[go: up one dir, main page]

JPS61138592A - Method for removing bod componentand nitrogen component - Google Patents

Method for removing bod componentand nitrogen component

Info

Publication number
JPS61138592A
JPS61138592A JP59259352A JP25935284A JPS61138592A JP S61138592 A JPS61138592 A JP S61138592A JP 59259352 A JP59259352 A JP 59259352A JP 25935284 A JP25935284 A JP 25935284A JP S61138592 A JPS61138592 A JP S61138592A
Authority
JP
Japan
Prior art keywords
filler layer
layer
material layer
bod
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59259352A
Other languages
Japanese (ja)
Inventor
Masahiro Kawabata
雅博 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP59259352A priority Critical patent/JPS61138592A/en
Publication of JPS61138592A publication Critical patent/JPS61138592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To reduce a setting area and to stabilize a treatment by separating a packing material layer wherein microbes are implanted into two stages, inserting aerobes and anaerobes in the front-stage of the packing material layer in coexistence with each other, and implanting aerobes in the rear-stage of the packing material layer. CONSTITUTION:The packing material layer is separated into two stages, untreated water is brought into contact in series with the front-stage of the packing material layer 1 and the rear-stage of the packing material layer 2, and the part of water discharged from the layer 2 is circulated into an untreated water vessel 5 and mixed, when untreated water contg. BOD components and nitrogen components is brought into contact with the packing material layer wherein microbes are implanted to remove biologically the BOD components and nitrogen components. Moreover, the aerobes and anaerobes are implanted in the layer 1 in coexistence with each other by controlling the amt. of dissolved oxygen in the vicinity of the outlet of the layer 1 to oxidize and denitrify the BOD components in the layer 1. Besides, oxygen is sufficiently supplied into the layer 2 to implant aerobes, and the residual BOD components are oxidized and/or nitrated in the layer 2. Consequently, the setting area can be reduced, and the treatment can be stabilized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は各種産業排水中のBOD成分と窒素成分を、各
種の充填材の表面あるいは空隙に微生物を着生させた、
いわゆる微生物膜に接触させて生物学的に処理する方法
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention uses BOD components and nitrogen components in various industrial wastewater to be treated with microorganisms grown on the surface or voids of various fillers.
This relates to a method of biological treatment by bringing it into contact with a so-called microbial membrane.

〈従来の技術〉 湖沼における富栄養化、閉鎖系海域における赤潮などの
原因物質として、窒素およびリンが注目されてから久し
く、排水からそれらの物質を除去する方法として種々の
方法が考えられている。
<Prior art> Nitrogen and phosphorus have long been attracting attention as causative agents of eutrophication in lakes and marshes and red tide in closed sea areas, and various methods have been considered to remove these substances from wastewater. .

従来から排水中の窒素成分を除去する場合、以下のよう
な反応を利用して活性汚泥法により、排水中の窒素成分
とともにBOD成分も同時に除去する方法が実施されて
いる。
BACKGROUND ART Conventionally, when removing nitrogen components from wastewater, a method has been implemented in which BOD components are simultaneously removed along with nitrogen components from wastewater by an activated sludge method using the following reaction.

