JPS61140970A - Electrostatic stripping method - Google Patents
Electrostatic stripping methodInfo
- Publication number
- JPS61140970A JPS61140970A JP26391384A JP26391384A JPS61140970A JP S61140970 A JPS61140970 A JP S61140970A JP 26391384 A JP26391384 A JP 26391384A JP 26391384 A JP26391384 A JP 26391384A JP S61140970 A JPS61140970 A JP S61140970A
- Authority
- JP
- Japan
- Prior art keywords
- original
- density
- voltage
- charger
- peeling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/65—Apparatus which relate to the handling of copy material
- G03G15/6532—Removing a copy sheet form a xerographic drum, band or plate
- G03G15/6535—Removing a copy sheet form a xerographic drum, band or plate using electrostatic means, e.g. a separating corona
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
この発明は、トナー画像転写後の転写紙をチャージャか
らのACコロナ放電によって静電的に感光体から剥離す
る静電剥離方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an electrostatic peeling method in which transfer paper after toner image transfer is electrostatically peeled off from a photoreceptor by AC corona discharge from a charger.
〈従来技術とその欠点〉
静電剥離方法ではコロナ電流と感光体の電位分布との相
対関係によって感光体に密着している転写紙を剥離でき
る能力が変わってくる。その能力は感光体上の画像形成
領域に対するトナー付着量に応じて変化し、全面黒原稿
(画像形成領域全面にトナーが付着)の場合と全面白原
稿(画像形成領域全面にトナーが付着しない)の場合と
で能力差が最大となる。従って、剥離用チャージャに流
す電流の大きさが適正でないとトナー付着量が非常に多
い場合、または非常に少ない場合に転写紙を剥離できな
くなる場合が生じて(る。<Prior art and its drawbacks> In the electrostatic peeling method, the ability to peel off the transfer paper that is in close contact with the photoreceptor changes depending on the relative relationship between the corona current and the potential distribution of the photoreceptor. The ability changes depending on the amount of toner adhering to the image forming area on the photoconductor, and is different for completely black originals (toner adheres to the entire image forming area) and for completely white originals (toner does not adhere to the entire image forming area). The difference in ability is the largest between the two cases. Therefore, if the magnitude of the current applied to the peeling charger is not appropriate, the transfer paper may not be able to be peeled off when the amount of toner adhesion is very large or very small.
画像形成領域での画像部と非画像部との電位差を小さく
することによって、剥離用チャージャに流す電流(剥離
電流)適正幅を広(し、画像形成領域のトナー付着量が
多くても少なくても転写紙の剥離が安定して行われるよ
うにしている。By reducing the potential difference between the image area and the non-image area in the image forming area, the appropriate range of the current flowing to the peeling charger (peeling current) can be widened (and the amount of toner adhering to the image forming area can be large or small). This also ensures stable separation of the transfer paper.
しかしながら、上記方法では画像部と非画像部との電位
差を小さくする全面光照射部が必要になるとともに、全
面光照射をしてもその照射がトナーの上から行われるた
めに画像部の電位を非画像部の電位に十分に近づけるこ
とができない欠点があった。However, the above method requires a full-surface light irradiation section to reduce the potential difference between the image area and the non-image area, and even if the entire surface is irradiated with light, the irradiation is performed from above the toner, which reduces the potential of the image area. There was a drawback that the potential could not be brought sufficiently close to the potential of the non-image area.
〈発明の目的〉
この発明の目的は、画像部と非画像部との電位差を小さ
くする光照射手段を必要とせず、またその電位差が大き
くても転写紙の剥離を安定して行うことのできる静電剥
離方法を提供することにある。<Object of the Invention> The object of the invention is to provide a method that does not require a light irradiation means to reduce the potential difference between the image area and the non-image area, and can stably peel off the transfer paper even if the potential difference is large. An object of the present invention is to provide an electrostatic peeling method.
〈発明の構成および効果〉
この発明は、原稿走査時に原稿の画像領域先端部付近の
濃度を原稿濃度センサで検出し、その濃度に応じてトナ
ー画像転写後の転写紙の剥離用チャージャに流す電流の
大きさを制御することを特徴とする。<Configuration and Effects of the Invention> The present invention detects the density near the leading edge of the image area of the original when scanning the original using an original density sensor, and in accordance with the detected density, controls the current flow to the charger for separating the transfer paper after the toner image has been transferred. It is characterized by controlling the size of.
