[go: up one dir, main page]

JPS61138516A - Permselective compound membrane for gas - Google Patents

Permselective compound membrane for gas

Info

Publication number
JPS61138516A
JPS61138516A JP26025184A JP26025184A JPS61138516A JP S61138516 A JPS61138516 A JP S61138516A JP 26025184 A JP26025184 A JP 26025184A JP 26025184 A JP26025184 A JP 26025184A JP S61138516 A JPS61138516 A JP S61138516A
Authority
JP
Japan
Prior art keywords
layer
metal layer
compound membrane
porous support
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26025184A
Other languages
Japanese (ja)
Inventor
Yukihiro Saito
斉藤 幸廣
Midori Kawahito
川人 美登利
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26025184A priority Critical patent/JPS61138516A/en
Publication of JPS61138516A publication Critical patent/JPS61138516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase the affinity of the surface of a porous base body to a thin polymer film for facilitating the prepn. of a compound membrane, to improve the film forming property and to reduce deterioration of the compound membrane by providing a metal layer or a metal oxide layer between the porous base body and the thin polymer film. CONSTITUTION:A metal layer 2 such as Au layer, etc. is formed by sputtering vapor deposition on a porous base body 1 such as polypropylene, etc. A thin polymer film 3 of such as polyhydroxy styrene/polysulfone/polydimethyl siloxane copolymer, etc. is formed on the vapor-deposited metal layer by the film developing method on water surface to obtain a permselective compound membrane for gas. Metal oxide layer may be vapor-deposited in place of the metal layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は膜分離の中で特に気体系の分離に利用できるも
ので、空気中の酸素濃度を高めた酸素富化空気の製造、
ヘリウムガスの回収等に利用できる選択気体透過性複合
膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is particularly applicable to separation of gaseous systems among membrane separations, including the production of oxygen-enriched air with increased oxygen concentration in the air;
This invention relates to a selective gas permeable composite membrane that can be used for recovery of helium gas, etc.

従来例の構成とその問題点 気体分離に用いられる選択気体透過性腹合膜としては多
孔質支持体とメチルペンテン重合体又はオルガノシロキ
サン−ポリカーボネート共重合体からなる薄膜を積層し
て一体化した複合膜(特開昭51−89564号公報お
よび特開昭54−40868号公報)等が従来開示され
ていた。かかる複合化膜に用いられる多孔質支持体の素
材としてはポリプロピレン、ポリエチレン、ポリスルホ
ン、セルロースエステル、ポリカーボネート、テフロン
等が開示されている。
Structure of conventional examples and their problems Selective gas permeable peritoneal membranes used for gas separation are composites in which a porous support and a thin film made of methylpentene polymer or organosiloxane-polycarbonate copolymer are laminated and integrated. Films (Japanese Unexamined Patent Publication No. 51-89564 and Unexamined Japanese Patent Application No. 54-40868) have been disclosed in the past. Polypropylene, polyethylene, polysulfone, cellulose ester, polycarbonate, Teflon, and the like are disclosed as materials for the porous support used in such composite membranes.

前記の例の如き選択透過性を有する薄膜を支持するため
の多孔質支持体としては、薄膜を選択的に透過してくる
透過物質が多孔質支持体を透過する際に実質的に抵抗を
与えない程度に多孔質構造になっていること、薄膜と適
度の親和性を有すること、実際の使用条件における圧力
、温度等により変形を受けないこと等が必要となる。し
かしながら前記支持体素材はこれらの特性を全て満足す
るものとは言えなかった。
As a porous support for supporting a thin membrane having permselectivity as in the above example, a porous support that substantially provides resistance when the permeable substance that selectively permeates through the thin membrane permeates through the porous support. It is necessary to have a porous structure to a certain degree, to have a suitable affinity with thin films, and to not be deformed by pressure, temperature, etc. under actual usage conditions. However, the support material described above cannot be said to satisfy all of these characteristics.

例えばポリエチレン、ポリプロピレンからなる支持体は
耐薬品性、耐PH性が優れているが、ポリマー自体が無
極性であるために、薄膜との親和性に欠は支持体と薄膜
との復合化に問題があった。
For example, supports made of polyethylene and polypropylene have excellent chemical resistance and PH resistance, but since the polymer itself is non-polar, it lacks compatibility with thin films and causes problems in decoupling between the support and thin films. was there.

テフロンの場合は耐薬品、耐PH性はもちろん耐熱性も
優れるが、やはり無極性であるため薄膜との親和性に欠
ける。
In the case of Teflon, it has excellent chemical resistance, PH resistance, and heat resistance, but since it is nonpolar, it lacks compatibility with thin films.