SOD成分+Ot = COz + Hz O・−・(
1)有機態窒素+0□→CO□+N Ha ”+○H−
・・・(2)NH4”+3/20z−NOz−+HzO
+28”  −(31Noz−+1/202− N O
ff−・−・(41NOff−+有機炭素源−NO□−
+1/3CO2+2/3H,O・・・(5) N O2−十を機炭素源−1/2 N 2 + 1/2
 COz+OH・・・(6) すなわち排水を嫌気性槽および好気性槽の順に流入し、
かつ好気性槽の流出水の一部を嫌気性槽に循環するもの
で、好気性槽で(11〜(4)式によりBOD成分を除
去するとともに、排水中の有機態窒素およびアンモニア
態窒素をNo2−あるいはN03−(硝化)とし、また
嫌気性槽で(5)〜(6)式によりNO1\NO,−を
窒素ガスに分解(脱窒)するものである。
SOD component + Ot = COz + Hz O・-・(
1) Organic nitrogen +0□→CO□+N Ha ”+○H-
...(2) NH4"+3/20z-NOz-+HzO
+28"-(31Noz-+1/202-N O
ff-・-・(41NOff-+Organic carbon source-NO□-
+ 1/3 CO2 + 2/3 H, O... (5) N O2 - organic carbon source - 1/2 N 2 + 1/2
COz+OH...(6) In other words, the wastewater flows into the anaerobic tank and the aerobic tank in that order,
In addition, a part of the water flowing out from the aerobic tank is circulated to the anaerobic tank. In the aerobic tank, BOD components are removed using equations (11 to (4)), and organic nitrogen and ammonia nitrogen in the wastewater are removed. NO2- or N03- (nitrification), and NO1\NO,- is decomposed into nitrogen gas (denitrification) using equations (5) and (6) in an anaerobic tank.

〈発明が解決しようとする問題点〉 しかしながら従来の活性汚泥法によるBOD成分および
窒素成分の除去方法は、微生物群をスラリー状として反
応させるため効率が悪く、処理装置が比較的大きくなる
欠点が有り、またバルキングを起こしやすいなど、処理
の安定性に問題がある。
<Problems to be solved by the invention> However, the conventional activated sludge method for removing BOD and nitrogen components is inefficient because it reacts with microorganisms in the form of a slurry, and has the disadvantage that the processing equipment is relatively large. There are also problems with processing stability, such as bulking.

本発明は生物学的に排水中のBOD成分および窒素成分
を除去する際の、従来の欠点を解決し、設置面積を小さ
くするとともに安定して処理できる方法を提供すること
を目的とする。
The present invention aims to solve the conventional drawbacks in biologically removing BOD components and nitrogen components from wastewater, and to provide a method that can reduce the installation area and perform stable treatment.

〈問題点を解決する手段〉 本発明は微生物を着生した充填材層を2段に分割し、原
水を前段充填材層から後段充填材層に直列に接触させる
とともに、後段充填材層の流出水の一部を原水に循環混
合し、かつ前段充填材層出口付近の流出水中の溶存酸素
を適当な値に調節することによって、前段充填材層に好
気性微生物と嫌気性微生物を共存させて着生させ、接触
する水中のBOD成分を好気性微生物によって酸化分解
すると同時に、NO,−1N Ox−を嫌気性微生物に
よって窒素に分解し、さらに後段充填材層に充分に酸素
を供給することによって当該充填材層に好気性微生物を
着生させ、接触する水中の残留BOD成分の酸化分解お
よびまたは有機態窒素、アンモニア態窒素をNO1\N
o、−に硝化するものである。
<Means for Solving the Problems> The present invention divides the packing material layer on which microorganisms have grown into two stages, brings the raw water into contact with the former filling material layer in series, and prevents the outflow of the latter filling material layer. By circulating and mixing a portion of the water with the raw water and adjusting the dissolved oxygen in the outflow water near the outlet of the front filler layer to an appropriate value, aerobic microorganisms and anaerobic microorganisms can coexist in the front filler layer. By oxidizing and decomposing the BOD components in the water that comes into contact with the plant by aerobic microorganisms, NO and -1N Ox- are decomposed into nitrogen by anaerobic microorganisms, and by supplying sufficient oxygen to the subsequent filler layer. Aerobic microorganisms are grown on the filler layer to oxidize and decompose residual BOD components in the water that comes into contact with it, and/or to remove organic nitrogen and ammonia nitrogen.
It is nitrified to o, -.

以下に本発明を図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の実施態様の一例を示すフローの説明図
であり、各種の充填材を充填した前段反応槽1および後
段反応槽2を直列に配置する。これらの反応槽は微生物
膜装置として従来から公知のものであり、前記充填材の
表面あるいは空隙に微生物を着生させるものである。
FIG. 1 is an explanatory diagram of a flow showing an example of an embodiment of the present invention, in which a first stage reaction tank 1 and a second stage reaction tank 2 filled with various fillers are arranged in series. These reaction vessels are conventionally known as microbial membrane devices, and allow microorganisms to grow on the surface or voids of the filler.

