JPS61135301A - Controller for electric rail car - Google Patents
Controller for electric rail carInfo
- Publication number
- JPS61135301A JPS61135301A JP25563584A JP25563584A JPS61135301A JP S61135301 A JPS61135301 A JP S61135301A JP 25563584 A JP25563584 A JP 25563584A JP 25563584 A JP25563584 A JP 25563584A JP S61135301 A JPS61135301 A JP S61135301A
- Authority
- JP
- Japan
- Prior art keywords
- contactor
- brake
- series
- switching
- connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001172 regenerating effect Effects 0.000 claims abstract description 33
- 238000010586 diagram Methods 0.000 description 16
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/12—Dynamic electric regenerative braking for vehicles propelled by DC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
・〔発明の利用分野〕
本発明は電気車の制御装置に係り、特に、分巻又は複巻
電動機t−m数備えた主電動機の電機子回路接続を、回
生ブレーキ1iilJ g中、並列接続から直列接続に
切換える制御を行な5′riL気車制御装置に関する。Detailed Description of the Invention - [Field of Application of the Invention] The present invention relates to a control device for an electric vehicle, and in particular, the armature circuit connection of a traction motor having a shunt-wound or compound-wound electric motor with a t-m number 1iilJg, relates to a 5'riL steam train control device that performs control to switch from parallel connection to series connection.
従来技術とその問題点を第31〜第7図によシ説明する
。第3図は回生ブレーキ制御時の電機子回路を並列接続
より直列接続に切換える際の主回路の動作モードの説明
図、第4図は並列から直列への切換時のノツチ曲線図、
第5図は従来の制御ブロック図を示す。第3図及び第5
図において、1はパンタグラフ、2は接触器、3−1及
び3−2は主電動機、4−1及び4−2は界磁、5−1
゜5−2.6は夫々接触器、7−1及び7−2は他励界
磁、8はチョッパ装置、9はフリーホイール・ダイオー
ド、10は接触器である。The prior art and its problems will be explained with reference to FIGS. 31 to 7. Figure 3 is an explanatory diagram of the operating mode of the main circuit when switching the armature circuit from parallel connection to series connection during regenerative brake control, Figure 4 is a notch curve diagram when switching from parallel to series connection,
FIG. 5 shows a conventional control block diagram. Figures 3 and 5
In the figure, 1 is a pantograph, 2 is a contactor, 3-1 and 3-2 are main motors, 4-1 and 4-2 are field magnets, and 5-1
5-2.6 are contactors, 7-1 and 7-2 are separately excited field magnets, 8 is a chopper device, 9 is a freewheel diode, and 10 is a contactor.
第4図のノツチ曲線図において、運転台よシ500Kf
/Motorのブレーキ力指令を与えると、図示の0点
よりブレーキ出力500 Kf/Motorの特性に沿
って他励界磁電流I、最大の0点まで減速する。この間
、電機子回路は第3図に動作モードAとして示すように
並列に接続されている。第4図の0点に達すると、他励
界磁電流Itが最大になったことを検出して心機子回路
は並列から直列に切換えられる。In the notch curve diagram in Figure 4, the distance from the driver's cab is 500Kf.
When a brake force command of /Motor is given, the brake output is decelerated from the zero point shown in the figure to the maximum zero point by the separately excited field current I in accordance with the characteristics of brake output 500 Kf/Motor. During this time, the armature circuits are connected in parallel as shown in FIG. 3 as operating mode A. When the zero point in FIG. 4 is reached, it is detected that the separately excited field current It has reached the maximum, and the heart armature circuit is switched from parallel to series.