一方ポリスルホン、ポリカーボネート、セルロースエス
テルは各種溶媒に溶解し成形性が良い反面、空孔率が低
く、薄膜と複合化した場合気体透過性が低くなる欠点を
有している。
On the other hand, although polysulfone, polycarbonate, and cellulose ester dissolve in various solvents and have good moldability, they have a drawback of low porosity and low gas permeability when composited with a thin film.

またこれら支持体の中でポリエチレン、ポリプロピレン
等には加工性を向上し、耐熱性をもたせるため可塑剤も
しくは抗酸化剤等が含有されている。従って、薄膜をこ
れら支持体上に積層した場合これらの添加物が影響して
膜特性に劣化を生じる。これは高分子の薄膜がきわめて
活性なためて支持体中の添加物がごく微量であっても膜
特性に大きく影響し、複合膜の気体透過特性の劣化原因
になる。
Among these supports, polyethylene, polypropylene, etc. contain plasticizers, antioxidants, etc. to improve processability and provide heat resistance. Therefore, when a thin film is laminated on these supports, these additives affect the film properties and cause deterioration. This is because the polymer thin film is extremely active, so even a very small amount of additives in the support greatly affects the membrane properties, causing deterioration of the gas permeation properties of the composite membrane.

気体透過特性を考えた場合支持体としてはポリエチレン
、ポリプロピレン、テフロンの方が空孔率が大きく、実
用化を考えた場合有利であるが、前述したように高分子
薄膜との親和性と耐久性の点で問題である。
When considering gas permeation characteristics, polyethylene, polypropylene, and Teflon have higher porosity as a support and are advantageous when considering practical use, but as mentioned above, they have poor compatibility with polymer thin films and durability. This is a problem.

発明の目的 本発明は上記問題点を解決するもので、多孔質支持体の
表面を薄膜と親和性の高いものに変えることにより薄膜
と支持体の複合化を容易にし製膜性向上と同時に、複合
膜の劣化を大巾に改善することにある。
Purpose of the Invention The present invention solves the above-mentioned problems. By changing the surface of the porous support to one that has a high affinity with the thin film, it becomes easier to combine the thin film and the support, and at the same time improves film formability. The aim is to significantly improve the deterioration of composite membranes.

発明の構成 本発明は上記目的を達成するもので、微細孔を有する多
孔質支持体上に均質な高分子薄膜を積層してなる選択気
体透過性複合膜の多孔質支持体と高分子薄膜の中間に金
属層または金属酸化物層を設けたことを特徴とする選択
気体透過性複合膜を形成するものである。
Structure of the Invention The present invention achieves the above object, and consists of a porous support for a selective gas permeable composite membrane formed by laminating a homogeneous thin polymer film on a porous support having micropores, and a thin polymer film. A selective gas permeable composite membrane is formed which is characterized by having a metal layer or a metal oxide layer provided in the middle.

実施例の説明 以下に本発明の実施例を図面を用いて説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

図は本発明の一実施例における選択気体透過性複合膜の
断面図を示す。
The figure shows a cross-sectional view of a selective gas permeable composite membrane in one embodiment of the present invention.

本実施例では、多孔質支持体1上にスパッタ蒸着により
金属層2を設け、その上に鳥骨そ薄膜3が積層されてい
る。
In this embodiment, a metal layer 2 is provided on a porous support 1 by sputter deposition, and a chicken bone thin film 3 is laminated thereon.

く比較例〉 多孔質支持体1としてジュラガード2400(ポリプラ
スチック■社製)を用い、その表面にポリヒドロキシス
チレン(PH5)−ポリスルホン(ps)−ポリジメチ
ルシロキサン(F DMS ”)(シロキサン含有率6
0%)共重合体薄膜を水面上で展開し、支持体上に接触
し複合化を試みたが薄膜との親和性が悪く、単に支持体
との接触だけでは複合化は困難であった。そこで真空ポ
ンプにより吸引して薄膜と支持体を複合化した。こうし
て得られた複合膜の気体透過特性は初期流量が室m テ
0.08 CC/960 、(:j、 IL tmて、
酸素濃度は33q6(2次圧170mHg)てあった。
Comparative Example> Duraguard 2400 (manufactured by Polyplastic ■) was used as the porous support 1, and its surface was coated with polyhydroxystyrene (PH5)-polysulfone (ps)-polydimethylsiloxane (FDMS) (siloxane content). 6
Attempts were made to form a composite by spreading a copolymer thin film (0%) on the water surface and contacting it with a support, but the film had poor affinity and it was difficult to create a composite simply by contacting the support. Therefore, the thin film and support were combined by suction using a vacuum pump. The gas permeation properties of the composite membrane obtained in this way are such that the initial flow rate is 0.08 CC/960, (:j, IL tm,
The oxygen concentration was 33q6 (secondary pressure 170 mHg).

