[go: up one dir, main page]

JPS61133349A - Variable spectral reflectance alloy and recording material - Google Patents

Variable spectral reflectance alloy and recording material

Info

Publication number
JPS61133349A
JPS61133349A JP59255306A JP25530684A JPS61133349A JP S61133349 A JPS61133349 A JP S61133349A JP 59255306 A JP59255306 A JP 59255306A JP 25530684 A JP25530684 A JP 25530684A JP S61133349 A JPS61133349 A JP S61133349A
Authority
JP
Japan
Prior art keywords
alloy
temperature
spectral reflectance
crystal structure
variable spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59255306A
Other languages
Japanese (ja)
Inventor
Hisashi Ando
寿 安藤
Tetsuo Minemura
哲郎 峯村
Isao Ikuta
生田 勲
Yoshimi Kato
加藤 義美
Mitsuo Nakamura
中村 満夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59255306A priority Critical patent/JPS61133349A/en
Priority to EP85308745A priority patent/EP0184412B1/en
Priority to DE8585308745T priority patent/DE3582657D1/en
Priority to US06/803,640 priority patent/US4743526A/en
Publication of JPS61133349A publication Critical patent/JPS61133349A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/165Thermal imaging composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To offer the titled alloy capable of holding spectral reflectances differ ent partially at the same temp., by compsing said alloy of Ag as main constitu ent, and specified compsn. quantities of Zn, groups Ia, IIa, IVa-VIIa, VIII, Ib-Vb and rare earth element, etc. CONSTITUTION:The titled alloy is composed of alloy contg. Ag as main compo nent, 30-46wt% Zn, <=15% total of >=one kind among groups Ia, IIa, IVa, Va, VIa, VIIa, VIII, Ib-Vb. rare earth element. on a part of surface of alloy having different crystal structures at the first temp. higher than room temp. and the lower second temp. than the first temp. in solid state higher than room temp., crystal structure different from that at said second temp. is formed by rapid cooling from said first temp.. By this way, different spectral reflectances are provided to said rapidly cooled part and unrapidly cooled part, to obtain the titled alloy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な分光反射率可変合金及び記録材料に係り
、特に光・熱エネルギーが与えられることにより合金の
結晶構造の変化にともなう分光反射率変化を利用した情
報記録、表示、センサ等の媒体に使用可能な合金に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel alloy with variable spectral reflectance and a recording material, and in particular to a novel alloy with variable spectral reflectance and a recording material, and in particular, the spectral reflectance of the alloy changes as the crystal structure of the alloy changes due to the application of light and thermal energy. This invention relates to alloys that can be used as media for information recording, display, sensors, etc. that utilize change.

〔発明の背景〕[Background of the invention]

近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められでいる。特に
レーザの光エネルギーを情報の記録、消去、再生に利用
した光ディスクは工業レアメタル&80.1983(光
ディスクと材料)に記載されているように磁気ディスク
に比べ、高い記録密度が可能であり、今後の情報記録の
有力な方式である。このうち、レーザによる再生装置は
コン     4バクト・ディスク(CD)として実用
化されている。一方、記録可能な方式には追記型と書き
換え可能型の大きく2つに分けられる。前者は1回の書
き込みのみが可能であり、消去はできない、後者はくり
返しの記録、消去が可能な方式である。
In recent years, as the density of information recording has increased and digitalization has progressed, various information recording and reproducing methods have been developed. In particular, optical disks that use laser light energy to record, erase, and reproduce information are capable of higher recording densities than magnetic disks, as stated in Industrial Rare Metals & 80.1983 (Optical Disks and Materials), and are expected to become more promising in the future. It is a powerful method of recording information. Among these, laser playback devices have been put into practical use as compact discs (CDs). On the other hand, recordable methods can be broadly divided into two types: write-once type and rewritable type. The former allows writing only once and cannot be erased, while the latter allows repeated recording and erasing.

追記型の記録方法はレーザ光により記録部分の媒体を破
壊あるいは成形して凹凸をつけ、再生にはこの凹凸部分
でのレーザ光の干渉による光反射量の変化を利用する。
In the write-once type recording method, a laser beam is used to destroy or shape the recording portion of the medium to create unevenness, and for reproduction, a change in the amount of light reflected due to the interference of the laser beam at the uneven portion is used for reproduction.

この記録媒体にはTeやその合金を利用して、その溶解
、昇華による凹凸の成形が一般的に知られている。この
種の媒体では毒性など若干の問題を含んでいる。書き換
え可能型の記録媒体としては光磁気材料が主流である。
For this recording medium, it is generally known that Te or its alloy is used to form irregularities by melting and sublimating Te. This type of medium has some problems such as toxicity. Magneto-optical materials are the mainstream for rewritable recording media.

この方法は光エネルギーを利用してキュリ一点あるいは
補償点温度付近で媒体の局部的な磁気異方性を反転させ
記録し、その部分での偏光入射光の磁気ファラデー効果
及び磁気カー効果による偏光面の回転量にて再生する。
This method utilizes optical energy to invert and record the local magnetic anisotropy of the medium near the Curie point or compensation point temperature, and the polarization plane of the polarized incident light at that part due to the magnetic Faraday effect and magnetic Kerr effect. Play with the amount of rotation.

この方法は書き換え可能型の最も有望なものとして数年
後の実用化を目指し精力的な研究開発が進められている
。しかし、現在のところ偏光面の回転量の大きな材料が
なく多層膜化などの種々の工夫をしてもS/N、C/N
などの出力レベルが小さいという大きな問題がある。そ
の他の書き換え可能型方式として記録媒体の非晶質と結
晶質の可逆的相変化による反射率変化を利用したものが
ある0例えばNationalTachnical R
eport Vo129 Ha 5 (1983)に記
載TeOxに少量のGeおよびSnを添加した合金があ
る。
This method is considered to be the most promising rewritable method, and active research and development is underway with the aim of putting it into practical use in the next few years. However, at present, there is no material with a large amount of rotation of the plane of polarization, and even with various efforts such as multilayer film formation, the S/N and C/N
A major problem is that the output level is low. Other rewritable systems utilize changes in reflectance due to reversible phase changes between amorphous and crystalline recording media.For example, National Technical R
There is an alloy in which small amounts of Ge and Sn are added to TeOx described in eport Vo129 Ha 5 (1983).

しかし、この方式は非晶質相の結晶化部を低く。However, this method reduces the crystallization part of the amorphous phase.

常温における相の不安定さがディスクの信頼性に結びつ
く大きな問題点である。
The instability of the phase at room temperature is a major problem that affects the reliability of the disk.

一方、色調変化を利用した合金として、特開昭57−1
40845がある。この合金は(12〜15)wt%A
 悲−(1〜5 ) w t%Ni−残Cuよりなる合
金でマルテンサイト変態温度を境にして、赤から黄金色
に可逆的に変化することを利用したものである。マルテ
ンサイト変態は温度の低下にともなって必然的に生ずる
変態のため、マルテンサイト変態温度以上に保持した状
態で得られる色調はマルテンサイト変調温度以下にもっ
てくることはできない。また逆にマルテンサイト変態温
度以下で得られる色調のものをマルテンサイト変態温度
以下にすると、変態をおこして別の色調に変化してしま
う、したがって、マルテンサイト変態の上下でおこる2
つの色調は同一温度で同時に得ることはできない、した
がってこの原理では記録材料として適用することはでき
ない。
On the other hand, as an alloy utilizing color tone change, JP-A-57-1
There are 40845. This alloy is (12-15)wt%A
This is an alloy consisting of (1 to 5) wt% Ni and residual Cu, which takes advantage of the fact that it changes reversibly from red to gold at the martensitic transformation temperature. Since martensitic transformation is a transformation that inevitably occurs as the temperature decreases, the color tone obtained when the temperature is maintained above the martensitic transformation temperature cannot be brought below the martensitic modulation temperature. Conversely, if a color tone obtained at a temperature below the martensitic transformation temperature is lowered below the martensitic transformation temperature, a transformation occurs and changes to a different color tone.
Two color tones cannot be obtained at the same time at the same temperature, so this principle cannot be applied as a recording material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、同一温度で部分的に異なった分光反射
率を保持することのできる分光反射率可変合金及び記録
材料を提供するにある。
An object of the present invention is to provide a variable spectral reflectance alloy and a recording material that can maintain partially different spectral reflectances at the same temperature.