当該反応槽1および2の充填材としては砂利、砕石、軽
量人工石などの粒状物あるいはラシヒリング、網状体、
ハニカムチューブなどの成形物があるが、軽量人工石は
その表面が多孔質であり、微生物の着生に効果的であり
、かつ簡単に充填することができ、さらに充填材層中に
肥大して着生した微生物を上昇流水で洗浄する際、比較
的低流速で充填材を浮動させることができるので充填材
として軽量人工石を用いることが好ましい。
The filler for the reaction tanks 1 and 2 may be granular materials such as gravel, crushed stone, lightweight artificial stone, Raschig rings, net-like materials, etc.
There are molded products such as honeycomb tubes, but lightweight artificial stone has a porous surface that is effective for microbial colonization, and can be easily filled. When washing the attached microorganisms with rising water, it is preferable to use lightweight artificial stone as the filler because the filler can be floated at a relatively low flow rate.

く作用〉 本発明においては、まず窒素成分およびBOD成分を含
む排水3と後段反応槽2の流出水4の一部を原水槽5で
混合し、当該混合水をポンプ6により、前段反応槽1の
下部から上昇流で流入し、同時にプロワ7からの空気を
前段反応槽1の下部から流入して酸素を供給する。
In the present invention, first, the wastewater 3 containing nitrogen components and BOD components and a part of the outflow water 4 from the second stage reaction tank 2 are mixed in the raw water tank 5, and the mixed water is pumped by the pump 6 to the first stage reaction tank 1. At the same time, air from the blower 7 flows in from the lower part of the pre-stage reaction tank 1 to supply oxygen.

当該前段反応槽1に充分に酸素を供給すれば、充填材層
には好気性微生物が生育し、また酸素を供給しなければ
嫌気性微生物が生育するが、本発明においては前段反応
槽1の上方部に設けた溶存酸素濃度計8Aにより、充填
材層出口付近の流出水中の溶存酸素を測定し、当該値を
適当な値に調節することによって、前段反応槽l内の充
填材層に好気性微生物と嫌気性微生物を共存させて着生
させ、好気性微生物により、前述した反応式+11によ
り、水中のBOD成分を除去し、また嫌気性微生物によ
り、反応式(5)、(6)により、水中のNOZ、NO
Zを窒素に分解するものである。
If sufficient oxygen is supplied to the first stage reaction tank 1, aerobic microorganisms will grow in the filler layer, and if oxygen is not supplied, anaerobic microorganisms will grow. The dissolved oxygen concentration meter 8A installed in the upper part measures the dissolved oxygen in the outflow water near the outlet of the packing material layer, and by adjusting the value to an appropriate value, it is possible to provide a suitable solution to the filling material layer in the pre-stage reaction tank l. Aerobic microorganisms and anaerobic microorganisms are allowed to coexist and colonize, and the aerobic microorganisms remove the BOD component in the water according to the reaction formula +11 described above, and the anaerobic microorganisms remove the BOD component from the water according to reaction formulas (5) and (6). , NOZ in water, NO
It decomposes Z into nitrogen.

微生物膜装置の場合、活性汚泥法のように微生物をスラ
リー状で存在させるのと相違し、微生物を充填材に膜状
を呈して保持するので、当該微生物膜の外側は酸素が拡
散しやすいため好気性となり、またその内側は酸素が拡
散しに(いため嫌気性になりやすい。
In the case of a microbial membrane device, unlike the activated sludge method in which microorganisms are present in the form of a slurry, the microorganisms are held in a membrane form in the filler, so oxygen can easily diffuse outside the microbial membrane. It becomes aerobic, and the inside tends to become anaerobic due to the diffusion of oxygen.

