[go: up one dir, main page]

JPS61133031A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61133031A
JPS61133031A JP25365484A JP25365484A JPS61133031A JP S61133031 A JPS61133031 A JP S61133031A JP 25365484 A JP25365484 A JP 25365484A JP 25365484 A JP25365484 A JP 25365484A JP S61133031 A JPS61133031 A JP S61133031A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
magnetic
plasma oxidation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25365484A
Other languages
Japanese (ja)
Other versions
JPH0680530B2 (en
Inventor
Haruo Awano
晴夫 粟野
Naoki Honda
直樹 本多
Tetsuo Samoto
哲雄 佐本
Sachiko Fukushima
福島 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59253654A priority Critical patent/JPH0680530B2/en
Publication of JPS61133031A publication Critical patent/JPS61133031A/en
Publication of JPH0680530B2 publication Critical patent/JPH0680530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form effectively a plasma oxidation layer and a to improve the durability and running property of the resultant magnetic recording medium by subjecting the surface of the magnetic layer of the magnetic recording medium to the plasma oxidation while maintaining the magnetic recording medium at negative potential in the stage of subjecting said surface to the plasma oxidation treatment. CONSTITUTION:Any magnetic recording medium constituted by depositing directly a ferromagnetic metallic material on a non-magnetic substrate and forming a thin metallic film thereon as the magnetic layer is acceptable as the magnetic recording medium. Said medium is therefore applicable to, for example, a magnetic recording medium for vertical magnetic recording or so-called thin ferromagnetic metallic film type magnetic recording medium, etc. In practical treatment, the air in a reaction chamber 6 is thoroughly removed by a vacuum pump, etc. and the pressure therein is reduced to about 10<-2>Torr and thereafter gaseous oxygen is introduced into the chamber 6. While the gaseous oxygen is then introduced into the chamber 6 at a prescribed flow rate, a high-frequency power source 7 is operated to charge electrostatically the magnetic recording medium 4 to the negative potential. The magnetic recording medium of which the surface of the magnetic layer 3 consisting of the thin metallic film is subjected to the plasma oxidation is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度磁気記録媒体として利用される金属薄
膜型磁気記録媒体の製造方法に関するものであり、詳細
には金属薄膜により形成される磁性層の表面処理方法の
改良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a metal thin film type magnetic recording medium used as a high-density magnetic recording medium. This invention relates to improvements in surface treatment methods for magnetic layers.

〔従来の技術〕[Conventional technology]

磁気記録の分野においては、記録信号の高密度記録化や
記録波長の短波長化が進められているが、これに対応し
て抗磁力Hcや残留磁束密度Brの大きな磁気記録媒体
が要望されている。
In the field of magnetic recording, higher density recording of recording signals and shorter recording wavelengths are progressing, and in response to this, magnetic recording media with large coercive force Hc and residual magnetic flux density Br are required. There is.

そこで従来、例えば、ポリエステルフィルム等 。Therefore, conventionally, for example, polyester film, etc.

の非磁性支持体上にCo−Ni合金等の強磁性金属材料
を真空蒸着法やスパッタ法等の手段を用いて強磁性金属
WI膜を直接被着形成し、これを磁性層とした強磁性金
属薄膜型磁気記録媒体が提案されている。この強磁性金
属薄膜型の磁気記録媒体は、抗磁力Hcや残留磁束密度
Brが大きいばかりでなく、磁性層の深みを極めて薄く
することができるため記録減磁や再生時の厚み損失が著
しく小さいこと、強磁性材料の充填密度を高めることが
できること等、磁気特性の点で数々の利点を有している
A ferromagnetic metal WI film is formed by directly depositing a ferromagnetic metal material such as a Co-Ni alloy on a non-magnetic support using a method such as a vacuum evaporation method or a sputtering method, and this is used as a magnetic layer. Metal thin film magnetic recording media have been proposed. This ferromagnetic metal thin film type magnetic recording medium not only has high coercive force Hc and residual magnetic flux density Br, but also allows the depth of the magnetic layer to be made extremely thin, so recording demagnetization and thickness loss during reproduction are extremely small. It has many advantages in terms of magnetic properties, such as being able to increase the packing density of ferromagnetic materials.