上記の構成によりこの発明によれば、画像形成領域の先
端部付近のトナー付着量は原稿の画像領域先端部付近の
濃度と比例するため、その先端部付近のトナー付着量に
応じて最適な剥離電流を設定でき、画像部と非画像部と
の電位差に無関係に転写紙の確実な剥離を行うことがで
きる。また光照射手段が不要になるため、複写プロセス
が簡単化し、且つその光照射手段を不要とする分だけ小
型化できる利点がある。With the above configuration, according to the present invention, the amount of toner adhering near the leading edge of the image forming area is proportional to the density near the leading edge of the image area of the document, so that optimum peeling can be performed according to the amount of toner adhering near the leading edge. The current can be set, and the transfer paper can be reliably peeled off regardless of the potential difference between the image area and the non-image area. Further, since the light irradiation means is not required, there is an advantage that the copying process is simplified and the size can be reduced by the fact that the light irradiation means is not required.
〈実施例〉
第1図はこの発明の方法が実施される複写機の要部概略
図である。図において1は感光体ドラム8の表面に形成
されている感光体8aを一様に帯電するメインチャージ
ャ、2は原稿(図示せず)を照射することによって得ら
れる画像光、3は現像層、4は現像された画像を転写紙
9に転写する転写チャージ中、5は感光体ドラム8から
転写紙9を剥離する剥離チャージャ、6は剥離後の感光
体ドラム表面を除電する除電チャージャ、7は除電後の
残留電荷をキャンセルする除電ランプである。なお、メ
インチャージャ1および転写チャージャ4にはDC高電
圧が印加され、除電チャージ中6にはAC高電圧が印加
される。また剥離チャージャ5にはAC高電圧にDCバ
イアス電圧が重量された電圧が印加される。後述するよ
うに、このDCバイアス電圧は原稿の画像形成領域の先
端部付近の濃度に応じて適切な値に設定される。即ち、
原稿の画像形成函域先端部付近の原稿濃度の大きさに応
じて剥離電流の実効値を可変できるようにしている。<Embodiment> FIG. 1 is a schematic diagram of the main parts of a copying machine in which the method of the present invention is implemented. In the figure, 1 is a main charger that uniformly charges the photoreceptor 8a formed on the surface of the photoreceptor drum 8, 2 is image light obtained by irradiating an original (not shown), 3 is a developing layer, 4 is a transfer charger for transferring the developed image onto the transfer paper 9; 5 is a peeling charger for peeling the transfer paper 9 from the photoreceptor drum 8; 6 is a static elimination charger for removing static from the surface of the photoreceptor drum after peeling; 7 is a charger for removing static electricity This is a static elimination lamp that cancels the residual charge after static elimination. It should be noted that a DC high voltage is applied to the main charger 1 and the transfer charger 4, and an AC high voltage is applied during static elimination charging 6. Further, a voltage obtained by adding a DC bias voltage to an AC high voltage is applied to the peeling charger 5. As will be described later, this DC bias voltage is set to an appropriate value depending on the density near the leading edge of the image forming area of the document. That is,
The effective value of the peeling current can be varied depending on the density of the original near the tip of the image forming box area of the original.
第2図は剥離電流の大きさを制御する制御部の構成を示
す図である。光源20から原稿21に照射された反射光
はCdsからなる原稿濃度センサ22で受光され、原稿
濃度を検出できるようにしている。本実施例ではMスキ
ャンによって原稿21の平均濃度を検出し、その大きさ
に応じて現像バイアス電流を決定する可変抵抗器1)の
設定値を変えるようにしている。原稿濃度センサ22の
出力は可変抵抗器1)とともに更にDCバイアス設定回
路12にも供給される。DCバイアス設定回路I2は原
稿濃度センサ22の濃度出力をタイミングT1で取り込
みその濃度出力に応じたDC電圧を発生させてAC高電
圧発生回路13に出力する。タイミングT1は、複写サ
イクル時に原稿濃度センサ22が原稿21の画像領域先
端部付近の濃度を検出するタイミングに設定されている
、AC高電圧発生回路13は一定のAC高電圧に上記D
C電圧を重量して剥離チャージャ5に供給する。なお、
AC高電圧発生回路13は剥離チャージャ5を起動する
特定のタイミングT2に駆動される。FIG. 2 is a diagram showing the configuration of a control section that controls the magnitude of the peeling current. The reflected light irradiated onto the original 21 from the light source 20 is received by an original density sensor 22 made of CDS, so that the density of the original can be detected. In this embodiment, the average density of the original 21 is detected by M-scanning, and the set value of the variable resistor 1) that determines the developing bias current is changed in accordance with the detected value. The output of the document density sensor 22 is further supplied to the DC bias setting circuit 12 as well as the variable resistor 1). The DC bias setting circuit I2 takes in the density output of the document density sensor 22 at timing T1, generates a DC voltage according to the density output, and outputs it to the AC high voltage generation circuit 13. Timing T1 is set to the timing at which the document density sensor 22 detects the density near the leading edge of the image area of the document 21 during the copying cycle.