本発明は微生物膜におけるかかる性質を積極的に利用す
るもので、充填材層出口付近の溶存酸素を0.2〜2m
g as O/βに調整することにより、微生物膜の外
側を好気性微生物、内側を嫌気性微生物として安定に維
持するものである。なお充填材層出口付近の溶存酸素が
092mg as O/1以下では好気性微生物の育生
が阻害され、また2mg as 071以上では嫌気性
微生物の育生が阻害され、いずれも好気性微生物と嫌気
性微生物を安定して維持することができず、本発明の目
的を達し得ない。
The present invention actively utilizes such properties of the microbial membrane, and the dissolved oxygen near the outlet of the filler layer is
By adjusting g as O/β, the outside of the microbial membrane is stably maintained as aerobic microorganisms, and the inside as anaerobic microorganisms. If the dissolved oxygen near the outlet of the filler layer is less than 092 mg as O/1, the growth of aerobic microorganisms will be inhibited, and if it is more than 2 mg as 071, the growth of anaerobic microorganisms will be inhibited, and both aerobic microorganisms and anaerobic microorganisms cannot be maintained stably, and the object of the present invention cannot be achieved.

このような前段反応槽lの充填材層出口付近の流出中水
の溶存酸素を0.2〜2mg as O//lに調節す
るには、たとえば図示したように充填材層の直上に溶存
酸素濃度計8Aを付設し、当該濃度計8Aの信号により
連動する弁9により空気の供給量を調節するとよい。な
お排水3の水質が安定している場合は手動弁でも差し支
えない。またブロワにインバータを組み込んで、回転数
を可変することで空気量を調節することもできる。
In order to adjust the dissolved oxygen in the water flowing out near the outlet of the packing material layer of the first stage reaction tank 1 to 0.2 to 2 mg as O//l, for example, as shown in the figure, dissolved oxygen is added directly above the packing material layer. It is preferable that a densitometer 8A is attached and the amount of air supplied is adjusted by a valve 9 that is operated in response to a signal from the densitometer 8A. Note that if the water quality of drainage water 3 is stable, a manual valve may be used. Additionally, the amount of air can be adjusted by incorporating an inverter into the blower and varying the rotation speed.

本発明は次いで前段反応槽1の流出水を後段反応槽2の
下部から上昇流で流入し、同時にブロワ7からの空気を
後段反応槽2の下部から流入して酸素を供給する。
In the present invention, the outflow water from the first stage reaction tank 1 then flows upwardly into the second stage reaction tank 2 from the lower part thereof, and at the same time, the air from the blower 7 flows from the bottom part of the second stage reaction tank 2 to supply oxygen.

本発明における後段反応槽2は水中の有機態窒素とアン
モニア態窒素を好気性微生物により前述ノ(2)、(3
)、(4)式によりNo2−およびNo、−とじ、かつ
BOD成分が残留している場合は、これを好気性微生物
により(1)式により酸化分解するものである。したが
って充分に酸素を供給することが必要で、後段反応槽2
の充填材層出口付近の流出水中の溶存酸素をすくなくと
も2mg as 071以上に調節する必要がある。2
mg as O/It以下の酸素量では上述の反応が効
率よく進行しないので好ましくない。
In the second stage reaction tank 2 of the present invention, organic nitrogen and ammonia nitrogen in water are removed by aerobic microorganisms as described in (2) and (3) above.
), (4), if No. 2- and No. - binding and BOD components remain, they are oxidized and decomposed by aerobic microorganisms according to equation (1). Therefore, it is necessary to supply sufficient oxygen to the second stage reaction tank 2.
It is necessary to adjust the dissolved oxygen in the outflow water near the outlet of the filler layer to at least 2 mg as 071 or more. 2
If the amount of oxygen is less than mg as O/It, the above-mentioned reaction will not proceed efficiently, which is not preferable.