〔発明の概要〕[Summary of the invention]

(発明の要旨) 本発明は、銀(Ag)を主成分とし、重量で亜鉛(Zo
)30〜46%及びIa、IIa、■a。
(Summary of the Invention) The present invention has silver (Ag) as the main component and zinc (Zo
) 30-46% and Ia, IIa, ■a.

Va、■a、■a、■、tb−vb、希土類元素の1種
又は2種以上を合計で15%以下を含む合金からなるこ
とを特徴とする分光反射率可変合金にある。
The variable spectral reflectance alloy is characterized by comprising an alloy containing a total of 15% or less of one or more of Va, (1)a, (2)a, (2), tb-vb, and rare earth elements.

即ち、本発明は、固体状態で室温より高い第1の温度(
高温)及び第1の温度より低い温度(低温)状態で異な
った結晶構造を有する合金においで、該合金は前記高温
からの急冷によって前記低温における非急冷による結晶
構造と異なる結晶構造を有することを特徴とする分光反
射率可変合金にある。
That is, the present invention provides a first temperature higher than room temperature (
In an alloy that has different crystal structures at a temperature (high temperature) and a temperature lower than the first temperature (low temperature), the alloy has a crystal structure that is different from that obtained by quenching from the high temperature than that obtained by non-quenching at the low temperature. It is a characteristically variable spectral reflectance alloy.

本発明合金は固相状態での加熱冷却処理により。The alloy of the present invention is heated and cooled in a solid state.

同一温度で少なくとも2種の分光反射率を有し、可逆的
に分光反射率を変えることのできるものである。すなわ
ち1本発明に係る合金は固相状態で少なくとも2つの温
度領域で結晶構造の異なった相を有し、それらの内、高
温相を急冷した状態と非急冷の標準状態の低温和状態と
で分光反射率が異なり、高温相温度領域での加熱急冷と
低温相温度領域での加熱冷却により分光反射率が可逆的
に変化するものである。
It has at least two types of spectral reflectance at the same temperature and can reversibly change the spectral reflectance. In other words, the alloy according to the present invention has phases with different crystal structures in at least two temperature ranges in a solid state, and among these, the high temperature phase is quenched and the low temperature relaxation state is a standard state without quenching. The spectral reflectance is different, and the spectral reflectance changes reversibly by heating and cooling in the high temperature phase region and heating and cooling in the low phase temperature region.

本発明合金の可逆的反射率の変化についてその原理を第
1図を用いて説明する。第1図はAg−Zn二元系合金
の平衡状態図を示すものであり、      。
The principle of reversible change in reflectance of the alloy of the present invention will be explained with reference to FIG. FIG. 1 shows an equilibrium phase diagram of a binary Ag-Zn alloy.

情報としての信号9文字9図形等を記録及び消去する原
理を第2図によって説明する0図中の〔1〕組成の合金
を例にとる。この合金は平衡状態でζ相である。この相
の色は銀白色であり1分光反射率においてもそれに対応
した曲線が得られる。この合金を高温相であるβ相安定
温度領域(T4)まで加熱後急冷するとβ相が適冷し、
しかも規則化した結晶構造を持つβ′相となる。この適
冷状態の合金の色調はピンク色となり、分光反射率もζ
相状態とは大きく異なる。この合金をζ相安定温度領域
(Te以下)で加熱する(T3)はβ′はζ相に変態し
、それに伴い合金の色調もピンク色から銀白色へ可逆的
に変化し分光反射率も元に戻る。以後、この過程を繰返
すことができる0以上の色調変化を情報の記録、再生、
消去に適用した材料が本発明の要点である。すなわち、
異種結晶相間の相転移による反射率や色調の変化を利用
した記録媒体として利用できる。
The principle of recording and erasing nine characters, nine figures, etc. as information will be explained with reference to FIG. 2, taking as an example the alloy having the composition [1] in FIG. This alloy is in the ζ phase at equilibrium. The color of this phase is silvery white, and a curve corresponding to the 1-spectral reflectance is obtained. When this alloy is heated to the stable temperature region (T4) of the β phase, which is a high temperature phase, and then rapidly cooled, the β phase cools appropriately.
Moreover, it becomes a β' phase with a regular crystal structure. The color tone of the alloy in this properly cooled state is pink, and the spectral reflectance is also ζ
It is very different from the phase state. When this alloy is heated in the ζ phase stable temperature range (below Te) (T3), β' transforms into the ζ phase, and the color tone of the alloy changes reversibly from pink to silvery white, and the spectral reflectance also changes to its original state. Return to Afterwards, this process can be repeated to record, reproduce, and record information with 0 or more color tone changes.
The material applied to the erasure is the crux of the invention. That is,
It can be used as a recording medium that takes advantage of changes in reflectance and color tone due to phase transition between different crystal phases.

再生はT□湿温度あり、一般に室温である。Regeneration is at T□ humidity temperature, generally at room temperature.

T1でζ相の銀白色の材料に選択的にエネルギーを加え
T4まで加熱後急冷する。するとその部分はβ′相とな
りピンク色に変色する。これが記録に相当する。この部
分を他の部分と比較することによって記録部を再生する
ことができる。このピンク色に変色した部分に先と異な
った密度のエネルギーを加え、T3まで加熱冷却するこ
とによりβ′からζに相変態し銀白色にもどる0、これ
が記録の消去に相当する。上記の記録、再生、消去過程
は全く逆の色調変化によっても可能である。すなわち、
β′相のピンク色にβ′→ζ変態を利用して銀白色で記
録するにれをピンク色と区別して再生する。さらにζ相
をβ′相にすることにより消去することができる。
At T1, energy is selectively applied to the silver-white material in the ζ phase, heated to T4, and then rapidly cooled. Then, that part becomes β' phase and changes color to pink. This corresponds to a record. The recorded portion can be reproduced by comparing this portion with other portions. By applying a different density of energy to this pink colored portion and heating and cooling it to T3, the phase transforms from β' to ζ and returns to silvery white. This corresponds to erasing the record. The above-mentioned recording, reproducing and erasing processes can also be performed by completely opposite color tone changes. That is,
By utilizing the β' → ζ transformation in the pink color of the β' phase, the yellow color that is recorded as silvery white is distinguished from the pink color and reproduced. Furthermore, it can be eliminated by changing the ζ phase to the β' phase.

上記のエネルギーとしては一般的に電磁波などが適して
いる。具体的には、各種レーザ光、電子ビームなども良
好である。再生には分光反射率において差が見られる波
長のどの値の光でもよい。
Generally, electromagnetic waves are suitable as the above-mentioned energy. Specifically, various laser beams, electron beams, etc. are also suitable. For reproduction, light of any wavelength that shows a difference in spectral reflectance may be used.