あるいは、高分子フィルム等の非磁性支持体上に、Co
 −Cr合金を真空蒸着法を用いて直接被着形成して磁
性層を形成し、この磁性層の厚さ方向の磁化により記録
を行う垂直磁化記録方式の磁気記録媒体も提案されてい
る。この垂直磁化記録方式の磁気記録媒体においては、
記録波長が短波長になるにしたがい、減磁界が小さくな
ることから、記録密度を飛曜的に高めることができ、特
に短波長記録、高密度記録に非常に有利であることが知
られている。
Alternatively, Co
A perpendicular magnetization recording type magnetic recording medium has also been proposed in which a magnetic layer is formed by directly depositing a -Cr alloy using a vacuum evaporation method, and recording is performed by magnetizing the magnetic layer in the thickness direction. In this perpendicular magnetization recording type magnetic recording medium,
As the recording wavelength becomes shorter, the demagnetizing field becomes smaller, so the recording density can be dramatically increased, and it is known that this is particularly advantageous for short wavelength recording and high density recording. .

ところで、上述のように真空蒸着法により被着形成され
る金属IFMを磁性層とする磁気記録媒体においては、
スペーシングロス等の点からその表面の平滑化が進めら
れているが、そのために上記磁気記録媒体の耐久性や走
行性等に問題が生じ、その改善が大きな課題となってい
る。
By the way, in a magnetic recording medium whose magnetic layer is a metal IFM deposited by a vacuum evaporation method as described above,
Although progress has been made to smooth the surface from the standpoint of spacing loss, etc., this has caused problems with the durability, runnability, etc. of the magnetic recording medium, and improvement thereof has become a major issue.

例えば、上記磁気記録媒体の磁性層、すなわち金属薄膜
の表面に潤滑剤等を塗布して保護胴を形成することによ
って上記耐久性や走行性等を改善することが試みられて
いる。しかしながら0、この場合にば、最初のうちは摩
擦係数が低減して走行性が良くなるが、上記潤滑剤の金
属薄膜に対する付着力が弱いので、次第にこの潤滑剤が
磁気ヘッド等で削り取られてしまい、急激に効果が減じ
てしまうというように、耐久性の点や均一性、膜厚の点
等で問題が多い。
For example, attempts have been made to improve the durability, runnability, etc. of the magnetic recording medium by coating the surface of the magnetic layer, ie, the metal thin film, with a lubricant or the like to form a protective shell. However, in this case, the coefficient of friction is initially reduced and running properties are improved, but since the adhesion of the lubricant to the thin metal film is weak, this lubricant is gradually scraped off by a magnetic head, etc. There are many problems in terms of durability, uniformity, film thickness, etc., and the effectiveness decreases rapidly.

一方、上記金属薄膜表面をプラズマ酸化により酸化させ
、この金属薄膜表面に極めて薄い酸化層を形成させるこ
とにより、上記磁気記録媒体のスペーシングロスを抑え
たままで耐久性を向上する方法が提案されている。
On the other hand, a method has been proposed for improving the durability of the magnetic recording medium while suppressing spacing loss by oxidizing the surface of the metal thin film by plasma oxidation and forming an extremely thin oxide layer on the surface of the metal thin film. There is.

しかしながら、上記方法では、高周波電源に接続された
電極と磁気記録媒体を単に対向配置してプラズマ酸化処
理を行っているので、プラズマ酸化が効果的に進まない
。このため、充分なプラズマ酸化膜が形成さ′れず、上
記磁気記録媒体の耐久性に対する要望を満足させるには
致らない。また、電極と磁気記録媒体とを対向配置する
場合には、プラズマ酸化処理の放電電圧をある程度高く
しなければならないために、酸素プラズマにより磁気記
録媒体表面のエツチングが進行し、上記磁気記録媒体の
耐久性等の向上を妨げている。
However, in the above method, plasma oxidation treatment is performed by simply arranging electrodes connected to a high-frequency power source and the magnetic recording medium facing each other, so that plasma oxidation does not proceed effectively. For this reason, a sufficient plasma oxide film is not formed, and the above-mentioned requirements for durability of the magnetic recording medium cannot be satisfied. Furthermore, when the electrodes and the magnetic recording medium are disposed facing each other, the discharge voltage for the plasma oxidation treatment must be increased to a certain extent, so that the surface of the magnetic recording medium is etched by the oxygen plasma. This prevents improvements in durability, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたように、従来のプラズマ酸化処理では、効果
的な表面酸化を行うことができず、得られる磁気記録媒
体の耐久性や走行性に問題があった。
As described above, in the conventional plasma oxidation treatment, effective surface oxidation cannot be performed, and there are problems with the durability and runnability of the resulting magnetic recording medium.