The C voltage is supplied to the peeling charger 5 in a weighted manner. In addition,
The AC high voltage generating circuit 13 is driven at a specific timing T2 to start the peeling charger 5.
10は現像電流を供給するための電源である。10 is a power source for supplying a developing current.
上記の構成で、コピースタートボタンが操作されて予備
走査によって原稿濃度が検出され、複写サイクルに移り
感光体ドラム8が時計方向に回転し始めると、まずメイ
ンチャージャ1が起動して感光体8aの一様帯電が行わ
れる。このとき原稿濃度センサ22は原稿21の画像形
成領域の先端部付近の濃度を検出し、DCバイアス設定
回路12はそのタイミングTIで駆動されて濃度出力に
応じたDC電圧を発生する。次いで原稿からの画像光2
が露光されると画像部と非画像部とで電位差のある静電
潜像が形成される。次にその静電潜像が形成されている
画像形成領域が現像部に到達すると磁気ブラシ3aによ
って現像される。AC高電圧発生回路L3は上記のDC
バイアス設定回路12が発生しているDCバイアス電圧
と一定のAC高電圧とを重量し、その重量した電圧をタ
イミングT2で剥離チャージャ5に与える。一方、感光
体ドラム8の回転と同期して転写紙9も図示しない給紙
部から転写部へ送られてきており、また転写チャージャ
4にも図示しないDC高電圧発生部から一定のDC高電
圧が供給されているため、現像槽3で現像された画像は
転写部にて転写紙9に転写される。剥離チャージャ5は
、この時すでにAC高電圧発生回路13からAC高電圧
にDCバイアス電圧が重量された電圧によってコロナ放
電しているために、転写後の剥離紙9を8aから剥離し
て次の工程部へと送り出す。この時もしタイミングT1
で検出した原稿の画像形成領域先端部の濃度が低濃度で
あればその低濃度画像に適した剥離電流が流れる。また
、高濃度であればその高濃度画像に適した剥離電流が流
れる。ドラム8から転写紙9の先端部を剥離してしまえ
ば、以後剥離チャージャ5から流れる剥離電流の大きさ
がどのような大きさであってもすでに剥離を完了してい
るため問題は生じない。以後適当なタイミングで除電チ
ャージャ6および除電ランプ7が駆動され、複写プロセ
スの一工程を終了する。In the above configuration, when the copy start button is operated, the document density is detected by preliminary scanning, and the copy cycle begins, and the photoconductor drum 8 begins to rotate clockwise, the main charger 1 is started and the photoconductor 8a is activated. Uniform charging is performed. At this time, the original density sensor 22 detects the density near the leading edge of the image forming area of the original 21, and the DC bias setting circuit 12 is driven at the timing TI to generate a DC voltage according to the density output. Next, image light 2 from the original
When exposed, an electrostatic latent image with a potential difference between the image area and the non-image area is formed. Next, when the image forming area on which the electrostatic latent image is formed reaches the developing section, it is developed by the magnetic brush 3a. The AC high voltage generation circuit L3 is the above DC
The DC bias voltage generated by the bias setting circuit 12 is weighed with a constant AC high voltage, and the weighed voltage is applied to the peeling charger 5 at timing T2. On the other hand, in synchronization with the rotation of the photosensitive drum 8, the transfer paper 9 is also fed from a paper feed section (not shown) to the transfer section, and the transfer charger 4 is also supplied with a constant DC high voltage from a DC high voltage generation section (not shown). is supplied, the image developed in the developer tank 3 is transferred to the transfer paper 9 at the transfer section. At this time, the peeling charger 5 has already caused a corona discharge due to the voltage in which the AC high voltage and the DC bias voltage are combined from the AC high voltage generation circuit 13, so the peeling charger 5 peels off the peeling paper 9 after transfer from 8a and performs the next process. Send it to the engineering department. At this time, timing T1
If the density at the leading edge of the image forming area of the document detected in is low density, a peeling current suitable for the low density image flows. Further, if the density is high, a peeling current suitable for the high density image flows. Once the leading edge of the transfer paper 9 is peeled off from the drum 8, no problem will occur because the peeling has already been completed, regardless of the magnitude of the peeling current flowing from the peeling charger 5. Thereafter, the static eliminating charger 6 and the static eliminating lamp 7 are driven at appropriate timing, and one step of the copying process is completed.