すなわち、紫外から赤外領域までのレーザ、ランプなど
が好適である。また1色の変化として認識できるので表
示素子としても使用できる。
That is, lasers, lamps, etc. in the ultraviolet to infrared region are suitable. Furthermore, since it can be recognized as a change in one color, it can also be used as a display element.

(合金組成) 本発明合金は、高温及び低温状態で異なった結晶構造を
有するもので、高温相のβ相からの急冷によってその急
冷された結晶構造が形成されるものでなければならない
、更に、この急冷されて形成された相は所定の温度での
加熱によって低温状態での結晶構造に変化するものでな
ければならない、従って、Znは30〜46重量%であ
り、I a t II a + I’V a @ V 
a g ’VI a t■a、■、Ib〜vb、希土類
元素の1種又は2種以上の合計で15重量%以下である
。具体的には、Ia族はLi、IIa族はMg、(:、
B、■a族はTi、Zr。
(Alloy Composition) The alloy of the present invention must have different crystal structures at high and low temperatures, and the rapidly cooled crystal structure must be formed by rapid cooling from the high temperature β phase; The phase formed by this rapid cooling must be able to change to the crystalline structure at a low temperature by heating at a predetermined temperature. Therefore, the Zn content is 30 to 46% by weight, and I a at II a + I 'V a @V
The total amount of one or more of a, Ib to vb, and rare earth elements is 15% by weight or less. Specifically, group Ia is Li, group IIa is Mg, (:,
B, ■A group is Ti and Zr.

Hf、Va族はV、Nbl Ta、Via族はCr。Hf, Va group is V, Nbl Ta, Via group is Cr.

Mo、W、■a族はM n 、■族はCo、Rh、Ir
、Fe、Ru、OB、N、i、Pd、Pt、I b族は
Cu、Aq、IIb族はCd、mb族はB。
Mo, W, ■a group is M n , ■ group is Co, Rh, Ir
, Fe, Ru, OB, N, i, Pd, Pt, Ib group is Cu, Aq, IIb group is Cd, mb group is B.

AQ、Ga、In、IVb族はc、si、Ge9Sn、
Pd、Vb族はP、Sb、Bi、希土類元素はY、La
、Ce、Sm、Gd、Tb* D)’+Luが好ましい
、特に0.1〜5重景%が好ましい、これらの元素はβ
′からζ相に変態する温度(T2)を下げる。これによ
って記録された情報を消去する際の加熱温度を低くでき
る効果がある。
AQ, Ga, In, IVb group is c, si, Ge9Sn,
Pd, Vb group is P, Sb, Bi, rare earth elements are Y, La
, Ce, Sm, Gd, Tb*D)'+Lu is preferable, particularly preferably 0.1 to 5%, these elements are β
' to the ζ phase (T2) is lowered. This has the effect of lowering the heating temperature when erasing recorded information.

(ノンバルクその製造法) 本発明合金は反射率の可変性を得るために材料の加熱急
冷によって過冷相を形成できるものが必要である。高速
で情報の製作及び記憶させるには材料の急熱急冷効果の
高い熱容量の小さいノンバルクが望ましい、即ち、所望
の微小面積に対して投入されたエネルギーによって実質
的に所望の面積部分だけが深さ全体にわたって基準とな
る結晶構造と異なる結晶構造に変り得る容積を持つノン
バルクであることが望ましい、従って、所望の微小面積
によって高密度の情報を製作するには、熱容量の小さい
ノンバルクである箔、膜、細線あるいは粉末等が望まし
い、記録密度として、20メガピット/d以上となるよ
うな微小面積での情報の製作には0.01〜0.2μm
の膜厚とするのがよい、一般に金属間化合物は塑性加工
が難しい。
(Non-bulk production method thereof) In order to obtain reflectance variability, the alloy of the present invention must be able to form a supercooled phase by heating and rapidly cooling the material. In order to create and store information at high speed, it is desirable to use a non-bulk material with a high rapid heating and cooling effect and a small heat capacity.In other words, the energy applied to a desired minute area allows the depth of only the desired area to be reduced. It is desirable to have a non-bulk material that has a volume that can change to a crystal structure different from the standard crystal structure throughout.Therefore, in order to produce high-density information in a desired micro area, non-bulk foils and films with small heat capacities are required. , thin wire or powder is preferable, and the recording density is 0.01 to 0.2 μm for producing information in a minute area with a recording density of 20 megapits/d or more.
Generally, intermetallic compounds are difficult to plastically work.

従って、箔、膜、細線あるいは粉末にする手法として材
料を気相あるいは液相から直接急冷固化させて所定の形
状にすることが有効である。これらの方法にはPVD法
(蒸着、スパッタリング法等) 、CVD法、溶湯を高
速回転する高熱伝導性を有する部材からなる。特に金属
ロール円周面上に注湯して急冷凝固させる溶湯急冷法、
電気メッキ。
Therefore, it is effective to directly rapidly cool and solidify the material from the gas phase or liquid phase to form it into a predetermined shape as a method for producing foil, film, thin wire, or powder. These methods include the PVD method (vapor deposition, sputtering method, etc.), the CVD method, and the use of a member with high thermal conductivity that rotates the molten metal at high speed. In particular, molten metal quenching method in which molten metal is poured onto the circumferential surface of a metal roll and rapidly solidified.
electroplating.

化学メッキ法等がある。膜あるいは粉末状の材料を利用
する場合、基板上に直接形成するか、塗布して基板上に
接着することが効果的である。塗布する場合、粉末を加
熱しても反応などを起こさないバインダーがよい、また
、加熱による材料の酸化等を防止するため、材料表面、
基板上に形成した膜あるいは塗布層表面をコーティング
することも有効である。
There are chemical plating methods, etc. When using a film or powder material, it is effective to form it directly on the substrate or to apply it and adhere it to the substrate. When coating, it is best to use a binder that does not cause a reaction even when the powder is heated.Also, to prevent oxidation of the material due to heating,
It is also effective to coat the surface of a film or coating layer formed on the substrate.

箔又は細線は溶湯急冷法によって形成するのが好ましく
、厚さ又は直径0.1+m以下が好ましい。
The foil or thin wire is preferably formed by a molten metal quenching method, and preferably has a thickness or diameter of 0.1+m or less.

特に0.1μ層以下の結晶粒径の箔又は細線を製造する
には0.05m以下の厚さ又は直径が好まし%N。
In particular, in order to produce foil or thin wire with a crystal grain size of 0.1 μm or less, a thickness or diameter of 0.05 m or less is preferable.

粉末は、溶湯を気体又は液体の冷媒とともに噴霧させて
水中に投入させて急冷するガイアトマイズ法によって形
成させることが好ましい、その粒径は0.1m以下が好
ましく、特に粒径1μm以下の超微粉が好ましい。
The powder is preferably formed by the Gaia atomization method in which molten metal is sprayed with a gaseous or liquid refrigerant and then poured into water for rapid cooling.The particle size is preferably 0.1 m or less, particularly ultrafine powder with a particle size of 1 μm or less. is preferred.

膜は前述の如く蒸着、スパッタリング、CVD電気メッ
キ、化学メッキ等によって形成できる。
The film can be formed by vapor deposition, sputtering, CVD electroplating, chemical plating, etc., as described above.

特に、0.1μl以下の膜厚を形成するにはスパッタリ
ングが好ましい、スパッタリングは目標の合金組成のコ
ントロールが容易にできる。
In particular, sputtering is preferable to form a film with a thickness of 0.1 μl or less, and sputtering allows easy control of the target alloy composition.