そこで本発明は、上述の従来の方法の有する欠点を解消
するために提案されたものであって、磁性層表面のプラ
ズマ酸化処理において、表面エツチングを抑えながら効
果的にプラズマ酸化を行えるようにし、耐久性及び走行
性に優れた磁気記録媒体を製造することが可能な磁気記
録媒体の製造方法を提供することを目的とする。
Therefore, the present invention was proposed in order to eliminate the drawbacks of the above-mentioned conventional methods, and it is possible to effectively perform plasma oxidation while suppressing surface etching in plasma oxidation treatment of the surface of a magnetic layer. An object of the present invention is to provide a method for manufacturing a magnetic recording medium that can manufacture a magnetic recording medium with excellent durability and running performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上述の従来の方法の有する欠点を解消するた
めに提案されたものであって、非磁性支持体上に強磁性
金属薄膜よりなる磁性層を形成し、負電位に保ちながら
前記磁性層表面をプラズマ酸化することを特徴とするも
のである。
The present invention was proposed in order to eliminate the drawbacks of the above-mentioned conventional methods, and involves forming a magnetic layer made of a ferromagnetic metal thin film on a non-magnetic support, and maintaining the magnetic layer at a negative potential. This method is characterized by plasma oxidation of the layer surface.

〔作用〕[Effect]

したがって本発明によれば、磁気記録媒体の磁性層表面
をプラズマ酸化処理するときに、上記磁気記録媒体を負
電位に保ちながらプラズマ酸化するので、酸素プラズマ
が積極的に磁気記録媒体磁気記録媒体方向へ加速、衝突
され、効果的にプラズマ酸化が進行する。また、放電電
位をあまり高くする必要がないので、表面エツチングが
ほとんど進行しない。
Therefore, according to the present invention, when plasma oxidizing the magnetic layer surface of a magnetic recording medium, the plasma oxidation is performed while keeping the magnetic recording medium at a negative potential, so that oxygen plasma is actively directed toward the magnetic recording medium. The particles are accelerated and collided with each other, effectively progressing plasma oxidation. Furthermore, since there is no need to make the discharge potential very high, surface etching hardly progresses.

〔実施例〕〔Example〕

以下、本発明の製造方法について、詳細に説明する。 The manufacturing method of the present invention will be explained in detail below.

本発明が通用される磁気記録媒体は、非磁性支持体上に
強磁性金属材料を直接被着し、金ma*i’*を磁性層
として形成してなる磁気記録媒体であれば、如何なるも
のであってもよい。したがって、例えば垂直磁気記録用
磁気記録媒体や、いわゆる強磁性金属iii型磁気記録
媒体等に通用可能である。
The present invention can be applied to any magnetic recording medium as long as it is a magnetic recording medium in which a ferromagnetic metal material is directly deposited on a non-magnetic support and gold ma*i'* is formed as a magnetic layer. It may be. Therefore, it is applicable to, for example, magnetic recording media for perpendicular magnetic recording, so-called ferromagnetic metal III type magnetic recording media, and the like.

上記垂直磁気記録用磁気記録媒体の磁性層を構成する強
磁性金属材料としては、例えばCo −Cr合金が使用
される。例えば、Crを10〜25原子%含み残部CO
からなるCo −Cr合金をスパッタ法や真空蒸着法で
被着することにより、垂直方向の配向に優れた磁性層が
形成される。
As the ferromagnetic metal material constituting the magnetic layer of the magnetic recording medium for perpendicular magnetic recording, for example, a Co--Cr alloy is used. For example, it contains 10 to 25 at% Cr and the balance is CO.
A magnetic layer with excellent vertical orientation can be formed by depositing a Co--Cr alloy consisting of the following by sputtering or vacuum evaporation.