そしてこの条件で1000時間運転すると酸素濃度の変
化は殆んど見られないが、透過流量がo、o e cc
/sec、d、 atmとなり初期圃の75%まで低下
した。
After operating for 1000 hours under these conditions, there is almost no change in oxygen concentration, but the permeation flow rate is o, o e cc.
/sec, d, atm, which decreased to 75% of the initial field.

〈実施例ン 多孔質支持体1として比較例と同じくジュラが−ド24
00(ポリプラスチック■社製)を用い、その表面に金
属層2としてムUを約200Xスパツタ蒸着装置を用い
て蒸着した。この上に高分子薄膜3としてPH3−PS
−FDMS (シロキサン含有率60%)薄膜を水面展
開法で形成し複合化を試みたところ親和性が向上し、非
常に支持体と薄膜との接着は容易となった。またこの様
にして得られた複合膜は初期特性はおちず、複合膜の寿
命特性も大巾に改善され、約1000時間運転後で、酸
素濃度の変化はもちろんなく、膜流量も初期値の96%
に達した。
<Example> As the porous support 1, Jura-do 24 was used as in the comparative example.
00 (manufactured by Polyplastic ■ Co., Ltd.), and MuU was vapor-deposited as a metal layer 2 on the surface thereof using an approximately 200X sputter deposition apparatus. On top of this, PH3-PS is used as a polymer thin film 3.
- When a thin film of FDMS (60% siloxane content) was formed by a water surface spreading method and a composite was attempted, the affinity improved and the thin film could be bonded to the support very easily. In addition, the initial characteristics of the composite membrane obtained in this way do not deteriorate, and the life characteristics of the composite membrane are greatly improved. After approximately 1000 hours of operation, there is no change in oxygen concentration, and the membrane flow rate remains at the initial value of 96. %
reached.

なお前記実施例では多孔質支持体と高分子薄膜との間に
金属層を形成した場合について述へたが、金属層のかわ
りに金属酸化物層であっても同様の効果を奏する。
In the above embodiments, a case was described in which a metal layer was formed between the porous support and the polymer thin film, but the same effect can be obtained even if a metal oxide layer is used instead of the metal layer.

またかかる金属層または金属酸化物−の厚さは、100
0A以下が適当である。それはこれ以上に厚くすると多
孔質支持体の孔の部分も被ってしまい気体透過性が悪く
なってしまうからである。更に蒸着する金属または金属
酸化物としては、蒸着可能なものであれば原則としてど
れでも良く例えばC,Si、Go、Sn、AI!、Ga
、 In、Zn、Cu、Ag、Ni、Pd、C。
The thickness of such a metal layer or metal oxide is 100
0A or less is appropriate. This is because if it is thicker than this, it will cover the pores of the porous support, resulting in poor gas permeability. Further, as the metal or metal oxide to be vapor-deposited, in principle, any metal or metal oxide that can be vapor-deposited may be used, such as C, Si, Go, Sn, AI! , Ga
, In, Zn, Cu, Ag, Ni, Pd, C.

及びこれらの合金、酸化物が上けられる。and their alloys and oxides.

さらにまた高分子薄膜として4−メチルペンテン(セネ
ラルサイエ/スコーボレーンヨン■製)及びポリフェニ
レンオキサイド、ポリトリメチルノリルグロビンについ
て実験を行なった結果同様の効果があり、多孔質支持体
表面に金属もしくは金属酸化物の蒸着層を設けることは
、多孔質支持体と高分子薄膜の複合膜の製造を容易にす
るばかりでなく優れた耐久性を与える。
Furthermore, as a thin polymer film, we conducted experiments using 4-methylpentene (manufactured by Cenelal Scie/Skobo Rayon ■), polyphenylene oxide, and polytrimethylnoryl globin, and the results showed that similar effects were obtained. Providing a vapor-deposited layer of material not only facilitates the production of a composite membrane of a porous support and a thin polymer film, but also provides excellent durability.

発明の効果 本発明は微細孔を有する多孔質支持体上に均質な高分子
薄膜を積層して成る選択気体透過性複合膜の多孔質支持
体と高分子薄膜の中間に金属層ま層 たは金属酸化6設けることを特徴とする選択気体透過性
複合膜で、この様な構成の複合膜は従来の金属又は金属
酸化物層の存在しない複合膜に比較して、多孔質支持体
の表面が高分子薄膜に対して親和性が著るしく向上し、
複合化が容易になるばかりでなく、この層が多孔質支持
体と高分子薄膜との相互作用をなくし膜特性の劣化を防
止し、膜寿命特性を著るしく改善する利点を有する。
Effects of the Invention The present invention provides a selective gas permeable composite membrane comprising a porous support having fine pores and a homogeneous thin polymer film laminated thereon. This is a selective gas permeable composite membrane characterized by the provision of metal oxide 6. Composite membranes with such a structure have a porous support whose surface is Significantly improved affinity for polymer thin films,
This layer not only facilitates composite formation, but also has the advantage of eliminating interaction between the porous support and the polymer thin film, preventing deterioration of membrane properties, and significantly improving membrane life characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における選択気体透過性複合膜の
断面図である。 1・・・多孔質支持体、2・・・・・金属層(金属酸化
物層)、3−・・高分子薄膜。
The figure is a sectional view of a selective gas permeable composite membrane in one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Porous support body, 2...Metal layer (metal oxide layer), 3-...Polymer thin film.