また、膜を記憶単位と同程度まで化学エツチングにより
区切るのが有効である。
It is also effective to divide the film to the same extent as the memory unit by chemical etching.

(組織) 本発明合金は、高温及び低温において異なる結晶構造を
有し、高温からの急冷によって高温における結晶構造を
低温で保持される過冷相の組成を有するものでなければ
ならない、高温では不規則格子の結晶構造を有するが、
過冷相は一例としてCs−CD型又はDO1型の規則格
子を有する金属間化合物が好ましい、光学的性質を大き
く変化させることのできるものとして本発明合金はこの
金属間化合物を主に形成する合金が好ましく、特に合金
全体が金属間化合物を形成する組成が好ましい、この金
属間化合物は電子化合物と呼ばれ。
(Structure) The alloy of the present invention must have a different crystal structure at high and low temperatures, and must have a composition of a supercooled phase in which the crystal structure at high temperature is maintained at low temperature by rapid cooling from high temperature. It has a regular lattice crystal structure, but
For example, the supercooled phase is preferably an intermetallic compound having a Cs-CD type or DO1 type regular lattice, and the alloy of the present invention is an alloy that mainly forms this intermetallic compound as it can greatly change the optical properties. is preferred, especially a composition in which the entire alloy forms an intermetallic compound; this intermetallic compound is called an electronic compound.

特に3/2電子化合物(平均外殻電子濃度e / aが
3/2)の合金組成付近のものが良好である。
In particular, alloy compositions near 3/2 electron compounds (average outer shell electron concentration e/a of 3/2) are good.

また1本発明合金は固相変態を有する合金組成が好まし
く、その合金は高温からの急冷と非急冷によって分光反
射率の差の大きいものが得られる。
Further, the alloy of the present invention preferably has an alloy composition having solid phase transformation, and the alloy can be obtained with a large difference in spectral reflectance by quenching from a high temperature and non-quenching.

本発明合金は超微細結晶粒を有する合金が好ましく、特
に結晶粒径は0.1μ層以下が好ましい。
The alloy of the present invention preferably has ultrafine crystal grains, and the crystal grain size is particularly preferably 0.1 μm or less.

即ち、結晶粒は可視光領域の波長の値より小さいのが好
ましいが、半導体レーザ光の波長の値より小さいもので
もよい。
That is, the crystal grains are preferably smaller than the wavelength of visible light, but may be smaller than the wavelength of semiconductor laser light.

(特性) 本発明の分光反射率可変合金及び記録材料は、可視光領
域における分光反射率を同一温度で少なくとも2種類形
成させることができる。即ち、高温からの急冷によって
形成された結晶構造(組織)を有するものの分光反射率
が非急冷によって形成された結晶構造(組織)を有する
ものの分光反射率と異なっていることが必要である。
(Characteristics) The variable spectral reflectance alloy and recording material of the present invention can form at least two types of spectral reflectance in the visible light region at the same temperature. That is, it is necessary that the spectral reflectance of a material having a crystal structure (structure) formed by rapid cooling from a high temperature is different from that of a material having a crystal structure (structure) formed by non-quenching.

また、急冷と非急冷によって得られるものの分光反射率
の差は5%以上が好ましく、特に10%以上有すること
が好ましい0分光反射率の差が大きければ、目視による
色の識別が容易であり、後で記載する各種用途において
顕著な効果がある。
In addition, the difference in spectral reflectance obtained by quenching and non-quenching is preferably 5% or more, particularly preferably 10% or more.0 If the difference in spectral reflectance is large, it is easy to visually identify the color, It has remarkable effects in various applications described later.

分光反射させる光源として、電磁波であれば可視光以外
でも使用可能であり、赤外線、紫外線なども使用可能で
ある。
As a light source for spectrally reflecting, electromagnetic waves other than visible light can be used, and infrared rays, ultraviolet rays, etc. can also be used.

本発明合金のその他の特性として、電気抵抗率、光の屈
折率、光の偏光率、光の透過率なども分光反射率と同様
に可逆的に変えることができ、各種情報の記録2表示、
センサー等の再生、検出手段として利用することができ
る。
Other properties of the alloy of the present invention include electrical resistivity, optical refractive index, optical polarization rate, optical transmittance, etc., which can be changed reversibly in the same way as spectral reflectance.
It can be used as a regeneration and detection means for sensors, etc.

分光反射率は合金の表面あらさ状態に関係するので、前
述のように少なくとも可視光領域において10%以上有
するように少なくとも目的とする部分において鏡面にな
っているのが好ましい。
Since the spectral reflectance is related to the surface roughness of the alloy, it is preferable that at least the intended portion has a mirror surface so as to have 10% or more in the visible light region as described above.

(用途) 本発明合金は、加熱急冷によって部分的又は全体に結晶
構造の変化による電磁波の分光反射率、電気抵抗率、屈
折率、偏光率、透過率等の物理的又は電気的特性を変化
させ、これらの特性の変化を利用して記録1表示、セン
サー等の素子に使用することができる。
(Applications) The alloy of the present invention can be heated and rapidly cooled to partially or entirely change its physical or electrical properties such as spectral reflectance of electromagnetic waves, electrical resistivity, refractive index, polarization index, and transmittance due to a change in crystal structure. By utilizing changes in these characteristics, it can be used for elements such as recording, display, and sensors.

情報等の記録の手段として、電圧及び電流の形での電気
エネルギー、電磁波(可視光、輻射熱。
Electric energy in the form of voltage and current, electromagnetic waves (visible light, radiant heat) are used as a means of recording information, etc.

赤外線、紫グ線、写真用閃光ランプの光、電子ビーム、
陽子線、アルゴンレーザ、半導体レーザ等のレーザ光線
、熱等)を用いることができ、特にその照射による分光
反射率の変化を利用して光ディスクの記録媒体に利用す
るのが好ましい、光ディスクには、ディジタルオーディ
オディスク(CAD又はコンパクトディス゛り)、ビデ
オディスク、メモリーディスク、ディスプレイなどがあ
り、これらに使用可能である1本発明合金を光ディスク
の記録媒体に使用することにより再生専用型、追加記録
型、書換型ディスク装置にそれぞれ使用でき、特に書換
型ディスク装置においてきわめて有効である。
Infrared rays, violet rays, photographic flash lamp light, electron beams,
Proton beams, laser beams such as argon lasers, semiconductor lasers, heat, etc.) can be used, and it is particularly preferable to utilize changes in spectral reflectance due to irradiation as a recording medium for optical disks. There are digital audio discs (CAD or compact discs), video discs, memory discs, displays, etc., and by using the alloy of the present invention in the recording medium of optical discs, playback-only type, additional recording type, etc. It can be used in any rewritable disk device, and is particularly effective in rewritable disk devices.

本発明合金を光ディスクの記録媒体に使用した場合の記
録及び再生の原理の例は次の通りである。
An example of the principle of recording and reproduction when the alloy of the present invention is used in a recording medium of an optical disk is as follows.