動作モードロ:直列接続用の接触器10の投入によシミ
様子回路に切換用抵抗器11が挿入される。この時の切
換用抵抗器11の抵抗値は抵抗器に流れる電流1几1が
第4図■点の゛電機子電流IAsに等しくなるように選
定される。″動作モードC:並列接続用の接触器5−1
゜5−2を開路する。電機子回路は切換用抵抗器11を
挿入した状態で直列接続となる。並列接続用接触器5−
1.5−2の開路により切換用抵抗器11は順次短絡さ
れる。他励界磁電流Isは切換用抵抗器11の短絡に追
従してチョッパ装置8によシ小さくされる。Operation mode: By turning on the contactor 10 for series connection, the switching resistor 11 is inserted into the stain circuit. At this time, the resistance value of the switching resistor 11 is selected so that one current flowing through the resistor becomes equal to the armature current IAs at point 3 in FIG. ``Operating mode C: Contactor 5-1 for parallel connection
゜5-2 is opened. The armature circuit is connected in series with the switching resistor 11 inserted. Contactor for parallel connection 5-
The switching resistor 11 is sequentially short-circuited by the opening of 1.5-2. The separately excited field current Is is reduced by the chopper device 8 following the short circuit of the switching resistor 11.
動作モードD=切換用抵抗器11が全部短絡された状態
で電機子回路は直列制御の状態となる。Operation mode D=The armature circuit is in a series control state with all switching resistors 11 short-circuited.
第4図においては0点になる。以後、主電動機回路は動
作モードDの状態のまま第4図O点より他励界磁電流I
!最大00点まで減速される。さらに電気車の減速に伴
い[F]点まで減速して主回路オフとなる。In Figure 4, it becomes 0 points. After that, the traction motor circuit remains in the operating mode D and the separately excited field current I starts from point O in Figure 4.
! The speed will be reduced to a maximum of 00 points. Furthermore, as the electric vehicle decelerates, it decelerates to point [F] and the main circuit turns off.
運転台より250V4/Motorのブレーキ指令が与
えられた場合は、第4図のノツプ曲線図においては、[
F]→O→0→■→[F]のように制御される。When a brake command of 250V4/Motor is given from the driver's cab, in the knob curve diagram of Fig. 4, [
F]→O→0→■→[F].
第5図制御ブロック図を用いて制御動作について説明す
る。運転台よりブレーキ指令17が出されると、断流器
用電磁弁のコイル2−a1並列接続用接触器5−1.5
−2の各コイル5−1a。The control operation will be explained using the control block diagram in FIG. When the brake command 17 is issued from the driver's cab, the coil 2-a1 of the solenoid valve for flow breakers, the contactor 5-1.5 for parallel connection
-2 each coil 5-1a.
5−2a%他励界磁回路用接触器6のコイル6−aが励
磁され、接触器2.5−1.5−2及び6が閉路され、
回生ブレーキ並列制御状態での回路が構成される。又、
この時、ブレーキ指令17はブレーキパターン出力装置
19に与えられていて、ブレーキパターン電圧を発生し
ている。プレー中パターン電圧は、ブレーキ指令が例え
ば500麺/Moforであれば5 V s 200
Kf/ Mo torであれば2V、のように設定され
るのが一般である。電1機子電流は直流変流器12、他
励界磁電流は直流変流器13によシ検出され、ブレーキ
トルク検出器200Å力として与えられる。ブレーキト
ルク検出器20は電機子電流と他励界磁電流とからブレ
ーキ力を計算する。ブレーキトルク検出器20の出力も
、ブレーキ指令が500 Kf/ Motorであれば
5 V、 Z 00Kf/1dotor?6れtd2V
、 のjうに設定されるのが一般的である。ブレーキパ
ターン電圧とブレーキトルク検出器の出力とは、比較増
幅器21に与えられる。比較増幅器21は、〔(ブレー
キパターン電圧)−(ブレーキトルク検出器出力電圧)
〕の値が正であればチョッパ装[8のゲートを開き他動
界磁を流を増加させ、負であればチョッパ装置8のゲー
トを絞シ他励界磁電流を小さくさせている。5-2a% Coil 6-a of contactor 6 for separately excited field circuit is excited, contactors 2.5-1.5-2 and 6 are closed,
A circuit in a regenerative brake parallel control state is configured. or,
At this time, the brake command 17 is being given to the brake pattern output device 19, and a brake pattern voltage is being generated. The pattern voltage during play is 5 Vs 200 if the brake command is, for example, 500 noodles/Mofor.