Claims (2)

【特許請求の範囲】[Claims] (1)微細孔を有する多孔質支持体と、前記多孔質支持
体上に、金属層または金属酸化物層を介して設けられた
少なくとも1層よりなる高分子薄膜とを具備することを
特徴とする選択気体透過性複合膜。
(1) It is characterized by comprising a porous support having micropores and a polymer thin film consisting of at least one layer provided on the porous support via a metal layer or a metal oxide layer. Selective gas permeable composite membrane.
(2)金属層または金属酸化物層の厚さが1000Å以
下であることを特徴とする特許請求の範囲第1項記載の
選択気体透過性複合膜。
(2) The selective gas permeable composite membrane according to claim 1, wherein the metal layer or metal oxide layer has a thickness of 1000 Å or less.
JP26025184A 1984-12-10 1984-12-10 Permselective compound membrane for gas Pending JPS61138516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26025184A JPS61138516A (en) 1984-12-10 1984-12-10 Permselective compound membrane for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26025184A JPS61138516A (en) 1984-12-10 1984-12-10 Permselective compound membrane for gas

Publications (1)

Publication Number Publication Date
JPS61138516A true JPS61138516A (en) 1986-06-26

Family

ID=17345448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26025184A Pending JPS61138516A (en) 1984-12-10 1984-12-10 Permselective compound membrane for gas

Country Status (1)

Country Link
JP (1) JPS61138516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857080A (en) * 1987-12-02 1989-08-15 Membrane Technology & Research, Inc. Ultrathin composite metal membranes
US4925459A (en) * 1988-01-11 1990-05-15 Institut Francais Du Petrole Process for separation of the constituents of a mixture in the gas phase using a composite membrane
US5181941A (en) * 1991-12-16 1993-01-26 Texaco Inc. Membrane and separation process
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
WO1999030806A1 (en) * 1997-12-15 1999-06-24 Worcester Polytechnic Institute Hydrogen gas-extraction module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857080A (en) * 1987-12-02 1989-08-15 Membrane Technology & Research, Inc. Ultrathin composite metal membranes
US4925459A (en) * 1988-01-11 1990-05-15 Institut Francais Du Petrole Process for separation of the constituents of a mixture in the gas phase using a composite membrane
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
US5181941A (en) * 1991-12-16 1993-01-26 Texaco Inc. Membrane and separation process
WO1999030806A1 (en) * 1997-12-15 1999-06-24 Worcester Polytechnic Institute Hydrogen gas-extraction module

Similar Documents

Publication Publication Date Title
US4857080A (en) Ultrathin composite metal membranes
CA1316311C (en) Anisotropic membranes for gas separation
JPS6051526A (en) Asymmetrical gas separating membrane
US4710205A (en) Stabilized liquid films
GB2138702B (en) Composite membrane for gas separation
JPS61138516A (en) Permselective compound membrane for gas
JPS6051527A (en) Asymmetrical gas separating membrane having improved selectivity
KR890006716A (en) Highly aromatic anisotropic polyurea / urethane membranes and their use to separate aromatic and non-aromatic compounds
JP2975000B2 (en) Composite hollow fiber membrane for artificial lung
JPS5966308A (en) Gas permeable composite membrane
JP2688882B2 (en) Method for producing composite membrane for gas separation
JP2002177747A (en) Permselective membrane and air battery using the same
Lee et al. Pervaporation separation of water-ethanol through modified polyacrylonitrile membranes
JP2855332B2 (en) Composite hollow fiber membrane
JPH0696107B2 (en) Selective gas permeable membrane
JP2858262B2 (en) How to remove dissolved gas
JPH0761426B2 (en) Selective gas permeable composite membrane
JPS6256775B2 (en)
JP2974999B2 (en) Membrane oxygenator
JPH0413012B2 (en)
JP3295144B2 (en) Gas separation composite membrane
JPS62282618A (en) Production of composite membrane for separating gas
JPS631421A (en) Gas permeable composite membrane
JP2541294B2 (en) Composite membrane
JPH06126140A (en) Multilayer gas separation film