一方、上記強磁性金属薄膜型磁気記録媒体の磁性層に使
用される強磁性金属材料としては、鉄Fe、コバルトC
o、ニッケルNi等の金属あるいはGo−Ni合金、F
e −Co合金、Fe−Ni合金、Co−Ni −Fe
−B合金等の合金が挙げられる。
On the other hand, the ferromagnetic metal materials used for the magnetic layer of the ferromagnetic metal thin film magnetic recording medium include iron Fe, cobalt C
o, metal such as nickel Ni or Go-Ni alloy, F
e -Co alloy, Fe-Ni alloy, Co-Ni -Fe
-B alloys and other alloys are mentioned.

また、上記強磁性金属材料の被着手段としては、真空蒸
着法、イオンブレーティング法、スパッタ法等が挙げら
れる。上記真空蒸着法は、10〜10 Torrの真空
下で上記強磁性金属材料を、抵抗加熱、高周波加熱、電
子ビーム加熱等により蒸発させ、非磁性支持体上に蒸発
金属(強磁性金属材料)を沈着するというものであり、
斜方蒸着法及び垂直蒸着法に大別される。上記斜方蒸着
法、は、高い抗磁力を得るために非磁性支持体に対して
上記強磁性金属材料を斜め方向から蒸着するものであっ
て、より高い抗磁力を得るために酸素雰囲気中で蒸着を
行うものも含まれる。上記垂直蒸着法は、蒸着効率や生
産性を向上し、かつ高い抗磁力を得るために、非磁性支
持体上にあらかじめBi、 Tβ。
Further, examples of the means for depositing the ferromagnetic metal material include vacuum evaporation, ion blasting, sputtering, and the like. In the vacuum evaporation method, the ferromagnetic metal material is evaporated under a vacuum of 10 to 10 Torr by resistance heating, high frequency heating, electron beam heating, etc., and the evaporated metal (ferromagnetic metal material) is deposited on a nonmagnetic support. It is said to be deposited,
It is broadly divided into oblique evaporation method and vertical evaporation method. The above-mentioned oblique deposition method is a method in which the ferromagnetic metal material is deposited obliquely on a non-magnetic support in order to obtain a high coercive force, and in order to obtain a higher coercive force, the ferromagnetic metal material is vapor-deposited in an oxygen atmosphere. It also includes those that perform vapor deposition. In the vertical deposition method, Bi and Tβ are deposited on a non-magnetic support in advance in order to improve deposition efficiency and productivity and obtain high coercive force.

Sb、 Ga、 Ge等の下地金属層を形成しておき、
この下地金属層上に上記強磁性金属材料を垂直方向から
蒸着するというものである。上記イオンブレーティング
法も真空蒸着法の一種であり、10〜10 Torrの
不活性ガス雰囲気中でDCグロー放電、RFグロー放電
を起こし、放電中で上記強磁性金属を蒸発させるという
ものである。上記スパッタ法は、10〜10Torrの
アルゴンガスを主成分とする雰囲気中でグロー放電を起
こし、生じたアルゴンイオンでターゲット表面の原子を
たたき出すというもので、グロー放電の方法により、直
流2極、3極スパツタ凍や、高周波スパッタ法、またマ
グネトロン放電を利用したマグネトロンスパッタ法等が
ある。
A base metal layer such as Sb, Ga, Ge, etc. is formed,
The above-mentioned ferromagnetic metal material is vertically deposited on this base metal layer. The above-mentioned ion brating method is also a type of vacuum evaporation method, in which DC glow discharge and RF glow discharge are caused in an inert gas atmosphere of 10 to 10 Torr, and the above-mentioned ferromagnetic metal is evaporated during the discharge. The above sputtering method causes glow discharge in an atmosphere containing argon gas as a main component at 10 to 10 Torr, and uses the generated argon ions to knock out atoms on the target surface. Examples include polar sputter freezing, high frequency sputtering, and magnetron sputtering using magnetron discharge.