For Kf/Motor, it is generally set to 2V. The electric single armature current is detected by a DC current transformer 12, and the separately excited field current is detected by a DC current transformer 13, and is applied as a force of 200 Å to a brake torque detector. The brake torque detector 20 calculates the brake force from the armature current and the separately excited field current. The output of the brake torque detector 20 is also 5 V if the brake command is 500 Kf/Motor, Z 00 Kf/1 dotor? 6retd2V
, is generally set as follows. The brake pattern voltage and the output of the brake torque detector are applied to a comparator amplifier 21. Comparison amplifier 21 calculates [(brake pattern voltage) - (brake torque detector output voltage)
] If the value is positive, the gate of the chopper device 8 is opened to increase the flow of the passive field, and if it is negative, the gate of the chopper device 8 is closed to reduce the passive field current.
運転台よF) 500 K4/ Motorのブレーキ
指令が与えられれば、速度の低下に伴い、他励界磁電流
を増しながら第4図の500 Kg / Motorの
曲線に沿って0点から0点へ制御されることになる。速
度が0点に達した時、他励界磁血流は最大の値となり、
第5図の比較器15がオンして直列接続用接触器10の
コイル10−aが励磁され接触器10が閉路する。この
時、主回路構成は、第3図の動作モードBに示す形とな
る。接触器10が閉路することにより、主回路には切換
用抵抗器11が挿入される。又、接触器10が閉路する
ことによシ、その補助接点10−bが開路し、並列接続
用接触器のコイル5−1a、5−2aが消磁され、接触
器5−1.5−2が開路する。主回路構成は、第3図の
動作モードCに示す形となる。Driver's cab, F) If a brake command of 500 Kg/Motor is given, as the speed decreases, the separately excited field current will increase from 0 point to 0 point along the 500 Kg/Motor curve in Figure 4. It will be controlled. When the velocity reaches 0 point, the separately excited field blood flow reaches its maximum value,
The comparator 15 shown in FIG. 5 is turned on, the coil 10-a of the series connection contactor 10 is energized, and the contactor 10 is closed. At this time, the main circuit configuration is as shown in operation mode B in FIG. By closing the contactor 10, the switching resistor 11 is inserted into the main circuit. Further, when the contactor 10 is closed, its auxiliary contact 10-b is opened, and the coils 5-1a and 5-2a of the parallel connection contactor are demagnetized, and the contactor 5-1, 5-2 is demagnetized. opens. The main circuit configuration is as shown in operation mode C in FIG.
次に、接触器10が閉路、接触器5−1.5−2が開路
し九ことにより、夫々の補助接点10 a+及び5−
1bが閉路し、抵抗短絡接触器16に短絡指令が与えら
れ、切換用抵抗器11は順次短絡されて最後には全抵抗
を短絡する。この時の状態は第3図の動作モードDに示
す通9である。4お、。Next, the contactor 10 is closed and the contactors 5-1 and 5-2 are opened, thereby opening the respective auxiliary contacts 10a+ and 5-.
1b is closed, a short-circuit command is given to the resistance short-circuit contactor 16, and the switching resistors 11 are sequentially short-circuited, and finally all the resistances are short-circuited. The state at this time is 9 as shown in operation mode D in FIG. 4 Oh.
この間中、ブレーキパターン電圧としては、ブレーキ指
令値が500 Kg/ Motorの場合、5Vが発生
し続けている。During this period, a brake pattern voltage of 5V continues to be generated when the brake command value is 500 Kg/Motor.
第6図に、他励界磁電流Itb電機子電流工1、ブレー
キパターン出力及び回生ブレーキ力の時間的変化の状態
を示す。回生負荷が充分にある場合は、並列から直列へ
の切換え時においても回生プレーキ力に変化がないこと
が判る。FIG. 6 shows temporal changes in the separately excited field current Itb armature current 1, the brake pattern output, and the regenerative braking force. It can be seen that if there is a sufficient regenerative load, there is no change in the regenerative braking force even when switching from parallel to series.
