lateral stretching ratios are equal. The stretching ratio can be appropriately selected as required, but an area ratio of about 1.1 times to 320 times can be used satisfactorily. More preferably, it is 2 to 15 times.
本発明では溶融点温度付近で延伸後、常温まで冷却固化
してダイより取り出すか、あるいは結晶化が促進される
温度まで冷却して、その温度で保持して結晶化を促進し
、安定化させてからダイより取り出すことができる。2
軸延伸されたシートはフッ素樹脂のガラス転移温度以下
になれば全く安定であるが、2軸延伸後に結晶化される
と、結晶化により安定化され、ガラス転移温度以上でも
収縮が起らなくなる。In the present invention, after stretching at around the melting point temperature, it is cooled to room temperature to solidify and taken out from the die, or it is cooled to a temperature that promotes crystallization and held at that temperature to promote crystallization and stabilize. It can then be removed from the die. 2
An axially stretched sheet is completely stable if the temperature is below the glass transition temperature of the fluororesin, but if it is crystallized after biaxial stretching, it will be stabilized by crystallization and no shrinkage will occur even above the glass transition temperature.
PTPEの分子量は一般に大きく、重量平均分子量で1
00万以上であり、1000万付近の超高分子量体も使
用される。又、PTFB鎖は非常に剛直である。The molecular weight of PTPE is generally large, with a weight average molecular weight of 1
0,000,000 or more, and ultra-high molecular weight materials having a molecular weight of around 10,000,000 are also used. Also, PTFB chains are very rigid.
このためPTFI!の溶融粘度は非常に大きく、溶融点
温度を越えてもIQIIボイズ程度にしかならない。For this reason, PTFI! The melt viscosity of is very high, and even if it exceeds the melting point temperature, it becomes only about IQII voids.
一般に熱可塑性樹脂の延伸は該樹脂のガラス転移温度以
上、溶融点以下で行われるが、PTFEは溶融点付近、
あるいは溶融点を越えても高粘度であるため、溶融点付
近、あるいは溶融点を越えた状態で、延伸できる。更に
良好な延伸を行うには結晶化度が小さい状態で行うこと
が好ましいが、PTFEは結晶化しやすいため非結晶状
で延伸するにはPTFEの溶融点付近以上で延伸を行う
ことが好ましい、溶融点付近以上に加熱されたPTFI
I!予備成形品を加圧下に延伸する本発明の成形法はP
TFEの高粘度、高結晶化度の点から非常に好ましい方
法である。Generally, stretching of thermoplastic resin is carried out at a temperature above the glass transition temperature and below the melting point of the resin.
Alternatively, since it has a high viscosity even above the melting point, it can be stretched near or above the melting point. In order to achieve better stretching, it is preferable to conduct the stretching in a state with a low degree of crystallinity, but since PTFE tends to crystallize, in order to stretch it in an amorphous state, it is preferable to conduct the stretching at a temperature near or above the melting point of PTFE. PTFI heated above the point
I! The molding method of the present invention involves stretching a preform under pressure.
This is a very preferable method in view of the high viscosity and high crystallinity of TFE.
更に、延伸をダイ内で高圧下で行うことにより、成形品
に発生しやすいミクロボイドを低減し、優れた性能の延
伸シートを得られる。従来のPTFHの延伸が、大気圧
下で行われるか、あるいはロールによる圧延で行われて
いたことに比較して、本発明では圧縮ダイ内あるいは押
出ダイ内で加圧下に高粘度状態で延伸され、良好な結果
が得られる。Furthermore, by performing the stretching in a die under high pressure, microvoids that tend to occur in molded products can be reduced, and a stretched sheet with excellent performance can be obtained. In contrast to conventional stretching of PTFH, which was carried out under atmospheric pressure or by rolling with rolls, in the present invention, PTFH is stretched in a high viscosity state under pressure in a compression die or an extrusion die. , good results are obtained.