そして、本発明においては、さらに上述の磁気記録媒体
を負電位に保ちながら、金属Wt膜表面をプラズマ酸化
処理することが特徴となっている。
The present invention is further characterized in that the surface of the metal Wt film is subjected to plasma oxidation treatment while maintaining the magnetic recording medium at a negative potential.

上記プラズマ酸化処理に使用される反応装置としては、
例えば第1図に示すような装置が使用される。
The reaction equipment used for the above plasma oxidation treatment is as follows:
For example, an apparatus as shown in FIG. 1 is used.

上記反応装置は、プラズマ酸化反応のための反応室6を
具備してなり、この反応室6の内部に、非磁性支持体2
上に強磁性金属薄膜よりなる磁性層3が形成された磁気
記録媒体4を、電極5に接合して装着する。ここで、上
記磁気記録媒体4は、上記磁性層3の表面が酸素雰囲気
にさらされるように配置される。
The above reaction apparatus is equipped with a reaction chamber 6 for plasma oxidation reaction, and a non-magnetic support 2 is provided inside the reaction chamber 6.
A magnetic recording medium 4, on which a magnetic layer 3 made of a ferromagnetic metal thin film is formed, is bonded to and mounted on an electrode 5. Here, the magnetic recording medium 4 is arranged so that the surface of the magnetic layer 3 is exposed to an oxygen atmosphere.

また、上記電極5は、上記反応室6の外部にある高周波
電源4 (発振周波数は13.56 MHz)のマイナ
ス側に接続され、上記磁気記録媒体4が負電位に帯電す
るようになっている。また、上記反応室6に、酸素ガス
源1が導入管で接続されており、反応室s内に酸素ガス
を供給できるようになっている。
Further, the electrode 5 is connected to the negative side of a high frequency power source 4 (oscillation frequency is 13.56 MHz) located outside the reaction chamber 6, so that the magnetic recording medium 4 is charged to a negative potential. . Further, an oxygen gas source 1 is connected to the reaction chamber 6 through an introduction pipe, so that oxygen gas can be supplied into the reaction chamber s.

上述のように構成される反応装置を用い、まず、反応室
6内の空気を、真空ポンプ等により充分に除去して約1
0 Torr程度まで減圧し、しかる後に酸素ガスを反
応室6内に導入する。
Using the reaction apparatus configured as described above, first, the air in the reaction chamber 6 is sufficiently removed using a vacuum pump etc.
The pressure is reduced to about 0 Torr, and then oxygen gas is introduced into the reaction chamber 6.

次いで、上記酸素ガスを所定の流量で反応室6内に導入
しながら、上記高周波電源7を作動させ、磁気記録媒体
4を負電位に帯電させる。この場合、反応室6内は、放
電を良好に起こさせるため、一般に10〜3 Torr
程度の真空状態で行われるのが望ましく、通常10 T
orr程度が採用される。
Next, while introducing the oxygen gas into the reaction chamber 6 at a predetermined flow rate, the high frequency power source 7 is operated to charge the magnetic recording medium 4 to a negative potential. In this case, the inside of the reaction chamber 6 is generally kept at a pressure of 10 to 3 Torr in order to cause good discharge.
It is preferable to conduct the test in a vacuum of about 10 T.
orr level is adopted.

以上により、金属薄膜よりなる磁性層3の表面がプラズ
マ酸化された磁気記録媒体が得られる。
Through the above steps, a magnetic recording medium in which the surface of the magnetic layer 3 made of a metal thin film is plasma oxidized is obtained.

なお、上記プラズマ酸化処理における処理時間が短かす
ぎたり、あるいは、放電電圧が小さすぎると、プラズマ
酸化層が薄くなり、上記磁気記録媒体の耐久性が劣化す
る。また、上記プラズマ酸化処理における処理時間が長
すぎたり、あるいは、放電電圧が高すぎると、強磁性金
属薄膜からなる磁性層6表面がエツチングされ、やはり
磁気記録媒体の耐久性及び走行性が悪くなる。本発明者
等の実験によれば、表面エツチングが進行しないで、か
つ効果的に表面酸化を行うには、放電電圧を100〜5
oovの間に設定し、なおかつ放電時間を5分以内に設
定してプラズマ酸化処理を行えばよいことが判明した。
Note that if the treatment time in the plasma oxidation treatment is too short or the discharge voltage is too low, the plasma oxidation layer becomes thin and the durability of the magnetic recording medium deteriorates. Furthermore, if the treatment time in the plasma oxidation treatment is too long or the discharge voltage is too high, the surface of the magnetic layer 6 made of a ferromagnetic metal thin film will be etched, which will also deteriorate the durability and running properties of the magnetic recording medium. . According to the experiments conducted by the present inventors, in order to effectively oxidize the surface without progressing the surface etching, the discharge voltage must be set at 100 to 50%.
It has been found that the plasma oxidation treatment can be performed by setting the discharge time to within 5 minutes and setting the discharge time to within 5 minutes.