なお前段反応槽1と同様にして、後段反応槽2の上方部
に溶存酸素濃度計8Bを付設し、当該濃度計8Bの信号
により連動する弁lOにより空気の供給量を調節するこ
とが好ましいが、後段反応槽2の場合は前段反応槽1と
異なり流出水中の酸素量をある値の範囲に入れるという
厳格な調節は必要なく、2mg as 071以上とす
ればよいのであるから、必要にして充分な空気を供給す
る場合は溶存酸素濃度計8Bの付設を省略することがで
きる。
In addition, it is preferable to attach a dissolved oxygen concentration meter 8B to the upper part of the second stage reaction tank 2 in the same way as the first stage reaction tank 1, and to adjust the amount of air supplied by a valve 1O which is interlocked with the signal from the second stage reaction tank 8B. In the case of the second stage reaction tank 2, unlike the first stage reaction tank 1, there is no need to strictly control the amount of oxygen in the outflow water to keep it within a certain value range, and it is sufficient to keep it at 2 mg as 071 or more. In the case of supplying air such as air, the addition of the dissolved oxygen concentration meter 8B can be omitted.

後段反応槽2の流出水4を次いで分配槽11に送給し、
ここで原水槽5に循環すべき流出水と、処理水として取
り出す流出水とに分配する。なお流出水4の循環量を大
きくすればする程、排水3中の窒素成分の除去率は増加
するが、一方循環量に比例してポンプ6の容量が大きく
なって好ましくなく、通常は循環倍率(排水の流量+循
環流量/排水の流量)を2〜5程度にすることが適当で
ある。
The outflow water 4 from the latter stage reaction tank 2 is then fed to the distribution tank 11,
Here, the water is divided into effluent to be circulated to the raw water tank 5 and effluent to be taken out as treated water. The removal rate of nitrogen components in the waste water 3 increases as the circulation rate of the effluent water 4 increases, but on the other hand, the capacity of the pump 6 increases in proportion to the circulation rate, which is undesirable. It is appropriate that (flow rate of waste water + circulation flow rate/flow rate of waste water) be about 2 to 5.

第2図は本発明の他の実施態様を示すフローの説明図で
あり、反応槽12を前後に分割して下方を前段充填材層
13とし、上方を後段充填材層14としたものである。
FIG. 2 is an explanatory diagram of a flow showing another embodiment of the present invention, in which the reaction tank 12 is divided into front and rear parts, with the lower part serving as the former filling material layer 13 and the upper part serving as the latter filling material layer 14. .

すなわち排水3と後段充填材層14の流出水4の一部を
原水槽5で受け、当該混合水を反応槽12の下部から上
昇流で流入するとともに、ブロワ7の空気を反応槽12
の下部から供給して、前段充填材層13に着生させた好
気性微生物と嫌気性微生物により、水中のBOD成分を
酸化分解するとともに、NO□−1N Os−を窒素に
分解し、次いでその流出水をそのまま後段充填材層14
に上昇流で供給して、後段充填材層14に着生させた好
気性微生物により、水中のを機態窒素およびアンモニア
態窒素をNO,−1N Ox−にし、かつBOD成分が
残留する場合はこれを酸化分解するものである。なお溶
存酸素濃度計8Aと弁9により前段充填材層13の出口
付近の流出水中の溶存酸素を0.2〜2mg as O
7Nに調整することは言うまでもなく、また後段充填材
層14の下部から空気を追加供給して、後段充填材層1
4に充分に酸素を供給するものである。
That is, a part of the waste water 3 and the outflow water 4 from the latter filler layer 14 is received in the raw water tank 5, and the mixed water flows upwardly from the lower part of the reaction tank 12, and the air from the blower 7 is sent to the reaction tank 12.
The aerobic microorganisms and anaerobic microorganisms that are supplied from the lower part of the water and grown on the front filler layer 13 oxidize and decompose the BOD component in the water, decompose NO□-1N Os- into nitrogen, and then decompose the BOD component in the water. The effluent is directly transferred to the latter filler layer 14.
The aerobic microorganisms grown on the latter filler layer 14 convert the organic nitrogen and ammonia nitrogen in the water into NO, -1N Ox-, and if BOD components remain. This is oxidized and decomposed. The dissolved oxygen concentration meter 8A and valve 9 are used to measure dissolved oxygen in the outflow water near the outlet of the pre-stage filler layer 13 to 0.2 to 2 mg as O.
Needless to say, the pressure is adjusted to 7N, and air is additionally supplied from the lower part of the rear filling material layer 14 to
4, to supply sufficient oxygen.