第1図において、圧縮ダイ1の内表面2に潤滑剤を塗布
し、圧縮ダイ内表面をフッ素樹脂素地とほり等しい温度
に加熱する。溶融点温度付近に加熱されたフッ素樹脂素
地3をダイ1内に置き(l−1)、圧縮して素地3をプ
ラグフローさせて2軸配向させ(1−2)、そのま−冷
却、あるいは結晶化に適した温度に保持して安定化させ
た後、ダイ1内より2軸配向シート4を取り出す。2軸
配向シート4を成形するに必要な圧縮力は、樹脂の種類
、延伸温度、延伸倍率、2軸配向シートの厚み等により
異る。樹脂素地が薄くなると圧縮して2軸配向させるに
必要な力が大きくなり、成形が困難になる。In FIG. 1, a lubricant is applied to the inner surface 2 of a compression die 1, and the inner surface of the compression die is heated to a temperature equal to that of the fluororesin base material. The fluororesin base material 3 heated to around the melting point temperature is placed in the die 1 (l-1), compressed to cause the base material 3 to plug flow and become biaxially oriented (1-2), and then cooled or After stabilizing the temperature by maintaining it at a temperature suitable for crystallization, the biaxially oriented sheet 4 is taken out from inside the die 1. The compressive force required to form the biaxially oriented sheet 4 varies depending on the type of resin, stretching temperature, stretching ratio, thickness of the biaxially oriented sheet, etc. As the resin base becomes thinner, the force required to compress it and achieve biaxial orientation increases, making molding difficult.
第2図において、圧縮ダイ5の内表面6に潤滑剤を塗布
した後、4枚のフッ素樹脂素地7の各界面と両表面に該
素地と非接着性のフィルム8を置き、圧縮ダイ内に置<
(2−1)。素地7の溶融点付近の温度に加熱した
後、圧縮して素地7をプラグフローさせて4枚の2゛軸
配向シート9を成形しく2−2) 、そのま−加圧状態
で冷却し、あるいは、結晶化に適した温度に加圧保持し
、4枚の2軸配向シート9を圧縮ダイ5より取り出しく
2−3)、次いで各2軸配向シートを剥離して更に非接
着性のフィルムを配向シートから剥離して、薄肉の2軸
配向シート10を得る(2−4)。In FIG. 2, after applying a lubricant to the inner surface 6 of the compression die 5, a non-adhesive film 8 is placed on each interface and both surfaces of the four fluororesin substrates 7, and the material is placed inside the compression die. Place <
(2-1). After heating to a temperature near the melting point of the substrate 7, the substrate 7 is compressed to cause a plug flow to form four 2° axis-oriented sheets 9 (2-2), and then cooled under pressure. Alternatively, the four biaxially oriented sheets 9 are held under pressure at a temperature suitable for crystallization and taken out from the compression die 5 (2-3), and then each biaxially oriented sheet is peeled off to form a non-adhesive film. is peeled from the oriented sheet to obtain a thin biaxially oriented sheet 10 (2-4).
第3図において、(3−1)は樹脂素地11の各界面1
2に潤滑剤あるいは離型剤を塗布する方法、(3−2)
は樹脂素地11の各界面及び表面に非接着性樹脂フィル
ム13を置く方法、(3−3)は樹脂素地11の各界面
に非接着性樹脂フィルム13を置き、重ね合せた素地全
体を非接着性樹脂フィルム14で真空包装する方法、(
3−4)は互に非接着性の2種の樹脂15.16を交互
に重ねる方法である。In FIG. 3, (3-1) indicates each interface 1 of the resin base 11.
Method of applying lubricant or mold release agent to 2, (3-2)
(3-3) is a method in which a non-adhesive resin film 13 is placed on each interface and surface of the resin base 11, and (3-3) is a method in which a non-adhesive resin film 13 is placed on each interface of the resin base 11, and the entire stacked base is non-adhesive. Method of vacuum packaging with plastic film 14 (
3-4) is a method in which two types of non-adhesive resins 15 and 16 are alternately stacked on each other.
この積層成形により薄肉配向シートの成形が良好に成形
でき、更に、1度の圧縮成形あるいは押出成形で複数枚
の配向シートが成形でき、その経済効果は大きい。This lamination molding allows thin oriented sheets to be formed well, and furthermore, a plurality of oriented sheets can be formed by one compression molding or extrusion molding, which has a large economic effect.