次に上記実施例での実験結果を示す。Next, experimental results for the above example will be shown.
感光体8aとしてopc <有機窓光体)を使用し、画
像光2を露光した段階での画像部電位が500■、非画
像部電位が100■になるようにした。ACC高電圧体
生部13のAC電圧の周波数は300Hzである。以上
の条件で全面黒原稿の場合、剥離効率が一番良好なのは
剥離チャージャ5からドラム8に流れる剥離電流のDC
成分が一100〜0μAの範囲にある時である。この範
囲の電流値はDCバイアス設定回路12で設定するDC
バイアス電圧が一80〜650vの時に得られる。また
全面白原稿の場合、剥離効率が一番良好となるのは剥離
電流のDC成分が一100〜lOOμへの範囲にある時
である。この電流値を得るDCバイアス電圧は一80〜
1380Vである。第3図はこのDCバイアス電圧と剥
離電流のDC電流成分との関係を示している。一方、感
光体の表面電位と濃度センサ出力電圧との関係を測定す
ると第4図に示す関係が得られた。OPC (organic window photoconductor) was used as the photoreceptor 8a, and the potential of the image area at the stage of exposure to the image light 2 was set to 500 Å, and the potential of the non-image area was set to 100 Å. The frequency of the AC voltage of the ACC high voltage body part 13 is 300 Hz. In the case of an entirely black original under the above conditions, the best peeling efficiency is the DC peeling current flowing from the peeling charger 5 to the drum 8.
This is when the component is in the range of 1100 to 0 μA. The current value in this range is set by the DC bias setting circuit 12.
This is obtained when the bias voltage is between 180 and 650V. Further, in the case of an all-white original, the peeling efficiency is best when the DC component of the peeling current is in the range of 1100 to lOOμ. The DC bias voltage to obtain this current value is -80~
It is 1380V. FIG. 3 shows the relationship between this DC bias voltage and the DC current component of the peeling current. On the other hand, when the relationship between the surface potential of the photoreceptor and the concentration sensor output voltage was measured, the relationship shown in FIG. 4 was obtained.
以上の条件−で今、全面黒原稿の場合剥離電流のDC成
分が一50μA流れるように設定し、全面白原稿の場合
50μA流れるように設定した。Under the above conditions, the DC component of the peeling current was set to flow at 150 .mu.A for an all-black original, and 50 .mu.A for an all-white original.
つまり全面黒原稿の場合DCバイアス電圧が320■に
設定されるように、また全面白原稿の場合DCバイアス
電圧が980■に設定されるようにすると、第3図およ
び第4図のグラフから第5図に示すDCバイアス電圧と
濃度センサ出力電圧との関係を得ることができた。即ち
DCバイアス設定回路12に第5図に示す関係をアナロ
グ回路によって設定することにより、全面白原稿から全
面黒原稿に至るまでのどのような濃度の原稿であっても
転写紙を連続して確実に剥離することができた。In other words, if the DC bias voltage is set to 320■ for an entirely black original, and the DC bias voltage is set to 980■ for an entirely white original, then from the graphs in Figures 3 and 4, The relationship between the DC bias voltage and the concentration sensor output voltage shown in FIG. 5 could be obtained. That is, by setting the relationship shown in FIG. 5 in the DC bias setting circuit 12 using an analog circuit, it is possible to ensure that the transfer paper is continuously transferred regardless of the density of the original, from an all-white original to an all-black original. I was able to peel it off.