先ず、記録媒体を局部的に加熱し該加熱後の急冷によっ
て高温度領域での結晶構造を低温度領域で保持させて所
定の情報を記録し、又は高温相をペースとして、局部的
に加熱して高温相中に局部的に低温相によって記録し、
記録部分に光を照射して加熱部分と非加熱部分の光学的
特性の差を検出して情報を再生することができる。更に
情報として記録された部分を記録時の加熱温度より低い
温度又は高い温度で加熱し記録された情報を消去するこ
とができる。光はレーザ光線が好ましく、特に短波長レ
ーザが好ましい0本発明の加熱部分と非加熱部分との反
射率が500nm又は800nm付近の波長において最
も大きいので、このような波長を有するレーザ光を再生
に用いるのが好ましい、記録、再生には同じレーザ源が
用いられ。
First, the recording medium is locally heated and then rapidly cooled to maintain the crystal structure in the high temperature region in the low temperature region to record predetermined information, or the recording medium is locally heated using the high temperature phase as a pace. recorded locally by a low temperature phase during the high temperature phase,
Information can be reproduced by irradiating the recorded portion with light and detecting the difference in optical characteristics between the heated portion and the non-heated portion. Furthermore, the recorded information can be erased by heating the portion recorded as information at a temperature lower or higher than the heating temperature at the time of recording. The light is preferably a laser beam, and a short wavelength laser is particularly preferable. Since the reflectance of the heated portion and non-heated portion of the present invention is greatest at a wavelength around 500 nm or 800 nm, a laser beam having such a wavelength may be used for reproduction. Preferably, the same laser source is used for recording and reproduction.

消去に記録のものよりエネルギー密度を小さくした他の
レーザ光を照射するのが好ましい。
For erasing, it is preferable to irradiate another laser beam with a lower energy density than that for recording.

また1本発明合金を記録媒体に用いたディスクは情報が
記録されているか否かが目視で判別できる大きなメリッ
トがある。
Furthermore, a disk using the alloy of the present invention as a recording medium has a great advantage in that it can be visually determined whether information is recorded or not.

表示として、特に可視光での分光反射率を部分的に変え
ることができるので塗料を使用せずに文字、図形、記号
等を記録することができ、それらの表示は目視によって
識別することができる。また、これらの情報は消去する
ことができ、記録と消去のくり返し使用のほか、永久保
存も可能である。その応用例として時計の文字盤、アク
セサリ−などがある。
As a display, it is possible to partially change the spectral reflectance of visible light, so it is possible to record characters, figures, symbols, etc. without using paint, and these displays can be visually identified. . Furthermore, this information can be erased, and in addition to being used repeatedly by recording and erasing, it is also possible to store it permanently. Examples of its applications include clock faces and accessories.

センサーとして、特に可視光での分光反射率の変化を利
用する温度センサーがある。予め高温相に変る温度が分
っている本発明の合金を使用したセンサーを測定しよう
とする温度領域に保持し、その適冷によって適冷相を保
持させることによっておおよその温度検出ができる。
As a sensor, there is a temperature sensor that utilizes changes in spectral reflectance, especially in visible light. Approximate temperature detection can be made by holding a sensor using the alloy of the present invention, whose temperature at which it changes to a high temperature phase is known in advance, in the temperature range to be measured, and maintaining the appropriate cool phase by cooling it appropriately.

(ls造法) 本発明は、固体状態で室温より高い第1の温度と該第1
の温度より低い第2の温度とで異なった結晶構造を有す
る前述した化学組成の合金表面の一部に、前記第1の温
度より急冷して前記第2の温度における結晶構造と異な
る結晶構造を有する領域を形成し、前記急冷されて形成
された結晶構造を有する領域と前記第2の温度での結晶
構造を有する領域とで異なった分光反射率を形成させる
ことを特徴とする分光反射率可変合金の製造法にある。
(ls manufacturing method) The present invention provides a first temperature higher than room temperature in a solid state and a first temperature higher than room temperature in a solid state.
A part of the surface of the alloy having the chemical composition described above, which has a crystal structure different from that at the second temperature lower than the temperature, is rapidly cooled from the first temperature to form a crystal structure different from the crystal structure at the second temperature. and forming a region having a crystal structure formed by the rapid cooling and forming a different spectral reflectance between the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. It is in the manufacturing method of the alloy.

更に、本発明は固体状態で室温より高い第1の温度と該
第1の温度より低い第2の温度で異なった結晶構造を有
する前述した化学組成の合金表面の全部に、前記第1の
温度から急冷して前記第2の温度における結晶構造と異
なる結晶構造を形成させ、次いで前記合金表面の一部を
前記第2の温度に加熱して前記第2の温度における結晶
構造を有する領域を形成し、前記急冷されて形成された
結晶構造を有する領域と前記第2の温度における結晶構
造を有する領域とで異なった分光反射率を形成させるこ
とを特徴とする分光反射率可変合金の製造法にある。
Furthermore, the present invention provides a method for applying the first temperature to the entire surface of the alloy having the chemical composition described above, which has a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in a solid state. to form a crystal structure different from the crystal structure at the second temperature, and then heat a portion of the alloy surface to the second temperature to form a region having the crystal structure at the second temperature. and forming different spectral reflectances in the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. be.

第1の温度からの冷却速度は10”℃/秒以上。The cooling rate from the first temperature is 10”°C/second or more.

より好ましくは101℃/秒以上が好ましい。More preferably, it is 101° C./second or higher.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) Ag−40wt%Zn合金にM g g T l e 
Ve(::r、Fe、AQg Snt Yを単独で添加
した合金を、真空高周波誘導炉で溶解しインゴットとし
た。このインゴットは黄金色であった。このインゴット
を溶融し、その溶湯を高速回転する単ロールの表面又は
多ロールのロール間に注湯急冷することによりリボン状
の箔を製造した。前者は直径300■のCu製ロール(
表面はCrメッキ)、後者は直径120閣のCu−Bs
製ロールであり。
(Example 1) M g g T le in Ag-40wt%Zn alloy
An alloy containing only Ve(::r, Fe, AQg Snt Y) was melted in a vacuum high-frequency induction furnace to form an ingot. This ingot was golden in color. This ingot was melted and the molten metal was rotated at high speed. A ribbon-shaped foil was produced by pouring and rapidly cooling the metal on the surface of a single roll or between the rolls of a multi-roll.
The surface is Cr plated), the latter is Cu-Bs with a diameter of 120 mm.
It is made of rolls.

ロールを周速10〜20 m / sに設定した。母合
金溶解には石英製ノズルを用い、1チヤ一ジ10g前後
を溶解、急冷して幅5m、厚さ40pm、長さ数mのリ
ボン拭清を作製した。このリボンの室温での色調はピン
ク色であった。このものの一部分を180℃で1分間加
熱した所、室温で銀白色を示した。これらの色調につい
て分光反射率を測定した。
The roll was set at a circumferential speed of 10-20 m/s. A quartz nozzle was used to melt the master alloy, and approximately 10 g per charge was melted and rapidly cooled to produce a ribbon wiping material with a width of 5 m, a thickness of 40 pm, and a length of several meters. The color of this ribbon at room temperature was pink. When a portion of this product was heated at 180° C. for 1 minute, it showed a silvery white color at room temperature. Spectral reflectance was measured for these color tones.

ピンク色と銀白色とで分光反射率が大きい所で約15%
の差が見られた6、従って0両者の色別が可能である。
Approximately 15% in pink and silvery white areas where the spectral reflectance is high
There was a difference between 6 and 0. Therefore, it is possible to distinguish between the two colors.

これらの色調は室温でいずれも永久保存可能である。更
に、このことはレーザによる局部的な加熱によって銀白
色基地にピンク色による信号、文字、記号等の情報を記
憶させることが可能であることを示すものである。また
、逆のピンク色基地に銀白色による信号等の情報の記録
が可能である。
All of these colors can be stored permanently at room temperature. Furthermore, this shows that it is possible to store information such as signals, characters, symbols, etc. in pink on the silver-white base by local heating with a laser. Furthermore, it is possible to record information such as signals using silver-white on the opposite pink base.