次に、本発明の実施例をより具体的に説明するが、本発
明がこれら実施例に限定されるものでないことは言うま
でもない。
Next, examples of the present invention will be described in more detail, but it goes without saying that the present invention is not limited to these examples.

実施例1゜ 直径860.厚さ50μのベースフィルム上に、スパッ
タ法によりCo −Cr合金を被着し、磁性層を形成し
た後、第1図に示す反応装置を用いてプラズマ酸化を施
し、フロッピーシート媒体を得た。
Example 1 Diameter 860. A Co--Cr alloy was deposited on a base film having a thickness of 50 μm by sputtering to form a magnetic layer, and then plasma oxidation was performed using the reaction apparatus shown in FIG. 1 to obtain a floppy sheet medium.

なお、プラズマ酸化の条件は、下記の通りとした。Note that the conditions for plasma oxidation were as follows.

高周波電源 発振周波数・・・13.56 MHz 放電電圧 ・・・300v 放電電力 ・・・20W 反応室の真空度 ・・・0.05 Torr放電時間 
   ・・・2分間 得られたフロンビーシート媒体のスチル時間を測定した
。結果を第1表に示す。なお、比較のために、プラズマ
酸化処理前のスチル時間も示す。
High frequency power supply oscillation frequency: 13.56 MHz Discharge voltage: 300V Discharge power: 20W Reaction chamber vacuum: 0.05 Torr Discharge time
...The still time of the Fronby sheet medium obtained for 2 minutes was measured. The results are shown in Table 1. For comparison, the still time before plasma oxidation treatment is also shown.

また、上記スチル時間は、フロッピーシート媒体に波長
1μの信号を記録し、この再生出力(RMS)が出力ダ
ウンするまでの時間を示すものであって、磁気記録媒体
の耐久性の目安となるものである。
In addition, the above-mentioned still time indicates the time from when a signal with a wavelength of 1μ is recorded on a floppy sheet medium until the reproduction output (RMS) decreases, and is a measure of the durability of the magnetic recording medium. It is.

第1表 この第1表よりミ平滑すぎるために全く耐久性のなかっ
たフロッピーシート媒体(スチル時間0分)においても
、5時間程度の耐久性を持たせることが可能となり、プ
ラズマ酸化処理を施すことにより、耐久性が大幅に向上
することが分かる。
Table 1 This Table 1 shows that even with floppy sheet media (still time 0 minutes), which had no durability at all because it was too smooth, it became possible to make it durable for about 5 hours, and plasma oxidation treatment was applied. It can be seen that this significantly improves durability.

また、上記実施例と同じ平滑性を有するベースフィルム
を使用して、同様のフロッピーシート媒体を作製した後
、プラズマ酸化処理条件を変えて、すなわち、放電電圧
を5oovを越えて設定したり、放電時間を5分以上に
設定した場合のスチル時間を測定した。その結果、上記
実施例1の如く、プラズマ酸化処理条件が最適な場合に
比べ、スチル時間が減少することが分かった。これは、
放電時間が長くなったり、放電電圧が太き(なることに
より、フロッピーシート媒体の表面のエツチングが進行
することによるものであり、この様子は、走査電子顕微
鏡により観察することができる。
In addition, after producing a similar floppy sheet medium using a base film having the same smoothness as in the above example, the plasma oxidation treatment conditions were changed, that is, the discharge voltage was set to exceed 5oov, the discharge The still time was measured when the time was set to 5 minutes or more. As a result, it was found that the still time was reduced compared to the case where the plasma oxidation treatment conditions were optimal as in Example 1 above. this is,
This is because the etching of the surface of the floppy sheet medium progresses as the discharge time becomes longer and the discharge voltage becomes thicker, and this phenomenon can be observed using a scanning electron microscope.