ここで、回生負荷が充分にない場合について考えてみる
。電気車の回生ブレーキ出力は、回生負荷の大小により
制約を受ける。即ち、運転台よシのブレーキ指令値に見
合う回生負荷が充分1cある場合にはブレーキ指令値に
等しい回生ブレーキ出力が出されるが、回生負荷が少な
い場合には、ブレーキ指令値に無関係に、回生負荷に見
合う分しか出力されない。例えば、回生負荷が250K
g/Motorl、か吸収できないとき、ブレーキ指令
値を500 Kl/Motorとしテモ、回生プレー
+ Hd 力a250 K9/ Mo t orでバラ
ンスする。(この時、500−250 = 250Kf
/Motor分は空気プレキで補足される。)
第7図に、回生負荷の少ない状態での切換え時の回生ブ
レーキ力、電機子電流工1等の時間的変化の状態を示す
。並列から直列への切換え時、直列接続用接触器100
投入により電機子回路には、切換用抵抗器11が挿入さ
れる。この時、切換用抵抗器11の挿入を電機子側から
見ると回生負荷が急激に増加したと全く同様になり、第
7図に示すように回生ブレーキ力に山ができてしまい、
車両にショックが生ずる。Now, let's consider a case where there is not enough regenerative load. The regenerative brake output of an electric vehicle is limited by the size of the regenerative load. In other words, if there is a sufficient regenerative load of 1c to match the brake command value from the driver's cab, a regenerative brake output equal to the brake command value will be output, but if the regenerative load is small, the regenerative brake output will be output regardless of the brake command value. Only the amount corresponding to the load is output. For example, the regenerative load is 250K.
g/Motorl, if it cannot be absorbed, set the brake command value to 500 Kl/Motor and perform regenerative play.
+Hd Force a250 Balance with K9/Motor. (At this time, 500-250 = 250Kf
/Motor is supplemented by air pre-pressure. ) Fig. 7 shows the state of changes over time in the regenerative braking force, armature current work 1, etc. during switching when the regenerative load is small. Contactor 100 for series connection when switching from parallel to series
By turning on, the switching resistor 11 is inserted into the armature circuit. At this time, when looking at the insertion of the switching resistor 11 from the armature side, it is exactly the same as if the regenerative load suddenly increased, and a peak was formed in the regenerative braking force as shown in Fig. 7.
A shock occurs in the vehicle.
即ち、従来の制御方式においては、回生負荷が充分にな
い場合、電機子回路を並列接続よプ直列接続へ切換える
際、回生ブレーキ力に発生する山によるショックが車両
に生じるという問題があった。That is, in the conventional control system, when there is not enough regenerative load, there is a problem in that when switching the armature circuit from parallel connection to series connection, a shock occurs to the vehicle due to a peak generated in the regenerative braking force.
本発明の目的は、従来技術での上記した問題を解決し、
回生負荷不足時においても、回生ブレーキ制御中の電機
子回路の並列接続から直列接続への切換えを、簡単な回
路装置の追加によプ、円滑に行なわせることのできる電
気車制御装置を提供することにある。The purpose of the present invention is to solve the above-mentioned problems in the prior art,
To provide an electric vehicle control device capable of smoothly switching armature circuits from parallel connection to series connection during regenerative brake control by adding a simple circuit device even when regenerative load is insufficient. There is a particular thing.
本発明の特徴は、主電動機の電機子回路接続を回生ブレ
ーキ制御中に並列接続から直列接続に切換える制御を行
なう電気車制御装置において、ブレーキ力パターン電圧
を、並列接続時に閉路している接触器の補助接点と直列
接続時に閉路する接触器の補助接点と設定可変の抵抗値
をもつ放電抵抗器とを介して零電位に落すブレーキ力パ
ターン引き落し回路を設けることにより、並列接続よシ
直列接続に切換わる直後の短時間だけブレーキ力パター
ン電圧をある設定値に引き落す構成とするにある。A feature of the present invention is that in an electric vehicle control device that performs control to switch the armature circuit connection of a traction motor from parallel connection to series connection during regenerative braking control, the brake force pattern voltage is applied to a contactor that is closed during parallel connection. By providing a brake force pattern pull-down circuit that reduces the potential to zero through the auxiliary contact of the contactor, which closes when connected in series, and a discharge resistor with a variable resistance value, it is possible to connect in parallel or in series. The brake force pattern voltage is reduced to a certain set value only for a short period of time immediately after switching to the brake force pattern voltage.