(実施例2) スパッタ蒸着法により製作した薄膜で色調の可逆的変化
を確認した。実施例1で作製したインゴットから直径L
oom、厚さ5IIllの円板を切り出しスパッタ装置
用のターゲットとした。スパッタ蒸着基板としてはガラ
ス板(厚さ0.8in)を用いた。スパッタ膜を書込み
、消去時での加熱酸化、基板からの剥離などを防止する
ためその表面にSio、の保護膜(厚さ30nm)を蒸
着によって形成させた0合金膜の蒸着にはDC−マグネ
トロン型を、SiO□膜にはRF型のスパッタ法をそれ
ぞれ使用した。スパッタ出力は140〜200W、基板
温度は室温の条件に設定した。容器内は10−’Tor
r程度まで真空排気後、Arガスを5〜30 mTor
r導入して薄膜を作製した6膜厚はSin、膜は30n
m程度とし、合金膜厚を0.05〜LOpmの種々の厚
さのものを作製した0以上のようなスパッタ蒸着条件で
作製した合金膜(膜厚300nm)の結晶粒は超微細で
あり、粒径は約30nmと超微細であり、記録、再生、
消去における結晶粒の影響は全くないと考えられる。蒸
着されたままの合金膜はピンク色であった。
(Example 2) A reversible change in color tone was confirmed in a thin film produced by sputter deposition. Diameter L from the ingot produced in Example 1
A disk with a thickness of 5IIll was cut out and used as a target for a sputtering device. A glass plate (thickness: 0.8 inch) was used as the sputter deposition substrate. A DC-magnetron was used to evaporate the 0 alloy film, in which a protective film (30 nm thick) of Sio was formed on the surface of the sputtered film to prevent thermal oxidation and peeling from the substrate during writing and erasing. An RF type sputtering method was used for the mold and the SiO□ film, respectively. The sputtering output was set to 140 to 200 W, and the substrate temperature was set to room temperature. Inside the container is 10-'Tor.
After evacuation to about r, Ar gas is heated to 5 to 30 mTor.
A thin film was prepared by introducing r.The film thickness was Sin, and the film was 30n.
The crystal grains of the alloy films (film thickness 300 nm) produced under sputter deposition conditions of 0 or more were made with various thicknesses of 0.05 to LOpm, and the crystal grains were ultrafine. The particle size is ultra-fine, approximately 30 nm, and is suitable for recording, playback,
It is believed that the grains have no effect on erasure. The as-deposited alloy film was pink in color.

スパッタリング法によって作製した合金膜について18
0℃で1分加熱し、銀白色に変えた後。
18 About alloy film produced by sputtering method
After heating at 0℃ for 1 minute, it turned silvery white.

Arレーザによる加熱・冷却を利用して書込み。Writing using heating and cooling by Ar laser.

消去を行なったm A rレーザは連続発振である。The mAr laser used for erasing is a continuous wave laser.

試料を手動移動ステージの上に設置し、試料を移動させ
てレーザ光を膜表面に焦点を合せ走査させた。レーザ光
を照射させた部分はピンク色に変化し、斜線のように書
込みさせた1点線部分も同様である。書込みはスポット
径10μmの200mWのArレーザ光を走査させた跡
である0合金膜はあらかじめ基板ごとに銀白色になる熱
処理を施しである1次にレーザ光の焦点を膜表面から若
干ずらし、レーザの出力密度を低くして走査させた6そ
の結果1元のピンク色は消去され銀白色に変化、 した
0以上の結果から薄膜状態の合金においても色調変化に
よる2無、消去が可能であることが確認された。この書
込み、′/I4去は何回でも繰返しが可能であることが
確認された。
The sample was placed on a manual moving stage, and the sample was moved to focus and scan the laser beam on the film surface. The part irradiated with the laser light turns pink, and the same goes for the dotted line part written like a diagonal line. The writing is the result of scanning with a 200 mW Ar laser beam with a spot diameter of 10 μm.The 0 alloy film is heat-treated to become silvery white for each substrate.First, the focus of the laser beam is slightly shifted from the film surface, and the laser As a result, the original pink color was erased and changed to a silvery white color.From the results of 0 or more, it was found that even in thin film alloys, it is possible to erase the color by changing the color tone. was confirmed. It has been confirmed that this write and '/I4 write can be repeated any number of times.

室温で前述の作製したままの全面がピンク色の試料にA
i−レーザの出力を50mW程度にして。
Add A to the as-prepared pink sample at room temperature.
Set the i-laser output to about 50mW.

走査させたaAt’Arレーザ走査部において銀白色に
変化し、基地のピンク色と識別でき、記録が可能なこと
がわかった。
In the aAt'Ar laser scanning section, the color changed to silvery white and could be distinguished from the pink color of the base, indicating that recording was possible.

その後全体を180℃にl +sin加熱すると、ピン
ク色の部分は銀白色に変化し、室温では全面銀白色を呈
し、消去可能なことがわかった。
Thereafter, when the whole was heated to 180° C. at 1 + sin, the pink portion changed to silvery white, and at room temperature the entire surface was silvery white, indicating that it was erasable.

(実施例3) 実施例1で製造したインゴットを粉末にしてその色調変
化を調べた。・インゴットを機械的に切削後、その切り
粉を粉砕した。インゴットは脆いため切り粉状態でかな
り細かな粉状となるが、これをさらに粉砕し一100メ
ツシュ程度とした。粉砕したままの状態では銀白色であ
るが、こ−れを350℃で1分加熱後水冷するとピンク
色に変化することが確認された。
(Example 3) The ingot produced in Example 1 was made into powder and its color change was examined. - After mechanically cutting the ingot, the chips were crushed. Since the ingot is brittle, it becomes a fairly fine powder in the form of chips, which was further crushed to about 1,100 mesh. When it was ground, it was silvery white, but when it was heated at 350°C for 1 minute and then cooled with water, it was confirmed that it turned pink.

更に、インゴットから粉砕した粉末をボールミルを用い
て粒径数μmの粉末にし、有機物に混合してガラス基板
を塗布し、非酸化性雰囲気中で焼成し、約100μmの
厚さの合金膜を形成した。
Furthermore, the powder crushed from the ingot is made into powder with a particle size of several μm using a ball mill, mixed with organic matter, applied to a glass substrate, and fired in a non-oxidizing atmosphere to form an alloy film with a thickness of approximately 100 μm. did.

この合金膜表面に約30nmの厚さのS i O2皮膜
を蒸着によって形成させた。ガラス基板は鏡面研摩した
ものであり、合金膜を形成後、同様に鏡面研摩したもの
である。この合金膜を形成したままのものは銀白色を呈
しているが、前述と同様にレーザ光を他の相に変態する
温度に照射することによりピンク色に変化することが確
認された。
A SiO2 film with a thickness of about 30 nm was formed on the surface of this alloy film by vapor deposition. The glass substrate was mirror-polished, and after the alloy film was formed, it was mirror-polished in the same way. The alloy film as it is formed has a silvery white color, but it was confirmed that it changes to a pink color by irradiating it with laser light at a temperature at which it transforms into another phase, as described above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、結晶−結晶相間転移による色もしくは
分光反射率を可逆的に変化させることができるので、情
報の記録媒体としてf!録及び消去ができる顕著な効果
が得られる。
According to the present invention, it is possible to reversibly change the color or spectral reflectance due to crystal-crystal phase transition, so f! can be used as an information recording medium. A remarkable effect can be obtained by recording and erasing data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はA g −Z n二元系平衡状態図及び第2図
は本発明合金の加熱急冷過程による記録及び消去の原理
を示す図である。
FIG. 1 is an equilibrium phase diagram of the A g -Z n binary system, and FIG. 2 is a diagram showing the principle of recording and erasing by the heating and quenching process of the alloy of the present invention.