なお第1図、第2図においてはいずれも充填材層に水を
上昇流で通水しているが、本発明は上昇流通水に限定さ
れるものでなく、場合によっては下降流通水とすること
ができる。
Note that in both FIGS. 1 and 2, water is passed through the filler layer in an upward flow, but the present invention is not limited to upward flowing water, and in some cases, downward flowing water may be used. be able to.

〈発明の効果〉 以上説明したごとく本発明においては従来の活性汚泥法
と異なり、微生物膜法によって排水中のBOD成分およ
び窒素成分を除去するので、保有生物量を大とすること
ができ、結果として装置の設置面積を小さくすることが
でき、かつバルキングなどの問題が全く生じないので、
安定して処理することができる。さらに本発明は従来の
活性汚泥法のように嫌気性槽と好気性槽とに明確に区別
することなく、前段充填材層に好気性微生物と嫌気性微
生物を共存させて着生させるので、空間を有効に用いて
いることとなり、これによっても装置の設置面積を小さ
くすることができる。
<Effects of the Invention> As explained above, in the present invention, unlike the conventional activated sludge method, the BOD component and nitrogen component in wastewater are removed by the microbial membrane method, so it is possible to increase the biomass retained. As a result, the installation area of the equipment can be reduced, and problems such as bulking do not occur at all.
Can be processed stably. Furthermore, unlike the conventional activated sludge method, the present invention does not clearly distinguish between anaerobic tanks and aerobic tanks, but allows aerobic microorganisms and anaerobic microorganisms to coexist and grow in the pre-filling material layer. This means that the system is effectively used, and this also allows the installation area of the device to be reduced.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

〈実施例〉 直径0.25 m、高さ2.5mの反応槽を2基用意し
、両槽に平均粒径12mの軽量人工石を2mの高さに充
填し、第1図に示したごとく一方を前段反応槽、他方を
後段反応槽とした。
<Example> Two reaction tanks with a diameter of 0.25 m and a height of 2.5 m were prepared, and both tanks were filled with lightweight artificial stones with an average particle size of 12 m to a height of 2 m, as shown in Figure 1. One side was used as a first-stage reaction tank, and the other side was used as a second-stage reaction tank.

BODが200mg as O/ l 、全窒素が30
mgasNil、アンモニア態窒素が10mg as 
N//lの排水を被処理水とし、当該排水を45 J/
Hで原水槽に供給するとともに、後段反応槽の流出水を
9017Hで循環混合し、13M/Hの混合水を前段反
応槽に上昇流で流入した。
BOD 200mg as O/l, total nitrogen 30
mgasNil, ammonia nitrogen is 10mg as
N//l of wastewater is treated as water to be treated, and the wastewater is treated as 45 J/l of wastewater.
At the same time, the water was supplied to the raw water tank with H, and the outflow water from the rear reaction tank was circulated and mixed with 9017H, and the mixed water of 13M/H was flowed into the front reaction tank in an upward flow.

また前段反応槽の下部から空気を1.5 m / Hで
流入し、前段反応槽の充填材層出口付近の流出水中の溶
存酸素を1.8mg as O/lに調整するとともに
、後段反応槽の下部から充分な量の空気を流入して後段
反応槽の充填材層出口付近の流出水中の溶存酸素を2m
g as 0714以上になるようにした。
In addition, air is introduced from the lower part of the first reaction tank at a rate of 1.5 m/H to adjust the dissolved oxygen in the outflow water near the outlet of the packing material layer of the first reaction tank to 1.8 mg as O/l, and A sufficient amount of air is introduced from the bottom of the tank to reduce the amount of dissolved oxygen in the outflow water near the outlet of the packing material layer of the latter stage reaction tank.
The g as was set to 0714 or higher.

このような運転を長時間続行し、処理が安定した際の前
段反応槽および後段反応槽それぞれの流出水中のBOD
および各窒素を測定したところ第1表の八に示すような
結果となった。
When such operation continues for a long time and the treatment becomes stable, the BOD in the outflow water from the front and rear reaction tanks
When each nitrogen was measured, the results were as shown in Table 1, 8.