〔発明の実施例〕
以下、本発明の一実施例を第1図及び第2図により説明
する。第1図は実施例制御ブロック図を示す。第5図の
従来の制御ブロック図に比べ、ブレーキパターン出力装
置19の出力側に、破線で囲んだブレーキ力パターン引
き落し回路が追加されている。即ち、ブレーキパターン
出力装置19の出力が、並列接続時に閉路している接触
器5−1の補助接点5−1al と、直列接続時に閉路
する接触器10の補助接点10−a、と、抵抗値を可変
に設定することのできる放電抵抗器18との直列接続回
路を介して接地電位に接続されている。[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows an embodiment control block diagram. Compared to the conventional control block diagram shown in FIG. 5, a brake force pattern drawing circuit surrounded by a broken line is added to the output side of the brake pattern output device 19. That is, the output of the brake pattern output device 19 is connected to the auxiliary contact 5-1al of the contactor 5-1 which is closed when connected in parallel, the auxiliary contact 10-a of the contactor 10 which is closed when connected in series, and the resistance value. It is connected to ground potential through a series connection circuit with a discharge resistor 18 that can be variably set.
第2図に、第1図回路により制御される場合の回生ブレ
ーキ力、ブレーキパターン電圧、電機子電流11及び他
励界磁電流Itの時間的変化の状態を示す。これは、並
列接続から直列接続への切換え時に、ブレーキパターン
電圧を約70−へ引き落した場合である。FIG. 2 shows temporal changes in the regenerative braking force, brake pattern voltage, armature current 11, and separately excited field current It when controlled by the circuit shown in FIG. This is the case when the brake pattern voltage is reduced to about 70- when switching from parallel to series connection.
次に、第1図回路の動作について述べる。回生ブレーキ
並列制御中は、並列接続用の接触器5−1は閉路してお
シ、その補助接点5−1atも閉路している(第3図の
動作モード人の状態)。他励界磁電流Itが最大〔第4
図■点〕となると、直列接続用の接触器10のコイル1
0−aが励磁され、接触器10が閉路し、その補助接点
1O−alが閉路する。補助接点5−1al及び10−
a:が閉路することによプ、ブレーキ指令に関係なく強
制的にブレーキパターン出力を放電抵抗器18に分流さ
せ、パターン電圧を引き落す。本実施例では約701に
引き落している。主回路構成は、第3図の動作モードB
の状態でおる。Next, the operation of the circuit shown in FIG. 1 will be described. During regenerative brake parallel control, the contactor 5-1 for parallel connection is closed, and its auxiliary contact 5-1at is also closed (operation mode human state in FIG. 3). Separately excited field current It is maximum [4th]
Point ■ in the figure], the coil 1 of the contactor 10 for series connection
0-a is excited, the contactor 10 is closed, and its auxiliary contact 1O-al is closed. Auxiliary contacts 5-1al and 10-
When a: is closed, the brake pattern output is forcibly shunted to the discharge resistor 18 regardless of the brake command, and the pattern voltage is lowered. In this example, the amount is reduced to about 701. The main circuit configuration is operation mode B in Figure 3.
I am in the state of
次に、他励界磁電流Xtが最大であるので、比較器15
がオンして、直列接続用接触器1oのコイル10−aが
励磁され、接触器10の補助接点1o−bが開路する。Next, since the separately excited field current Xt is the maximum, the comparator 15
is turned on, the coil 10-a of the series connection contactor 1o is excited, and the auxiliary contact 1o-b of the contactor 10 is opened.