Claims (1)

【特許請求の範囲】 1、銀を主成分とし、重量で亜鉛30〜46%及び周期
律表の I a、IIa、IVa、Va、VIa、VIIa、VIII、
I b〜Vb、希土類元素の1種又は2種以上を合計で
15%以下を含む合金からなることを特徴とする分光反
射率可変合金。 2、固体状態で室温より高い第1の温度と該第1の温度
より低い第2の温度で異なつた結晶構造を有する合金表
面の一部が、前記第1の温度からの急冷によつて前記第
2の温度における結晶構造と異なつた結晶構造を有し、
他は前記第2の温度における結晶構造を有し前記急冷さ
れた結晶構造とは異なつた分光反射率を有する特許請求
の範囲第1項に記載の分光反射率可変合金。 3、前記合金は金属間化合物を有する特許請求の範囲第
1項又は第2項に記載の分光反射率可変合金。 4、前記第1の温度は固相変態点より高い温度である特
許請求の範囲第1項〜第3項のいずれかに記載の分光反
射率可変合金。 5、前記急冷によつて形成された結晶構造を有するもの
の分光反射率と非急冷によつて形成された前記低温にお
ける結晶構造を有するものの分光反射率との差が5%以
上である特許請求の範囲第1項〜第4項のいずれかに記
載の分光反射率可変合金。 6、前記合金の分光反射率は波長400〜1000nm
で10%以上である特許請求の範囲第1項〜第5項のい
ずれかに記載の分光反射率可変合金。 7、前記合金はノンバルク材である特許請求の範囲第1
項〜第6項のいずれかに記載の分光反射率可変合金。 8、前記合金は結晶粒径が0.1μm以下である特許請
求の範囲第1項〜第7項のいずれかに記載の分光反射率
可変合金。 9、前記合金は薄膜、箔、ストリップ、粉末及び細線の
いずれかである特許請求の範囲第1項〜第8項のいずれ
かに記載の分光反射率可変合金。 10、銀を主成分とし、重量で亜鉛30〜46%及び
I a、IIa、IVa、Va、VIa、VIIa、VIII、 I b〜
Vb、希土類元素の1種又は2種以上を合計で15%以
下を含む合金からなることを特徴とする記録材料。 11、固体状態で室温より高い第1の温度と該第1の温
度より低い第2の温度とで異なつた結晶構造を有する合
金であつて、該合金表面の少なくとも一部が前記第1の
温度からの急冷によつて前記第2の温度における結晶構
造と異なつた結晶構造を形成する合金組成を有する特許
請求の範囲第10項に記載の記録材料。 12、前記合金の溶湯を回転する高熱伝導性部材からな
るロール円周面上に注湯してなる箔又は細線である特許
請求の範囲第10項又は第11項に記載の記録材料。 13、前記合金を蒸着又はスパッタリングによつて堆積
してなる薄膜である特許請求の範囲第10項又は第11
項に記載の記録材料。 14、前記合金の溶湯を液体又は気体の冷却媒体を用い
て噴霧してなる粉末である特許請求の範囲第10項又は
第11項に記載の記録材料。
[Claims] 1. Mainly composed of silver, 30 to 46% zinc by weight, and Ia, IIa, IVa, Va, VIa, VIIa, VIII of the periodic table,
A variable spectral reflectance alloy comprising an alloy containing a total of 15% or less of one or more of rare earth elements Ib to Vb. 2. A part of the alloy surface having a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in the solid state is formed by rapid cooling from the first temperature. having a crystal structure different from the crystal structure at the second temperature,
2. The variable spectral reflectance alloy according to claim 1, wherein the other alloy has a crystal structure at the second temperature and has a spectral reflectance different from that of the rapidly cooled crystal structure. 3. The variable spectral reflectance alloy according to claim 1 or 2, wherein the alloy contains an intermetallic compound. 4. The variable spectral reflectance alloy according to any one of claims 1 to 3, wherein the first temperature is higher than the solid phase transformation point. 5. A patent claim in which the difference between the spectral reflectance of a product having a crystal structure formed by the rapid cooling and the spectral reflectance of a product having a crystal structure at the low temperature formed by non-quenching is 5% or more. The variable spectral reflectance alloy according to any one of the ranges 1 to 4. 6. The spectral reflectance of the alloy is at a wavelength of 400 to 1000 nm.
10% or more of the variable spectral reflectance alloy according to any one of claims 1 to 5. 7. Claim 1, wherein the alloy is a non-bulk material.
The variable spectral reflectance alloy according to any one of items 1 to 6. 8. The variable spectral reflectance alloy according to any one of claims 1 to 7, wherein the alloy has a crystal grain size of 0.1 μm or less. 9. The variable spectral reflectance alloy according to any one of claims 1 to 8, wherein the alloy is any one of a thin film, foil, strip, powder, and thin wire. 10. Main component is silver, 30-46% zinc by weight and
I a, IIa, IVa, Va, VIa, VIIa, VIII, I b~
A recording material comprising an alloy containing a total of 15% or less of Vb and one or more rare earth elements. 11. An alloy having different crystal structures in a solid state at a first temperature higher than room temperature and a second temperature lower than the first temperature, wherein at least a part of the alloy surface is at the first temperature. 11. The recording material according to claim 10, having an alloy composition that forms a crystal structure different from the crystal structure at the second temperature when quenched from the recording material. 12. The recording material according to claim 10 or 11, which is a foil or thin wire formed by pouring the molten metal of the alloy onto the circumferential surface of a rotating roll made of a highly thermally conductive member. 13. Claim 10 or 11, which is a thin film formed by depositing the alloy by vapor deposition or sputtering.
Recording materials listed in section. 14. The recording material according to claim 10 or 11, which is a powder obtained by spraying the molten metal of the alloy using a liquid or gas cooling medium.
JP59255306A 1984-12-03 1984-12-03 Variable spectral reflectance alloy and recording material Pending JPS61133349A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59255306A JPS61133349A (en) 1984-12-03 1984-12-03 Variable spectral reflectance alloy and recording material
EP85308745A EP0184412B1 (en) 1984-12-03 1985-12-02 Alloy having variable spectral reflectance and information recording material making use of the same
DE8585308745T DE3582657D1 (en) 1984-12-03 1985-12-02 ALLOY WITH VARIABLE SPECTRAL REFLECTIVITY AND INFORMATION STORAGE MADE THEREOF.
US06/803,640 US4743526A (en) 1984-12-03 1985-12-02 Alloy having variable spectral reflectance and information recording material making use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255306A JPS61133349A (en) 1984-12-03 1984-12-03 Variable spectral reflectance alloy and recording material

Publications (1)

Publication Number Publication Date
JPS61133349A true JPS61133349A (en) 1986-06-20

Family

ID=17276940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255306A Pending JPS61133349A (en) 1984-12-03 1984-12-03 Variable spectral reflectance alloy and recording material

Country Status (4)