次ぎに前段反応槽に供給する空気量のみを減少させ、当
該充填材層出口付近の流出水中の溶存酸素を0.2mg
 as O/(l以下にしたところ、処理が安定した際
の各槽流出水中のBODおよび各窒素は第1表の已に示
すような結果となった。
Next, reduce only the amount of air supplied to the first stage reaction tank, and reduce the dissolved oxygen in the outflow water near the outlet of the packing material layer to 0.2 mg.
As O/(l) or less, the BOD and each nitrogen in the outflow water from each tank when the treatment was stabilized were as shown in Table 1.

さらに前段反応槽に供給する溶存酸素を2mgasO/
1以上としたところ、処理が安定した際の各槽流出水中
のBODおよび各窒素は第1表のCに示すような結果と
なった。
Furthermore, the dissolved oxygen supplied to the first stage reaction tank is 2 mgsO/
When it was set to 1 or more, the BOD and each nitrogen in the outflow water from each tank when the treatment was stabilized resulted in the results shown in C in Table 1.

? 第1表のBに見られるごとく、前段反応槽の空気量が不
足すると、前段反応槽の好気性微生物の活動が阻害され
るのでBOD成分の除去量が低下し、さらにこの影響が
後段反応槽に及び、硝化反応が阻害され全窒素の除去量
も低下する。また第1表のCに見られるごと(、前段反
応槽の空気量が過剰であると、前段反応槽における脱窒
反応が阻害され全窒素の除去量が低下する。
? As shown in B in Table 1, when the amount of air in the front reaction tank is insufficient, the activity of aerobic microorganisms in the front reaction tank is inhibited, resulting in a decrease in the amount of BOD components removed. As a result, the nitrification reaction is inhibited and the amount of total nitrogen removed also decreases. Furthermore, as shown in C of Table 1 (if the amount of air in the front reaction tank is excessive, the denitrification reaction in the front reaction tank is inhibited and the amount of total nitrogen removed is reduced).

前段反応槽の充填材層出口付近の溶存酸素を0゜2〜2
.0mg as O/lの範囲に調節したAではBOD
成分および窒素成分とも効果的に除去されている。
Dissolved oxygen near the outlet of the packing material layer in the first stage reaction tank was reduced to 0°2~2
.. BOD in A adjusted to 0 mg as O/l range
and nitrogen components are effectively removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様の一例を示すフローの説明図
であり、第2図は本発明の他の実施−態様を示すフロー
の説明図である。
FIG. 1 is a flow explanatory diagram showing an example of an embodiment of the present invention, and FIG. 2 is a flow explanatory diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 微生物を着生した充填材層に、BOD成分と窒素成分を
含む原水を接触させてBOD成分と窒素成分を生物学的
に除去するにあたり、前記充填材層を2段に分割し、原
水を前段充填材層から後段充填材層に直列に接触させる
とともに、後段充填材層の流出水の一部を原水に循環混
合し、かつ前段充填材層出口付近の流出水中の溶存酸素
量を調節することによって、当該充填材層に好気性微生
物と嫌気性微生物を共存させて着生させ、当該前段充填
材層でBOD成分の酸化と脱窒を行い、また後段充填材
層に充分に酸素を供給することによって、当該充填材層
に好気性微生物を着生させ、当該充填材層で残留BOD
成分の酸化およびまたは硝化を行うことを特徴とするB
OD成分と窒素成分の除去方法。
In order to biologically remove BOD and nitrogen components by bringing raw water containing BOD and nitrogen components into contact with the filler layer on which microorganisms have grown, the filler layer is divided into two stages, and the raw water is added to the first stage. Bringing the filler layer into series contact with the latter filler layer, circulating and mixing a portion of the outflow water from the latter filler layer with the raw water, and adjusting the amount of dissolved oxygen in the outflow water near the outlet of the first filler layer. By allowing aerobic microorganisms and anaerobic microorganisms to coexist and grow on the filler layer, oxidation and denitrification of BOD components are performed in the first filler layer, and sufficient oxygen is supplied to the second filler layer. By doing so, aerobic microorganisms are allowed to grow on the filler layer, and residual BOD is removed in the filler layer.
B, characterized by oxidizing and/or nitrifying components
How to remove OD and nitrogen components.
JP59259352A 1984-12-10 1984-12-10 Method for removing bod componentand nitrogen component Pending JPS61138592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259352A JPS61138592A (en) 1984-12-10 1984-12-10 Method for removing bod componentand nitrogen component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259352A JPS61138592A (en) 1984-12-10 1984-12-10 Method for removing bod componentand nitrogen component