このため並列接続用接触器5−1.5−2のコイル5−
1a、5−2aは消磁され、接触器5−1.5−2が開
路する。同時に、補助接点5−1alが開路され、ブレ
ーキパターン出力装置工9の出力電圧は、元に復帰する
。For this reason, the coil 5- of the contactor 5-1, 5-2 for parallel connection
1a and 5-2a are demagnetized, and the contactors 5-1 and 5-2 are opened. At the same time, the auxiliary contact 5-1al is opened, and the output voltage of the brake pattern output device 9 is restored to its original state.
主回路構成は、第3図の動作モードCの状態である。The main circuit configuration is in operation mode C shown in FIG.
以上のように、ブレーキパターン電圧の引き落しは、並
列接続から直列接続への切換え時、並列接続用接触器の
補助接点5−1alと直列接続用接触器の補助接点10
−32が両方とも閉路しているラップ時間(0,1秒〜
0.2秒)を利用するもので、非常に簡単な回路の追加
で実行させることができる利点がある。又、接触器の補
助接点を使用する構成であることから、ゲート制御装置
を変更する必要が全くなく、従って、従来車を改造する
場合も容易である利点がある。As described above, when switching from parallel connection to series connection, the brake pattern voltage is lowered by the auxiliary contact 5-1al of the parallel connection contactor and the auxiliary contact 10 of the series connection contactor.
−32 are both closed lap time (0,1 seconds ~
0.2 seconds), and has the advantage of being able to be executed with the addition of a very simple circuit. Further, since the configuration uses the auxiliary contact of the contactor, there is no need to change the gate control device at all, and therefore, there is an advantage that it is easy to modify a conventional vehicle.
以上説明したように、本発明によれば、簡単な回路構成
の追加によシ、回生ブレーキ制御中の並列接続から直列
接続への切換え時の制御を円滑に行なわせることが可能
となる。As described above, according to the present invention, by adding a simple circuit configuration, it is possible to smoothly perform control when switching from parallel connection to series connection during regenerative brake control.
なお、実施例では既存の接触器の補助接点を用いるとし
て説明したが、並列接続から直列接続への切換え時に、
一時的にリレーを動作させその接点によりブレーキパタ
ーン電圧を引き落す構成や、並列接続から直列接続への
切換え時にカム軸接点を用いて一時的にブレーキパター
ン電圧を引き落す構成としても、本発明と同様な効果を
生じさせることができる。In addition, in the example, it was explained that the auxiliary contact of the existing contactor was used, but when switching from parallel connection to series connection,
The present invention can also be applied to a configuration in which a relay is temporarily activated and the brake pattern voltage is lowered by its contact, or a configuration in which a camshaft contact is used to temporarily lower the brake pattern voltage when switching from parallel connection to series connection. A similar effect can be produced.
第1図は本発明の一実施例の制御ブロック図、・第2図
は上記実施例の回生ブレーキ力と主回路電流等の変化特
性を示す図、第3図は主回路の動作モードの説明図、第
4図は並列から直列への切換え時のノツチ曲線図、第5
図は従来例の制御ブロック図、第6図は従来方式の回生
負荷が充分にある場合の回生ブレーキ力、主回路電流等
の変化図、第7図は従来方式の回生負荷が少ない場合の
回生ブレーキ力、主回路電流等の変化図である。
2.5−1.5−2.6.10・・・接触器、3−1゜
3−2・・・主電動機、4−1.4−2・・・界磁、7
−1゜7−2・・・他励界磁、8・・・チョッパ装置、
9・・・フリーホイール・ダイオード、11・・・切換
用抵抗器、12.13・・・直流変流器、15・・・比
較器、16・・・抵抗短絡接触器、17・・・プレー中
指令装置、18・・・放電抵抗器、19・・・ブレーキ
パターン出力装置、20・・・ブレーキトルク検出器、
21・・・比較増幅器。Fig. 1 is a control block diagram of an embodiment of the present invention, Fig. 2 is a diagram showing the change characteristics of regenerative braking force and main circuit current, etc. of the above embodiment, Fig. 3 is an explanation of the operation mode of the main circuit. Figure 4 is a notch curve diagram when switching from parallel to series, Figure 5 is a notch curve diagram when switching from parallel to series.