第4図において圧縮プレスのダイプレート20には断熱
材21を介して冷却ダイプレート22が固定されており
、冷却ダイプレート22は冷媒を流す冷媒孔23が設け
られ、常時冷却されている。冷却ダイプレート22には
ダイ24がとりつけられている。ダイプレート20に圧
縮力が加わっていない状態すなわち型が開いている状態
では、ダイ24は冷却ダイプレート22にとりつけられ
た押しバネ26に押されたピン25により冷却ダイプレ
ートと非接触の状態になる。一定の間隔で非接触の状態
にするためボルト27がとりつけられている。ダイ24
の裏側にはダイ24が冷却ダイプレート22に接触した
時にダイ24の加熱速度を調節するための薄い断熱層2
8が設けられている。In FIG. 4, a cooling die plate 22 is fixed to a die plate 20 of the compression press via a heat insulating material 21, and the cooling die plate 22 is provided with refrigerant holes 23 through which a refrigerant flows, and is constantly cooled. A die 24 is attached to the cooling die plate 22. When no compressive force is applied to the die plate 20, that is, when the mold is open, the die 24 is brought into a non-contact state with the cooling die plate by the pins 25 pressed by the push springs 26 attached to the cooling die plate 22. Become. Bolts 27 are attached at regular intervals to maintain a non-contact state. die 24
A thin heat insulating layer 2 is provided on the back side of the die 24 to adjust the heating rate of the die 24 when the die 24 contacts the cooling die plate 22.
8 is provided.
第4図のダイを用いて本発明の成形を行う過程を示す第
5図において、薄い型24が開いた状態(5−A)で型
24の横に設置された加熱板29がダイ24の間に挿入
され、若干の型締めが行われてダイ24と加熱板29は
接触しダイ24の加熱が行われる(5−B)。この時、
ダイ24は冷却プレート22と非接触の状態に保たれ、
ダイ24のみ加熱される。加 i熱板29は内部
にカートリッジヒーター等が組込まれており、常時加熱
されている。加熱板29によりダイ24が一定温度に加
熱されると、加熱板29は後退し、代ってダイ24の間
に枠板31と加熱されたフッ素樹脂素地32を挿入しく
5−C)圧縮して配向させ、ダイ24は冷却プレート2
2と接触することにより冷却され、配向された板状成形
品も冷却される。(5−D)、ダイ内で配向され、且つ
充分に固定された成形品33は、型を開いて、枠板31
と共にダイ外へ取り出される<5−E)。In FIG. 5, which shows the process of molding according to the present invention using the die shown in FIG. The die 24 and the heating plate 29 are brought into contact with each other, and the die 24 is heated (5-B). At this time,
The die 24 is kept out of contact with the cooling plate 22,
Only die 24 is heated. The heating plate 29 has a cartridge heater built therein and is constantly heated. When the die 24 is heated to a certain temperature by the heating plate 29, the heating plate 29 retreats and instead inserts the frame plate 31 and the heated fluororesin base 32 between the dies 24. The die 24 is oriented on the cooling plate 2.
2, the oriented plate-shaped molded product is also cooled. (5-D) The molded product 33 oriented and sufficiently fixed in the die is opened and the frame plate 31
<5-E).
第4図、第5図において、ダイ24及び冷却ダイプレー
ト22が球面状等の曲面状であれば、それに応じて成形
品も曲面状になる。In FIGS. 4 and 5, if the die 24 and the cooling die plate 22 have a curved shape such as a spherical shape, the molded product will also have a curved shape accordingly.
第4図、第5図に示した成形法では、溶融点温度付近に
加熱された樹脂素地を冷却しつ\圧縮2軸配向すること
ができる。フッ素樹脂を溶融点付近まで加熱して結晶化
度を低下させ、急冷却しつ\延伸することは、本発明の
最も好ましい方法である。In the molding method shown in FIGS. 4 and 5, the resin base heated to around the melting point temperature can be cooled and compressed and biaxially oriented. The most preferred method of the present invention is to heat the fluororesin to around its melting point to reduce its crystallinity, rapidly cool it, and then stretch it.