Publications (1)

Publication Number Publication Date
JPS61138592A true JPS61138592A (en) 1986-06-26

Family

ID=17332913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259352A Pending JPS61138592A (en) 1984-12-10 1984-12-10 Method for removing bod componentand nitrogen component

Country Status (1)

Country Link
JP (1) JPS61138592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436097U (en) * 1987-08-31 1989-03-06
JPH01224095A (en) * 1988-03-04 1989-09-07 Kurita Water Ind Ltd Agglutinating biological filtration device
JPH02502442A (en) * 1987-02-27 1990-08-09 ローレンツ・ギュンテル Biological dephosphorization and -(de)nitrification
JPH0370799U (en) * 1989-11-07 1991-07-16
EP0489626B1 (en) * 1990-12-03 1994-03-30 Degremont Reactor for biological oxidation and reduction; process for biofiltration and process for rinsing the reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139787A (en) * 1982-02-15 1983-08-19 Ebara Infilco Co Ltd Biological treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139787A (en) * 1982-02-15 1983-08-19 Ebara Infilco Co Ltd Biological treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502442A (en) * 1987-02-27 1990-08-09 ローレンツ・ギュンテル Biological dephosphorization and -(de)nitrification
JP2831366B2 (en) * 1987-02-27 1998-12-02 ローレンツ・ギュンテル Biological dephosphorization and-(de) nitrification
JPS6436097U (en) * 1987-08-31 1989-03-06
JPH01224095A (en) * 1988-03-04 1989-09-07 Kurita Water Ind Ltd Agglutinating biological filtration device
JPH0370799U (en) * 1989-11-07 1991-07-16
EP0489626B1 (en) * 1990-12-03 1994-03-30 Degremont Reactor for biological oxidation and reduction; process for biofiltration and process for rinsing the reactor

Similar Documents

Publication Publication Date Title
US4415454A (en) Nitrification treatment of wastewater
EP0575314B1 (en) Method and reactor for purification of water
JPS5840198A (en) Method and device for biologically purifying waste water
JPH10510203A (en) Wastewater treatment method and plant
JPS6112759B2 (en)
MXPA97003625A (en) Method and plant for the treatment of wastewater
JPH01135592A (en) Biological purification of waste water
JP3089297B2 (en) Post-treatment equipment for anaerobic sewage treatment
TWI403467B (en) Treatment device for drainage containing organic sulfur compounds
JPS61138592A (en) Method for removing bod componentand nitrogen component
Fang et al. Removal of COD and nitrogen in wastewater using sequencing batch reactor with fibrous packing
JP3303665B2 (en) Nitrification / denitrification method and apparatus
KR100292432B1 (en) Oxidized spherical natural purification
WO1997033836A1 (en) Method and apparatus for treating water
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JPH09253687A (en) Wastewater anaerobic / aerobic treatment equipment
JPS6038095A (en) Treatment of organic sewage
JP2540150B2 (en) Biological denitrification equipment
JPH07241584A (en) Wastewater treatment method and treatment apparatus with composite activated sludge carrier
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR100294863B1 (en) An oxidation ditch natural purification equipment
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JPS62225296A (en) Biological nitrification and denitrification device
JP4915035B2 (en) Wastewater treatment method
SU1710515A1 (en) Composition for biochemical elimination of oil pollution from the reservoir surfaces