The figure is a control block diagram of the conventional example. Figure 6 is a diagram of changes in regenerative braking force, main circuit current, etc. when there is sufficient regenerative load in the conventional method. Figure 7 is the regeneration diagram when the regenerative load is small in the conventional method. It is a change diagram of brake force, main circuit current, etc. 2.5-1.5-2.6.10... Contactor, 3-1゜3-2... Main motor, 4-1.4-2... Field, 7
-1゜7-2...Separately excited field magnet, 8...Chopper device,
9... Freewheel diode, 11... Switching resistor, 12.13... DC current transformer, 15... Comparator, 16... Resistance shorting contactor, 17... Play Middle command device, 18... Discharge resistor, 19... Brake pattern output device, 20... Brake torque detector,
21... Comparison amplifier.
Claims (1)
機子回路の接続を回生ブレーキ制御中に並列接続から直
列接続に切換える制御を行なう電気車制御装置において
、ブレーキ力パターン電圧を並列接続時に閉路している
接触器の補助接点と直列接続時に閉路する接触器の補助
接点と設定可変の抵抗値をもつ放電抵抗器とを介して零
電位に落すブレーキ力パターン引き落し回路を設けるこ
とにより、並列接続より直列接続に切換わる直後の短時
間だけブレーキ力パターンを引き落すことを特徴とする
電気車制御装置。1. In an electric vehicle control device that controls the connection of the armature circuit of a main motor consisting of multiple groups of shunt-wound or compound-wound motors from parallel connection to series connection during regenerative braking control, brake force pattern voltages are connected in parallel. By providing a brake force pattern draw-down circuit that reduces the potential to zero through the auxiliary contact of the contactor that is closed when connected in series, the auxiliary contact of the contactor that is closed when connected in series, and a discharge resistor with a variable resistance value. , an electric vehicle control device characterized in that the brake force pattern is reduced for a short period of time immediately after switching from parallel connection to series connection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25563584A JPS61135301A (en) | 1984-12-05 | 1984-12-05 | Controller for electric rail car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25563584A JPS61135301A (en) | 1984-12-05 | 1984-12-05 | Controller for electric rail car |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61135301A true JPS61135301A (en) | 1986-06-23 |
JPH0452683B2 JPH0452683B2 (en) | 1992-08-24 |
Family
ID=17281483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25563584A Granted JPS61135301A (en) | 1984-12-05 | 1984-12-05 | Controller for electric rail car |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61135301A (en) |
-
1984
- 1984-12-05 JP JP25563584A patent/JPS61135301A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0452683B2 (en) | 1992-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4479080A (en) | Electrical braking control for DC motors | |
US4282466A (en) | Transit vehicle motor effort control apparatus and method | |
JPH0368636B2 (en) | ||
US4380724A (en) | Shunt field control apparatus and method | |
US3938013A (en) | D. C. Motor control system effecting changes in the connections of the armature and variations in current flow through the field | |
US715291A (en) | System of control for electrically-propelled vehicles. | |
JPS61135301A (en) | Controller for electric rail car | |
US4092571A (en) | Power matching system for a train of individually powered transit vehicles | |
US4370603A (en) | Shunt field control apparatus and method | |
US2646540A (en) | Motor control system | |
JPS5942521B2 (en) | electric car protection device | |
JPS58175901A (en) | Regenerative braking device for electric motor vehicle | |
CA1122679A (en) | Transit vehicle motor operation control apparatus and method | |
SU1731662A2 (en) | Device for adjusting tractive force of electric motors of self-contained transport vehicle | |
US661666A (en) | System of electric train control. | |
JPH02231904A (en) | Controller for field control electric vehicle | |
JPS5827728B2 (en) | electric car control device | |
JPS5828404Y2 (en) | AC electric car control device | |
US2157917A (en) | Control system | |
JPH0458246B2 (en) | ||
JPS6318905A (en) | Controlling method for electric rolling stock | |
SU970612A1 (en) | Device for regulating rotational speed of traction dc motor | |
SU393138A1 (en) | Electrical drive of locomotive | |
JP2502356Y2 (en) | AC elevator control device | |
US1592325A (en) | Motor-control system |