Country Link
US (1) US4743526A (en)
EP (1) EP0184412B1 (en)
JP (1) JPS61133349A (en)
DE (1) DE3582657D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113433A (en) * 2001-10-03 2003-04-18 Hitachi Metals Ltd Ag ALLOY FILM FOR ELECTRONIC PARTS AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
KR100445083B1 (en) * 2000-12-26 2004-08-21 가부시키가이샤 고베 세이코쇼 Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
WO2006137405A1 (en) * 2005-06-21 2006-12-28 Toshima Mfg Co., Ltd. Material for thin film formation, thin film formed therefrom and method of forming thin film
US8178174B2 (en) 2002-08-08 2012-05-15 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988006337A1 (en) * 1987-02-13 1988-08-25 The Dow Chemical Company Optical recording medium
US5273861A (en) * 1987-12-04 1993-12-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method of making an optical information recording medium and method of recording/reproducing optical information
JPH03169683A (en) * 1989-11-30 1991-07-23 Toshiba Corp Method for recording and erasing information
US5328813A (en) * 1992-06-30 1994-07-12 The Dow Chemical Company Method for the preparation of optical recording media containing overcoat
US6288842B1 (en) 2000-02-22 2001-09-11 3M Innovative Properties Sheeting with composite image that floats
US7068434B2 (en) 2000-02-22 2006-06-27 3M Innovative Properties Company Sheeting with composite image that floats
US7336422B2 (en) * 2000-02-22 2008-02-26 3M Innovative Properties Company Sheeting with composite image that floats
US20020153625A1 (en) * 2001-02-05 2002-10-24 Pioneer Corporation Stamper-forming electrode material, stamper-forming thin film, and method of manufacturing optical disk
AU2003245661A1 (en) * 2002-06-28 2004-01-19 Williams Advanced Materials, Inc. Corrosion resistive silver metal alloys for optical data storage and recordable storage media containing same
US7572517B2 (en) * 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings
AU2003248890A1 (en) * 2002-07-08 2004-01-23 Academy Corporation Reflective or semi-reflective metal alloy coatings
US7616332B2 (en) * 2004-12-02 2009-11-10 3M Innovative Properties Company System for reading and authenticating a composite image in a sheeting
JP2006294195A (en) 2005-04-14 2006-10-26 Kobe Steel Ltd Ag alloy reflection film for optical information recording, optical information recording medium and ag alloy sputtering target for deposition of ag alloy reflection film for optical information recording
US7981499B2 (en) * 2005-10-11 2011-07-19 3M Innovative Properties Company Methods of forming sheeting with a composite image that floats and sheeting with a composite image that floats
US20080027199A1 (en) 2006-07-28 2008-01-31 3M Innovative Properties Company Shape memory polymer articles with a microstructured surface
US7951319B2 (en) * 2006-07-28 2011-05-31 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
US7586685B2 (en) * 2006-07-28 2009-09-08 Dunn Douglas S Microlens sheeting with floating image using a shape memory material
US7800825B2 (en) * 2006-12-04 2010-09-21 3M Innovative Properties Company User interface including composite images that float
BRPI0811820A2 (en) 2007-07-11 2014-11-04 3M Innovative Properties Co "LAMINATED MATERIAL WITH FLOATING PICTURE IMAGE"
EP3260893A3 (en) * 2007-11-27 2018-04-11 3M Innovative Properties Co. Methods for forming sheeting with a composite image that floats and a master tooling
US7995278B2 (en) 2008-10-23 2011-08-09 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US8111463B2 (en) * 2008-10-23 2012-02-07 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US10017001B2 (en) 2011-05-20 2018-07-10 3M Innovative Properties Company Laser-personalizable security articles
EP2710520B1 (en) 2011-05-20 2016-04-27 3M Innovative Properties Company Laser-personalizable security articles
WO2013090586A1 (en) 2011-12-15 2013-06-20 3M Innovative Properties Company A personalized security article and methods of authenticating a security article and verifying a bearer of a security article
US10406845B2 (en) 2013-03-15 2019-09-10 Gemalto Sa Flexible hinge material comprising cross-linked polyurethane material
US20140265301A1 (en) 2013-03-15 2014-09-18 3M Innovative Properties Company Security feature utlizing hinge material and biodata page

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619542A (en) * 1984-06-25 1986-01-17 Hitachi Ltd Recording material and its manufacturing method
JPS6137936A (en) * 1984-07-27 1986-02-22 Hitachi Ltd Spectral reflectance variable alloy and recording material
JPS61124541A (en) * 1984-11-21 1986-06-12 Hitachi Ltd Alloy having variable spectral reflectance and recording material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483531A (en) * 1965-10-13 1969-12-09 Rudnay Andre E De Process for the recording,reproducing and erasing of information data on recording carriers
JPS607240B2 (en) * 1976-10-22 1985-02-22 大日本塗料株式会社 Intensifying screen for simultaneous multilayer tomography
JPS5938291B2 (en) * 1981-02-25 1984-09-14 株式会社東芝 Alloy for color memory elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619542A (en) * 1984-06-25 1986-01-17 Hitachi Ltd Recording material and its manufacturing method
JPS6137936A (en) * 1984-07-27 1986-02-22 Hitachi Ltd Spectral reflectance variable alloy and recording material
JPS61124541A (en) * 1984-11-21 1986-06-12 Hitachi Ltd Alloy having variable spectral reflectance and recording material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445083B1 (en) * 2000-12-26 2004-08-21 가부시키가이샤 고베 세이코쇼 Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
JP2003113433A (en) * 2001-10-03 2003-04-18 Hitachi Metals Ltd Ag ALLOY FILM FOR ELECTRONIC PARTS AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
US8178174B2 (en) 2002-08-08 2012-05-15 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US8936856B2 (en) 2002-08-08 2015-01-20 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
WO2006137405A1 (en) * 2005-06-21 2006-12-28 Toshima Mfg Co., Ltd. Material for thin film formation, thin film formed therefrom and method of forming thin film
JP2007002275A (en) * 2005-06-21 2007-01-11 Toyoshima Seisakusho:Kk Material for depositing thin film, thin film deposited using the same, and method for depositing the same

Also Published As

Publication number Publication date
EP0184412B1 (en) 1991-04-24
EP0184412A2 (en) 1986-06-11
US4743526A (en) 1988-05-10
EP0184412A3 (en) 1988-07-20
DE3582657D1 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
JPS61133349A (en) Variable spectral reflectance alloy and recording material
JPS6169935A (en) Variable spectral reflectance alloy and recording material
JPS6119747A (en) Variable spectral reflectance alloy and recording material
JPS619542A (en) Recording material and its manufacturing method
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPS61133352A (en) Alloy capable of varying spectral reflectance and recording material
JPS61133356A (en) Alloy capable of varying spectral reflectance and recording material
JPS61133350A (en) Alloy capable of varying spectral reflectance and recording material
JPS61133353A (en) Spectral reflectance variable alloy and recording material
JPS61190028A (en) Variable spectral reflectance alloys and recording materials
JPS61133354A (en) Variable spectral reflectance alloy and recording material
JPS61133342A (en) Variable spectral reflectance alloy and recording material
JPS6169934A (en) Spectral reflectance variable alloy and recording material
JPS61133355A (en) Alloy capable of varying spectral reflectance and recording material
JPS61110738A (en) Spectral reflectance variable alloy and recording material
JPH0530893B2 (en)
JPS6137936A (en) Spectral reflectance variable alloy and recording material
JPS61133337A (en) Spectral reflectivity variable alloy and recording material
JPS6176638A (en) Variable spectral reflectance alloy and recording material
JPS6119746A (en) Spectral reflectance variable alloy and recording material
JPS61124541A (en) Alloy having variable spectral reflectance and recording material
JPS62112742A (en) Spectral reflectance variable alloy
JPS61110737A (en) Spectral reflectance variable alloy and recording material
JPS6134153A (en) Alloy having variable spectral reflectance and recording material
JPS6176635A (en) Spectral reflectance variable alloy and recording material