なお、上記の条件では、全面黒原稿の場合の剥離効率の
良好なりC電流成分の範囲と全面白原稿の場合の剥離効
率の良好なりC電流成分との範囲が一100〜0μAの
範囲においてオーバーラツプしているが、この範囲の電
流値を固定的に使用した場合安定した剥離作用を得るこ
とができなかった。Note that under the above conditions, there is an overlap between the range of the C current component, which has good peeling efficiency in the case of an entirely black original, and the C current component, which has good peeling efficiency in the case of an entirely white original, in the range of 1100 to 0 μA. However, when a current value in this range was used fixedly, a stable peeling effect could not be obtained.
第1図はこの発明の方法を実施する複写機の要部概略図
である。第2図は現像電流の大きさに応じて剥離電流を
制御する制御部の構成図である。
第3図〜第5図は所定の条件孔で第2図に示す装置で得
られた実験結果を示すグラフである。
5−@離チャージャ、8−感光体ドラム、8a−感光体
、 9−転写紙、
21−原稿、 22−原稿濃度センサ。FIG. 1 is a schematic diagram of the main parts of a copying machine that implements the method of the present invention. FIG. 2 is a block diagram of a control section that controls the stripping current according to the magnitude of the developing current. 3 to 5 are graphs showing experimental results obtained with the apparatus shown in FIG. 2 under predetermined hole conditions. 5-@separate charger, 8-photoconductor drum, 8a-photoconductor, 9-transfer paper, 21-document, 22-document density sensor.
Claims (1)
原稿濃度センサで検出し、その濃度に応じてトナー画像
転写後の転写紙の剥離用チャージャに流す電流の大きさ
を制御することを特徴とする静電剥離方法。(1) When scanning a document, the density near the leading edge of the image area of the document is detected by a document density sensor, and the magnitude of the current applied to the charger for separating the transfer paper after the toner image is transferred is controlled according to the detected density. Characteristic electrostatic peeling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26391384A JPS61140970A (en) | 1984-12-12 | 1984-12-12 | Electrostatic stripping method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26391384A JPS61140970A (en) | 1984-12-12 | 1984-12-12 | Electrostatic stripping method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61140970A true JPS61140970A (en) | 1986-06-28 |
Family
ID=17396001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26391384A Pending JPS61140970A (en) | 1984-12-12 | 1984-12-12 | Electrostatic stripping method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61140970A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4912515A (en) * | 1987-07-09 | 1990-03-27 | Canon Kabushiki Kaisha | Image forming apparatus |
-
1984
- 1984-12-12 JP JP26391384A patent/JPS61140970A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4912515A (en) * | 1987-07-09 | 1990-03-27 | Canon Kabushiki Kaisha | Image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS55118048A (en) | Method and apparatus for developing | |
US4792775A (en) | Method for the formation of outline images corresponding to the peripheral outlines of document's images | |
JPH0127422B2 (en) | ||
US4794062A (en) | Method for the formation of outline images corresponding to the peripheral outlines of document's images | |
JPS61140970A (en) | Electrostatic stripping method | |
JPS5882282A (en) | Image forming device | |
JPS6088976A (en) | Electrostatic separating method | |
JP2547218B2 (en) | Reverse image forming device | |
JPS59105661A (en) | Image controlling method in electrophotographic copying machine | |
JPH0312671A (en) | Electrophotographic copying device | |
JPS61289375A (en) | Negative and positive image forming device | |
JPH0394282A (en) | Image forming device | |
JPS587991B2 (en) | Developer liquid amount adjustment device in electrophotographic copying equipment | |
JP2000147846A (en) | Image forming device | |
JP3166940B2 (en) | Image forming operation method and image forming apparatus of reversal development system | |
JPS58118680A (en) | Picture formation device | |
JP3031418B2 (en) | Corona discharge device | |
JPH07104626B2 (en) | Electrophotographic device | |
JPH0361968A (en) | Image forming device | |
JPH0580639A (en) | Corona discharge device | |
JPS59182469A (en) | Image forming device | |
JPS58127949A (en) | Electrostatic printing method | |
JPS63109476A (en) | Image forming method | |
JPH0697357B2 (en) | Image forming device | |
JPH04275566A (en) | Electrophotographic recorder |