実施例2゜ 直径86fi、厚さ50μのベースフィルム(表面粗室
が前記実施例1のものに比べて多少荒い)上に、スパッ
タ法によりCo −Cr合金を被着し、膜厚0.4μの
磁性層を形成した後、先の実施例1と同様の条件でプラ
ズマ酸化を施し、フロッピーシート媒体を得た。
Example 2 A Co-Cr alloy was deposited by sputtering on a base film with a diameter of 86fi and a thickness of 50μ (the surface roughness was somewhat rougher than that of Example 1), and the film thickness was 0.4μ. After forming the magnetic layer, plasma oxidation was performed under the same conditions as in Example 1 to obtain a floppy sheet medium.

得られたフロッピーシート媒体のスチル時間を測定した
。結果を第2表に示す。なお、比較のために、プラズマ
酸化処理前のスチル時間も示す。
The still time of the obtained floppy sheet medium was measured. The results are shown in Table 2. For comparison, the still time before plasma oxidation treatment is also shown.

第2表 この第2表より、プラズマ酸化処理を施すことにより、
フロッピーシート媒体のスチル時間が大幅に長くなるこ
とが分かる。
Table 2 From this Table 2, by applying plasma oxidation treatment,
It can be seen that the still time for floppy sheet media is significantly longer.

以上の各実施例において、上記プラズマ酸化条件で表面
処理を施した場合、強磁性金属薄膜の磁気特性に変化の
内ことは、カー回転角測定により、また、ズペーシング
ロスの増加のないことは、実際の記録再生特性の測定に
より、さらにプラズマ酸化処理前後での強磁性金属i膜
の表面性に変化のないことは、タリステップによる測定
により確認した。
In each of the above examples, when the surface treatment was performed under the above plasma oxidation conditions, it was confirmed by Kerr rotation angle measurement that there was no change in the magnetic properties of the ferromagnetic metal thin film, and that there was no increase in pacing loss. It was confirmed by measurements of actual recording and reproducing characteristics, and also by measurements using Talystep that there was no change in the surface properties of the ferromagnetic metal i film before and after the plasma oxidation treatment.

比較例 !486 tm、厚さ50μのベースフィルム上に、ス
パッタ法によりGo −Cr合金を被着し、磁性層を形
成した後、第2図に示す反応装置を用いてプラズマ酸化
を施し、フロッピーシート媒体を得た。
Comparative example! A Go-Cr alloy was deposited on a 486 tm, 50 μm thick base film by sputtering to form a magnetic layer, and then plasma oxidation was performed using the reaction apparatus shown in Figure 2 to form a floppy sheet medium. Obtained.

この場合、フロッピーシート媒体は負電位に保たれてい
ない。なお、プラズマ酸化の条件は、下記の通りとした
In this case, the floppy sheet media is not held at a negative potential. Note that the conditions for plasma oxidation were as follows.

高周波電源 発振周波数・・・13.56 MHz 放電電圧 ・・・400V 反応室の真空度 ・・・0.04 Torr放電時間 
   ・・・L分30秒 得られたフロッピーシート媒体のスチル時間を測定した
。結果を第3表に示す。なお、比較のために、プラズマ
酸化処理前のスチル時間も示す。
High frequency power supply oscillation frequency...13.56 MHz Discharge voltage...400V Reaction chamber vacuum degree...0.04 Torr Discharge time
...The still time of the obtained floppy sheet medium was measured for L minutes and 30 seconds. The results are shown in Table 3. For comparison, the still time before plasma oxidation treatment is also shown.

第3表 この第3表より、プラズマ酸化処理時に、フロッピーシ
ート媒体を負電位に保たない場合には、プラズマ酸化処
理の効果はほとんどみられない。
Table 3 From Table 3, it can be seen that when the floppy sheet medium is not kept at a negative potential during the plasma oxidation treatment, the plasma oxidation treatment has almost no effect.