第6図は本発明の方法により2軸配向シートを押出成形
する装置を示す。第6図に於て、押出成形機41で加熱
可塑化されたフッ素樹脂はダイ42のA部分で一定の厚
肉成形体にされる。A部分の途中に、厚肉成形体の表面
とダイ表面の界面に潤滑剤を塗布するため、潤滑剤を浸
み出す一連の装置を有する。高圧力の潤滑剤は潤滑剤導
入路43より複数の浸出口44へ導びかれ、樹脂成形体
表面へ浸み出し、成形体表面とダイ表面の界面に潤滑剤
を塗布する。潤滑剤の浸出口44は小さなスリット状、
あるいは焼結金属等の微細な連通孔を有する物質ででき
ており、その微細孔より潤滑剤が浸みでる。FIG. 6 shows an apparatus for extruding biaxially oriented sheets according to the method of the present invention. In FIG. 6, the fluororesin is heated and plasticized in an extrusion molding machine 41 and is formed into a molded body with a constant thickness in a portion A of a die 42. As shown in FIG. In the middle of part A, there is a series of lubricant oozing devices in order to apply lubricant to the interface between the surface of the thick-walled molded body and the die surface. The high-pressure lubricant is guided from the lubricant introduction path 43 to the plurality of seepage ports 44, seeps out onto the surface of the resin molded article, and applies the lubricant to the interface between the molded article surface and the die surface. The lubricant seepage port 44 has a small slit shape,
Alternatively, it is made of a material such as sintered metal that has fine communicating pores, and the lubricant seeps through the fine pores.
表面に潤滑剤が均一に塗布された樹脂成形体は、ダイ内
で成形体表層、内核がはソ同速度で流動する、いわゆる
プラグフローになる。次にダイのB部分で、プラグフロ
ーの成形体を2軸配向させる。A resin molded body whose surface is uniformly coated with a lubricant exhibits a so-called plug flow in which the surface layer and inner core of the molded body flow at the same speed within the die. Next, in part B of the die, the plug flow molded body is biaxially oriented.
ダイのB部分は樹脂の厚さが小さくなる構造を有する。Portion B of the die has a structure in which the thickness of the resin is reduced.
B部分の成形体の流動変化を第7図に示した。成形体は
プラグフローのま\流動方向、及びその直角方向に同時
に2軸方向に押出され2軸配向される。成形体を圧延す
る力は押出成形機より押出す力により行われる。2軸配
向された成形体はダイのC部分で冷却され、ダイ2を出
る。必要に応じて冷水45等で更に冷却され、引取りロ
ール46で引取られて2軸配向シートとなる。FIG. 7 shows the change in flow of the molded product in part B. The molded body is simultaneously extruded in two directions in the plug flow direction and in the direction perpendicular to the flow direction, and is biaxially oriented. The force for rolling the molded body is the force for extruding it from an extrusion molding machine. The biaxially oriented compact is cooled in the C section of the die and exits the die 2. If necessary, it is further cooled with cold water 45 or the like, and taken up with a take-up roll 46 to become a biaxially oriented sheet.
フン素樹脂がPTFEホモポリマーの様な難加工性樹脂
では、第8図のラム押出が必要に応じて使用される。When the fluorine resin is a difficult-to-process resin such as a PTFE homopolymer, the ram extrusion shown in FIG. 8 is used as necessary.
第9図において、押出機41で加熱可塑化されたフッ素
樹脂はダイ47のD部分で一定の厚肉パイプ状にされる
。In FIG. 9, the fluororesin that has been heat-plasticized in an extruder 41 is shaped into a constant thick-walled pipe in a D portion of a die 47.
D部分の途中に、厚肉パイプの表面とダイ表面の界面に
潤滑剤を塗布するため潤滑剤を浸み出す一連の装置を有
する。パイプの外表面、内表面のいずれにも潤滑剤を塗
布する。高圧力の潤滑剤は潤滑剤導入路48より、パイ
プの外表面、内表面の複数の浸出口49へ導びかれ、パ
イプ表面へ浸み出し、パイプとダイ表面の界面に潤滑剤
を塗布する。ガラス転位温度以上、溶融点温度以下の温
度に冷却され、表面に潤滑剤が均一に塗布された厚肉パ
イプは、ダイ内で樹脂表層、内核がほぼ同速度で流動す
る、いわゆるプラグフローになる。次にダイの8部分で
、プラグフローのパイプの径を拡大し、肉厚を薄<シて
2軸配向させる。厚肉パイプはプラグフローのま\押出
成形機からの押出圧力により径を拡大され配向されて、
流動方向と直径方向に同時に2軸配向される。2軸配向
されたパイプはダイのF部分で更に冷却され、ダイ47
を出る。In the middle of section D, there is a series of lubricant seeping devices for applying lubricant to the interface between the thick-walled pipe surface and the die surface. Apply lubricant to both the outside and inside surfaces of the pipe. The high-pressure lubricant is led from the lubricant introduction path 48 to a plurality of seepage ports 49 on the outer and inner surfaces of the pipe, seeps out onto the pipe surface, and applies the lubricant to the interface between the pipe and the die surface. . A thick-walled pipe that is cooled to a temperature above the glass transition temperature and below the melting point temperature and whose surface is uniformly coated with lubricant has a so-called plug flow in which the resin surface layer and inner core flow at approximately the same speed in the die. . Next, in the 8th part of the die, the diameter of the plug flow pipe is expanded, the wall thickness is reduced, and the pipe is biaxially oriented. The diameter of the thick-walled pipe is expanded and oriented by the extrusion pressure from the extrusion molding machine during plug flow.
It is simultaneously biaxially oriented in the flow direction and diametrical direction. The biaxially oriented pipe is further cooled in the F section of the die and passes through the die 47.
exit.
必要に応じて冷水50等で更に冷却され、引取ロール5
1で引取られて2軸配向パイプとなる。If necessary, it is further cooled with cold water 50 or the like, and the take-up roll 5
1 and becomes a biaxially oriented pipe.
本発明の成形法により、PTFE等の難加工性フッ素樹
脂の延伸が経済的に実施でき、機械的性質、電気的性質
、透明性等に優れた、ボイドの少い緻密な延伸シートが
得られる。By the molding method of the present invention, it is possible to economically stretch a difficult-to-process fluororesin such as PTFE, and a dense stretched sheet with few voids and excellent mechanical properties, electrical properties, transparency, etc. can be obtained. .
フッ素樹脂の最も適した用途として電気絶縁シート、プ
リント配線基板等が考えられるが、これ等シートには、
高絶縁破壊電圧、低誘電率、低誘電正接等の電気特性が
必要であり、更に引張強度等の機械的性質も必要である
。本発明法で成形されるシートはボイドが少く、緻密な
シートになり電気特性が向上し、これに延伸効果も加っ
て機械的性質も向上する。The most suitable applications for fluororesin include electrical insulation sheets and printed wiring boards.
Electrical properties such as high dielectric breakdown voltage, low dielectric constant, and low dielectric loss tangent are required, and mechanical properties such as tensile strength are also required. The sheet formed by the method of the present invention has fewer voids, becomes a dense sheet, has improved electrical properties, and also has improved mechanical properties due to the stretching effect.
実施例
(PTFE予備成形シート〕
平均粒径35μのPTFE成形用微粉末を円筒形金型中
で成形圧175kg/c+Jで予備成形し、直径100
鶴の円柱体を得た。上記の円柱体を電気炉で370℃で
15時間焼成した。焼成体から旋盤で0.1鶴及び1寵
のシートを切削し、本発明の予備成形品及び比較サンプ
ルとした。Example (PTFE preformed sheet) PTFE molding fine powder with an average particle size of 35 μm was preformed in a cylindrical mold at a molding pressure of 175 kg/c+J, and the sheet had a diameter of 100 μm.
Obtained a cylindrical crane body. The above cylindrical body was fired in an electric furnace at 370°C for 15 hours. A sheet of 0.1 inch and 1 inch was cut from the fired body using a lathe to form a preformed product of the present invention and a comparative sample.
〔圧縮成形による2軸延伸〕
第4図及び第5図に示した圧縮成形法を用い、PTFE
予備成形品の2軸延伸を行った。[Biaxial stretching by compression molding] Using the compression molding method shown in Figures 4 and 5, PTFE
The preform was subjected to biaxial stretching.
1m厚のPTFE予備成形品を5枚積層し、その各界面
に0.3fl厚のポリプロピレンシートを置き予備成形
品とした。冷却ダイプレヨト22を20℃にし、潤滑剤
(ポリジメチルシロキサン)を塗布したダイ24をPT
FEの溶融点温度付近に加熱した。別の加熱装置でPT
FHの溶融点温度付近に加熱したPTFE予備成形品を
、上記の加熱したダイ24に入れ、高圧縮力(成形後の
配向シート当り120kg/cffl)で圧縮して急冷
しつ一面積比で10倍に2軸延伸した。Five 1 m thick PTFE preforms were laminated, and a 0.3 fl thick polypropylene sheet was placed at each interface to form a preform. The cooling die plate 22 was heated to 20°C, and the die 24 coated with lubricant (polydimethylsiloxane) was heated to PT.
It was heated to around the melting point temperature of FE. PT with separate heating device
A PTFE preform heated to around the melting point temperature of FH is placed in the above-mentioned heated die 24, compressed with high compression force (120 kg/cffl per oriented sheet after molding), rapidly cooled, and compressed with an area ratio of 10 It was biaxially stretched twice.
高温度のダイ24は、圧縮により20℃の冷却ダイプレ
ート22に接触して急冷却され、フッ素樹脂も冷却され
ながら延伸された。延伸時間は約7秒であり、この間に
ダイ24の表面温度は約100℃低下した。高圧縮力を
加えたま\十分に冷却した後、ダイより取り出し各層を
剥離した。得られたPTFEシートの性能を次表に示し
た。本発明法で成形した2軸延伸シート(B、C)は、
無延伸の切削シート(A)に比べ透明になり、絶縁破壊
電圧、引張強さに優れていた。The high-temperature die 24 was rapidly cooled by contacting the cooling die plate 22 at 20° C. due to compression, and the fluororesin was also stretched while being cooled. The stretching time was approximately 7 seconds, during which time the surface temperature of the die 24 decreased by approximately 100°C. After cooling sufficiently while applying a high compressive force, it was taken out from the die and each layer was peeled off. The performance of the obtained PTFE sheet is shown in the following table. The biaxially stretched sheets (B, C) formed by the method of the present invention are
It was more transparent than the unstretched cut sheet (A), and had excellent dielectric breakdown voltage and tensile strength.
以下余白Margin below
第1図は本発明の圧縮成形による実施態様を示す模式図
、第2図は別の実施態様を示す模式図、第3図は複数の
樹脂素地を互に非接着状態で重ねて圧縮成形する種々の
実施態様を示す模式図、第4図は本発明に使用される圧
縮成形機の態様の要部を示す断面図、第5図は第4図の
圧縮成形機を用いて本発明を実施する過程の要部を示す
断面図、第6図は本発明の押出成形による実施態様の要
部を示す断面図、第7図は第6図のA、B、C各部分に
おける成形体の流動変化を示す斜視図、第8図はラム押
出機を用いた押出成形による実施態様の要部を示す断面
図、第9図は押出成形によってパイプを成形する実施態
様の要部を示す断面図である。
特許出願人 旭化成工業株式会社
第
第5図
う0
jlE5図
手続補正書(自発)
昭和60年2月28日
特許庁長官 志 賀 学 殿
1、事件の表示
昭和59年特許願第262949号
2、発明の名称
フッ奮、樹脂の成形法
3、補正をする者
事件との関係 特許出願人
大阪府大阪市北区堂島浜1丁目2番6号4、補正の対象
明細書の「発明の詳細な説明」の欄
5、補正の内容
(1) 第4頁第6行「重合体」を「重合体等の難加
工性樹脂」と訂正する。
(2) 第6頁第6行「異樹脂シート」を「シート」
と訂正する。
(3) 第6頁第12行に次文を追加する。
「又、PTF[!は互に接着しにくいことを利用して、
予備成形品を別々に加熱し、積層してすぐに圧縮成形す
れば、成形後容易に剥離できる。」(4) 第7頁第1
1行r(T、−60℃)」を「(T。
+60℃)」と訂正する。
(5) 第7頁第14行r PTFI! Jの前に「
時間の経過につれ」を追加する。
(6)第8頁第3行「1.1倍か320倍」を「1.1
倍から20倍」と訂正する。
手続補正書(自発)
昭和60年3月6日
特許庁長官 志 賀 学 殿
1、事件の表示
昭和59年特許願第262949号
2、発明の名称
フッ素樹脂の成形法
3、補正をする者
事件との関係 特許出願人
大阪府大阪市北区堂島浜1丁目2番6号4、補正の対象
明細書の「発明の詳細な説明」の欄
5、補正の内容
(1) 第11頁第6行の後に、次文を追加する。
「あるいは、素地11を別々に加熱した後圧縮成形直前
に積層する方法、素地11をT。より若干低い温度に加
熱して積層する方法である。
PTFBはT工より低い温度であれば、そのまま積層
層して圧縮へしても、成形後容易に剥離できる。」(2
)第16頁第20行「実施例」を「実施例1」と訂正す
る。
(3) 第18頁第9行の次に、次文を追加する。
「実施例2
実施例1で用いたIM厚のPTPB予備成形品を10枚
用意し、該予備成形品を別々に370℃に加熱した後、
積層し、直ちに第4図及び第5図で示した圧縮成形法を
用い、実施例1と同様に2軸延伸した。ダイ温度を37
0℃で圧縮して急冷しつつ面積比で10倍に2軸延伸し
た。
冷却後、2軸延伸された各層は容易に剥離でき、0.1
■厚の透明な2軸延伸PTF[!シートが10枚得られ
た。各シートの性能は、実施例1の表のBと同様であっ
た。」Fig. 1 is a schematic diagram showing an embodiment of the present invention by compression molding, Fig. 2 is a schematic diagram showing another embodiment, and Fig. 3 is a compression molding in which a plurality of resin substrates are stacked on top of each other in a non-adhered state. FIG. 4 is a schematic diagram showing various embodiments, FIG. 4 is a sectional view showing essential parts of the compression molding machine used in the present invention, and FIG. 5 is a diagram showing the present invention using the compression molding machine shown in FIG. 4. 6 is a cross-sectional view showing the main part of an embodiment of the present invention by extrusion molding, and FIG. FIG. 8 is a sectional view showing the main parts of an embodiment using extrusion molding using a ram extruder, and FIG. 9 is a sectional view showing the main parts of an embodiment in which pipes are formed by extrusion molding. be. Patent Applicant Asahi Kasei Kogyo Co., Ltd. Figure 5 U0 jlE5 Procedure Amendment (Voluntary) February 28, 1985 Manabu Shiga, Commissioner of the Patent Office1, Indication of Case Patent Application No. 262949 of 19882, Name of the invention, resin molding method 3, relationship with the case of the person making the amendment Patent applicant 1-2-6-4 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture, ``Detailed description of the invention'' in the specification to be amended ” column 5, contents of amendment (1) Page 4, line 6, “Polymer” is corrected to “Difficult-to-process resin such as polymer”. (2) Page 6, line 6, “different resin sheet” is “sheet”
I am corrected. (3) Add the following sentence to page 6, line 12. ``Also, by taking advantage of the fact that PTF [!] is difficult to adhere to each other,
If the preforms are heated separately, laminated, and immediately compression molded, they can be easily peeled off after molding. ” (4) Page 7 No. 1
Correct line 1 "r(T, -60°C)" to "(T. +60°C)". (5) Page 7, line 14 r PTFI! Before J.
Add "over time." (6) Page 8, line 3, change “1.1 times or 320 times” to “1.1
"From 20 times to 20 times," he corrected. Procedural amendment (voluntary) March 6, 1985 Manabu Shiga, Commissioner of the Patent Office1, Indication of the case 1982 Patent Application No. 2629492, Name of the invention Method for molding fluororesin3, Person making the amendment Case Relationship with Patent applicant 1-2-6-4 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture, "Detailed description of the invention" column 5 of the specification subject to amendment, Contents of amendment (1), page 11, line 6 Add the following sentence after . "Alternatively, the substrates 11 are heated separately and then laminated immediately before compression molding, or the substrates 11 are heated to a slightly lower temperature than the T. Even if it is laminated and compressed, it can be easily peeled off after molding.'' (2)
) On page 16, line 20, "Example" is corrected to "Example 1." (3) Add the following sentence after page 18, line 9. “Example 2 Ten PTPB preforms of IM thickness used in Example 1 were prepared, and after heating the preforms separately to 370°C,
The layers were laminated and immediately biaxially stretched in the same manner as in Example 1 using the compression molding method shown in FIGS. 4 and 5. Set the die temperature to 37
It was compressed at 0° C. and then biaxially stretched to an area ratio of 10 times while being rapidly cooled. After cooling, each biaxially stretched layer can be easily peeled off, with a thickness of 0.1
■Thick transparent biaxially stretched PTF [! Ten sheets were obtained. The performance of each sheet was similar to B in the table of Example 1. ”
Claims (1)
品を、潤滑されたダイ内で加圧下に延伸せしめることを
特徴とするフッ素樹脂の成形法。A fluororesin molding method characterized by stretching a fluororesin preform heated to a temperature close to or above its melting point under pressure in a lubricated die.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26294984A JPS61141529A (en) | 1984-12-14 | 1984-12-14 | Forming of fluorine resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26294984A JPS61141529A (en) | 1984-12-14 | 1984-12-14 | Forming of fluorine resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61141529A true JPS61141529A (en) | 1986-06-28 |
Family
ID=17382790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26294984A Pending JPS61141529A (en) | 1984-12-14 | 1984-12-14 | Forming of fluorine resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61141529A (en) |
-
1984
- 1984-12-14 JP JP26294984A patent/JPS61141529A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6346350B1 (en) | Structurally stable fusible battery separators and method of making same | |
US7976751B2 (en) | Expanded porous polytetrafluoroethylene film having elastic recovery property in thickness-wise direction of the film, production process thereof, and use of the porous film | |
EP0238076B1 (en) | A shaped article of an oriented tetrafluoroethylene polymer | |
EP0284165A2 (en) | A shaped article of a tetrafluoroethylene polymer | |
US2642625A (en) | Process for producing thin polytetrahaloethylene films | |
EP0614748A1 (en) | Method for producing thermoplastic resin sheet or film | |
EP1375112B1 (en) | Liquid-crystal polymer film and manufacturing method thereof | |
US5053180A (en) | Process for deformation of amorphous polymers | |
EP0140546B1 (en) | Stretchend fluorine type film and method for manufacture thereof | |
JP4351168B2 (en) | Method for producing polybutylene terephthalate film | |
JPS61141529A (en) | Forming of fluorine resin | |
JP2020055249A (en) | Molding method for polyarylene ether ketone resin sheet | |
WO2014103785A1 (en) | Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film | |
JPH0258093B2 (en) | ||
JP3456284B2 (en) | Porous tetrafluoroethylene resin laminate and method for producing the same | |
JPH056495B2 (en) | ||
JPH0458839B2 (en) | ||
KR102610907B1 (en) | Fluorine resin membrane | |
JPH0155087B2 (en) | ||
JPS60149418A (en) | Molding of crystalline macromolecular material | |
JPH01247432A (en) | Method for manufacturing polytetrafluoroethylene resin moldings | |
JP4507031B2 (en) | High-molecular-weight polyolefin film having highly transparent portion and method for producing the same | |
JP2005171171A (en) | Method for producing porous thin film | |
JPS6013515A (en) | Stretch molding method for thermoplastic resin | |
TW201347957A (en) | Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film |