〔発明の効果〕〔Effect of the invention〕

上述の説明からも明らかなように、本発明においては、
磁気記録媒体の磁性層表面をプラズマ酸化処理するとき
に、上記磁気記録媒体を負電位に保ちながらプラズマ酸
化するので、効果的にプラズマ酸化層が形成され、得ら
れる磁気記録媒体の耐久性や走行性の向上が可能となる
As is clear from the above description, in the present invention,
When plasma oxidizing the magnetic layer surface of a magnetic recording medium, the plasma oxidation is performed while keeping the magnetic recording medium at a negative potential, so a plasma oxidation layer is effectively formed and the durability and running performance of the resulting magnetic recording medium are improved. It is possible to improve sexual performance.

特に、プラズマ酸化処理時の放電電圧を100〜500
■の範囲とし、放電時間を5分以内とすることにより、
磁1生層表面のエツチングをより一層抑えることができ
、得られる磁気記録媒体の耐久性が向上する。
In particular, the discharge voltage during plasma oxidation treatment should be set at 100 to 500.
■By setting the discharge time to within 5 minutes,
Etching of the surface of the magnetic primary layer can be further suppressed, and the durability of the resulting magnetic recording medium is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用されるプラズマ酸化処理装置の一
例の構成を示す概略図であり、第2図は比較例で使用さ
れたプラズマ酸化処理装置の概略図である。 2・・・非磁性支持体 3・・・磁性層(金属薄l1l) 5・・・電極
FIG. 1 is a schematic diagram showing the configuration of an example of a plasma oxidation treatment apparatus used in the present invention, and FIG. 2 is a schematic diagram of a plasma oxidation treatment apparatus used in a comparative example. 2... Nonmagnetic support 3... Magnetic layer (metal thin l1l) 5... Electrode

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に強磁性金属薄膜よりなる磁性層を形成
し、負電位に保ちながら前記磁性層表面をプラズマ酸化
することを特徴とする磁気記録媒体の製造方法。
A method for manufacturing a magnetic recording medium, which comprises forming a magnetic layer made of a ferromagnetic metal thin film on a nonmagnetic support, and subjecting the surface of the magnetic layer to plasma oxidation while maintaining the magnetic layer at a negative potential.
JP59253654A 1984-11-30 1984-11-30 Method of manufacturing magnetic recording medium Expired - Fee Related JPH0680530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253654A JPH0680530B2 (en) 1984-11-30 1984-11-30 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253654A JPH0680530B2 (en) 1984-11-30 1984-11-30 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61133031A true JPS61133031A (en) 1986-06-20
JPH0680530B2 JPH0680530B2 (en) 1994-10-12

Family

ID=17254327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253654A Expired - Fee Related JPH0680530B2 (en) 1984-11-30 1984-11-30 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0680530B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167133A (en) * 1981-04-08 1982-10-14 Hitachi Maxell Ltd Production for magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167133A (en) * 1981-04-08 1982-10-14 Hitachi Maxell Ltd Production for magnetic recording medium

Also Published As

Publication number Publication date
JPH0680530B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4673610A (en) Magnetic recording medium having iron nitride recording layer
US4865878A (en) Method of manufacturing vertical magnetization type recording medium
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JPS61133031A (en) Production of magnetic recording medium
JPS61240429A (en) Magnetic recording medium
JPS59215025A (en) Manufacture of vertical magnetic recording body
JP2548233B2 (en) Method of manufacturing magnetic recording medium
JPH08337873A (en) Sputtering method
US4891114A (en) Magnetic recording media
JPS61210521A (en) Production of magnetic disk
JPH0612568B2 (en) Magnetic recording medium
JPS61133030A (en) Production of magnetic recording medium
JPS6266421A (en) Production of magnetic recording medium
JPH05128515A (en) Method for manufacturing spatter thin film
JPH04356728A (en) Production of magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPH03116526A (en) Production of magnetic recording medium
JPH06264218A (en) Sputtering target
JPS63244728A (en) Target for sputtering
JPH01205718A (en) Production of magnetic recording medium
JPH06228748A (en) Thin film forming device
JPS6295739A (en) Production of magnetic recording medium
JPH0329115A (en) Production of magnetic recording medium
JPH06306602A (en) Production of thin film
JPS63275035A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees