[go: up one dir, main page]

JPS61132626A - Conjugated fiber of high conductivity - Google Patents

Conjugated fiber of high conductivity

Info

Publication number
JPS61132626A
JPS61132626A JP25484984A JP25484984A JPS61132626A JP S61132626 A JPS61132626 A JP S61132626A JP 25484984 A JP25484984 A JP 25484984A JP 25484984 A JP25484984 A JP 25484984A JP S61132626 A JPS61132626 A JP S61132626A
Authority
JP
Japan
Prior art keywords
polymer
conductive
particles
component
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25484984A
Other languages
Japanese (ja)
Other versions
JPH0157167B2 (en
Inventor
Hiroshi Naito
寛 内藤
Takao Osagawa
長川 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP25484984A priority Critical patent/JPS61132626A/en
Publication of JPS61132626A publication Critical patent/JPS61132626A/en
Publication of JPH0157167B2 publication Critical patent/JPH0157167B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:The title fiber that is composed of the core component of conductive thermoplastic polymer containing conductive particles such as metallic particles and the sheath components of 2 different kinds of nonconductive thermoplastic polymers where one of the two polymer is insoluble in a solvent in which the other polymer dissolves, thus being readily manufactured and showing no metal abrasion. CONSTITUTION:The objective conjugated fiber is made by extruding, through a conjugate spinneret, (A) a conductive thermoplastic polymer, as the core component, containing at least one kind of particles selected from metallic particles, conductive metal compound particles and inorganic particles coated with metal or conductive metal compound, (B) a nonconductive thermoplastic polymer 2 and (C) another nonconductive thermoplastic polymer as the sheath components where a solvent or solution which dissolves or decomposes component C cannot or hardly dissolve the components A and B to give the objective conjugated fiber. After extrusion into fibers, only the component C is dissolved or decomposed and removed to increase its antistatic effect.

Description

【発明の詳細な説明】 (M東上の利用分野) 本発明は新規な導電性腹合Ji!紬に関する。詳しくは
金属摩耗性がなく、工業的に製造容品な導電性複合1a
維Cζ関する。
[Detailed Description of the Invention] (Field of Application of M Tojo) The present invention is a novel conductive material! Regarding pongee. Specifically, conductive composite 1a that has no metal abrasiveness and is industrially manufactured.
Regarding fiber Cζ.

(従来の技術) 繊維、持薯ζポリエステル、ポリアミド、ポリアクリロ
ニトリル、ポリオレフィン等の疎水性1aIR1は摩擦
等による静電気の発生が著しく、帯電圧がしばしば10
kVe!え、揮々の障百を起こすことはまく知られてい
る。このため帯電防止(制電性付与)Iこ関する多数の
提案がなされている。
(Prior art) Hydrophobic 1aIR1 materials such as fibers, polyesters, polyamides, polyacrylonitrile, polyolefins, etc. generate significant static electricity due to friction, etc., and the charging voltage is often 10
kVe! Well, it's well known that it can cause serious injuries. For this reason, many proposals have been made regarding antistatic properties (imparting antistatic properties).

その1つは金&4繊維を帯電性11ζ混用する方法であ
るが、加工、使用時の屈曲による折損で制電性が低下し
たり、他NA維との混合・交編・交織が困燈であること
、特有の金属光沢が製品の品位を下げてしまう等の欠点
を有する。
One method is to use a mixture of gold and 4N fibers with chargeability 11ζ, but the antistatic properties decrease due to breakage due to bending during processing and use, and it is difficult to mix, inter-knit, and inter-weave with other NA fibers. However, it has disadvantages such as the unique metallic luster that lowers the quality of the product.

また、金属をメッキした1ia維や導電性物質をコーテ
ィングした繊維は、製造コストが極めて高いこと、加工
時や使用時の屈曲や摩擦で剥離することが多く、耐久性
に乏しいことなど多くの欠点を宵する。
In addition, 1IA fibers plated with metal and fibers coated with conductive substances have many disadvantages, such as extremely high manufacturing costs, often peeling off due to bending or friction during processing or use, and poor durability. evening.

更fζ、カーボンブラックや金属粉などの導電性粒子を
熱可塑性重合体全体に分散させたm維は、導電性を付与
する程度まで導電性粒子を分散させた場合、紡糸性、強
度、伸度の低下は免れず実用に供するものを得ることは
極めて困難である。
In addition, m-fibers made by dispersing conductive particles such as carbon black or metal powder throughout a thermoplastic polymer have improved spinnability, strength, and elongation when the conductive particles are dispersed to the extent that they impart conductivity. However, it is extremely difficult to obtain a product that can be put to practical use.

かかる欠点を解消すべく、カーボンブラックや金属粉な
どの導電性粒子を分散させた熱可塑性重合体と繊維形成
性重合体をサイドバイサイド或いは芯/鞘に複合した#
a維が特公昭52−81450号、特公昭58−445
798、特公昭57−256474!−公報等で提案さ
れている。しかし、導電性粒子を含有する導電成分を非
再マ成分で完全に封包した複合m紬ではカーボンブラッ
クや金属粉の黒乃至灰色は比較的目立たないが、コaす
放電を生起する為に鞘の絶縁破壊を必要とし、制電性が
劣るという欠点がある。また、導電成分を鞘とする複合
繊維や導電成分と非導電成分をサイドバイサイド型に接
合した複合繊維は、導電成分が繊維表面に露出している
ことによりコロナ放電性すなわち制電性に優れるが、カ
ーボンブラックや金属粉の黒乃至灰色が目立ち、これら
の複合繊維を混用した製品の品位を低下させると共に摩
擦によって相手を損傷させるという欠点を宵する。
In order to eliminate these drawbacks, ## is a composite of a thermoplastic polymer in which conductive particles such as carbon black or metal powder are dispersed and a fiber-forming polymer, either side-by-side or core/sheath.
Special Publication No. 52-81450, Special Publication No. 58-445
798, Special Publication Showa 57-256474! - Proposed in publications, etc. However, in composite m-tsumugi, in which a conductive component containing conductive particles is completely encapsulated with a non-remerged component, the black or gray of carbon black and metal powder is relatively inconspicuous, but the sheath causes a core discharge. It has the disadvantage that it requires dielectric breakdown and has poor antistatic properties. In addition, composite fibers with a conductive component as a sheath and composite fibers in which a conductive component and a non-conductive component are joined side-by-side have excellent corona discharge properties, that is, antistatic properties, because the conductive component is exposed on the fiber surface. The black or gray color of carbon black and metal powder stands out, which lowers the quality of products made by mixing these composite fibers, and also causes damage to other products due to friction.

カーボンブラックや金属粉など黒乃至灰色を呈する導電
粒子に対して更に白変の高い導電性粒子が特開昭54−
161598号、特開昭56−140028号公報など
に提示されており、導電成分がM維表万に露出していて
も比較的白変の高い繊維が得られるようになった。しか
し、白変の高い導電性粒子の例としては、酸化錫、酸化
亜鉛、酸化インジウム、酸化チタンなどの金属酸化物が
あげられ、これら金属酸化物粒子は充分な導電性を付与
する程度まで多量に混合した場合は、摩擦する相手を著
しく損傷することが多い。例えば製糸工程、加工、織編
工程でのガイド類や編針、ヒータープレート、更には紡
糸ノズルの損傷が甚しい傾向がある。従って臼度の高い
導電性粒子を用いる場合も、導wL席が表面に露出しな
い芯鞘型が摩耗性の観点から好ましいが、制電性の観点
からは劣るという互いに相反する問題がある。
In contrast to conductive particles exhibiting a black or gray color such as carbon black or metal powder, conductive particles with a higher white discoloration were developed in JP-A-54-
No. 161598, JP-A-56-140028, etc., and it has become possible to obtain fibers with relatively high white discoloration even if the conductive component is exposed on the surface of the M fiber. However, examples of highly conductive particles that cause white discoloration include metal oxides such as tin oxide, zinc oxide, indium oxide, and titanium oxide, and these metal oxide particles are used in large amounts to provide sufficient conductivity. If mixed with other materials, it often causes significant damage to the object being rubbed. For example, there is a tendency for guides, knitting needles, heater plates, and even spinning nozzles to be seriously damaged during the spinning, processing, and weaving and knitting processes. Therefore, even when using conductive particles with high precision, a core-sheath type in which the conductive wL seat is not exposed on the surface is preferable from the viewpoint of abrasion resistance, but there are contradictory problems in that it is inferior from the viewpoint of antistatic property.

(発明が解決しようとする問題点) 本発明の目的は、導壇性礒稚及び該繊維を含む織惟製品
を製造する工程に於て被摩擦(M、接触)物の窄陀・損
傷がない、従って工業的に製造容易な且つ優れた制電性
を万する導1性複合繊維を提供すること(こある。
(Problems to be Solved by the Invention) The purpose of the present invention is to prevent the obstruction and damage of frictional (M, contact) objects in the process of manufacturing woven products containing fibers and fibers. Therefore, it is an object of the present invention to provide a conductive composite fiber that is industrially easy to manufacture and has excellent antistatic properties.

(問題を解決する為の手段) 本発明者等はi?′iI記導電噸維の諸欠陥を改善すべ
く鋭意研究の結果本発明を完成したb 本発明は金属粒子、導′R,性金属化合物粒子及び金属
又は導′IL性金属化合物の皮膜を有する無機粒子より
なる群から選ばれた少なくとも1種の導電性粒子を含有
する導電性熱可塑性重合体(2)を芯成分、2覆の非導
電性熱可塑性重合体■及び(C)を鞘成分とからなり、
重合体((C)を溶解又は分解させる溶剤又は溶液薔ζ
対して重合体(4)及び03)が不溶又は難溶であるこ
とを特徴とする導電性複合繊維に関する。
(Means for solving the problem) The inventors are i? The present invention was completed as a result of intensive research to improve the various defects of the conductive fibers described in II. The present invention comprises metal particles, conductive metal compound particles, and a film of metal or conductive metal compound. A conductive thermoplastic polymer (2) containing at least one type of conductive particle selected from the group consisting of inorganic particles is a core component, and two non-conductive thermoplastic polymers (2) and (C) are a sheath component. It consists of
A solvent or solution that dissolves or decomposes the polymer ((C)
On the other hand, the present invention relates to a conductive composite fiber characterized in that polymers (4) and 03) are insoluble or hardly soluble.

即ち重合体(4)は、金属粒子、導電性金属化合物粒子
、及び金属又は導電性金属化合物の皮膜を有する無機粒
子よりなる群から選ばれた少なくとも1皿の導電性粒子
を含有する熱可塑性重合体であり、且つ重合体(6)を
溶解又は分解する溶剤又は溶液に対して不溶又は難溶な
ものである。
That is, the polymer (4) is a thermoplastic polymer containing at least one conductive particle selected from the group consisting of metal particles, conductive metal compound particles, and inorganic particles having a coating of metal or conductive metal compound. It is a combination and is insoluble or poorly soluble in a solvent or solution that dissolves or decomposes the polymer (6).

重合体[F])は、繊維形成性熱可塑性重合体であり、
且つ重合体囚と同様、前記溶剤又は溶液に対して不溶又
は難溶なものであろう 重合体(0は、熱可塑性重合体であり、重合体囚と(B
)の組合せによって選ぶことができる。
The polymer [F]) is a fiber-forming thermoplastic polymer,
In addition, similar to the polymer matrix, a polymer (0 is a thermoplastic polymer, and the polymer matrix (B
) can be selected by combining them.

本発明に用いられる導電性粒子は、粉末状での比抵抗が
10Q−CM程度以下のものであればあらゆる種類の粒
子が使用可能であり、白変の高い金属酸化物や金属酸化
物皮膜を有する無機粒子は勿論、金属粉(例えば銀、ニ
ッケル、銅、鉄、アルミコウム或いはこれらの合金など
)、硫化鋼、沃化銅、硫化亜鉛、硫化カドミウムなどの
金属化合物など比較的着色の大きいものも使用し得る。
As the conductive particles used in the present invention, any type of particles can be used as long as they have a specific resistance of about 10Q-CM or less in powder form, and metal oxides and metal oxide films that are highly susceptible to white discoloration can be used. In addition to inorganic particles, there are also relatively highly colored particles such as metal powders (such as silver, nickel, copper, iron, aluminum, or alloys thereof), and metal compounds such as sulfide steel, copper iodide, zinc sulfide, and cadmium sulfide. Can be used.

即ち、衣料やカーペット等臼色や淡色の製品に混用する
場合は白変の亮い金属酸化物や金属酸化物皮膜を有する
無機粒子、例えばアンチモン酸化物を第2成分として混
合焼成した酸化錫、アルミニウム酸化物を第2成分とし
て混合焼成した酸化亜鉛、前記酸化錫や酸化亜鉛等の等
電性酸化物の皮膜を有する酸゛化チタン、酸化マグネシ
ウム、酸化ケイ素、酸化アルミニウム等の無機粒子が使
用できる。集塵フィルター、印刷・捺染スクリーン、除
電ブラシ等白色であることを必須条件としない製品鉦ζ
用いる場合には金属粉や硫化鋼、沃化銅、硫化カドミウ
ム等の比較的着色の大きい金属化合物も使用できる。
In other words, when mixed with gray or light-colored products such as clothing and carpets, tin oxide mixed and fired with a bright whitening metal oxide or inorganic particles having a metal oxide film, such as antimony oxide as a second component, Zinc oxide mixed and fired with aluminum oxide as a second component, titanium oxide having a film of isoelectric oxide such as tin oxide or zinc oxide, inorganic particles such as magnesium oxide, silicon oxide, aluminum oxide, etc. are used. can. Products that do not require white color, such as dust collection filters, printing/textile screens, and static elimination brushes
When used, metal powders, sulfide steel, copper iodide, cadmium sulfide, and other relatively highly colored metal compounds can also be used.

導電性粒子の導電性は、粉末状での比抵抗がto’xΣ
・α程度以下、特に102Ω・C11程度以下が好まし
く、10Ω・1程度以下が最もEfましい。実際に10
2Ω・α〜10−2Ω・1程度のものが得られ、本発明
の目的Iζ好適に応用することができるが、更−ζ優れ
た導電性のものは一層好ましい。粉末の比抵抗(体積抵
抗率)は直径ICI&の絶縁体の円筒に試料を5yr詰
め、上部からピストンによって200 kliの圧力を
加え、直流電圧(例えば0.001〜1000V)を印
加して(wt流1mA以下で)測定する。
The conductivity of conductive particles is determined by the specific resistance in powder form to'xΣ
- Ef is preferably about α or less, particularly about 102Ω·C11 or less, and most preferably about 10Ω·1 or less. actually 10
A conductivity of about 2 Ω·α to 10 −2 Ω·1 can be obtained and can be suitably applied to the purpose of the present invention, but a conductive material with even better conductivity is even more preferable. The specific resistance (volume resistivity) of the powder is determined by filling an insulating cylinder with a diameter of ICI for 5 yr with a sample, applying a pressure of 200 kli from the top with a piston, and applying a DC voltage (e.g. 0.001 to 1000 V) (wt (at a current of 1 mA or less).

また、導電性粒子は充分小さい粒径のものでなくてはな
らない。平均粒径が1〜2μmのものも使用不可性では
ないが、通常平均粒径が1μm以下、特に0.5μm以
下、最も好ましくは0.8μm以下のものが用いられろ
。しかし、0.1μm未満のものは分散性が悪くなる傾
向があるため、通常0.1〜1μmの粒径のものが適す
る。
Further, the conductive particles must have a sufficiently small particle size. Although particles with an average particle size of 1 to 2 μm are not unusable, those with an average particle size of 1 μm or less, particularly 0.5 μm or less, and most preferably 0.8 μm or less are used. However, particles with a particle size of less than 0.1 μm tend to have poor dispersibility, so particles with a particle size of 0.1 to 1 μm are usually suitable.

導電性粒子の混合率は、粒子の81類、導電性、粒子径
、粒子の連鎖形成能及び混合する結合材ポリマーの性質
や結晶性などによって変るが、通常30〜85%(重量
)程度の範囲内であり、多くの場合40〜80%程度で
あるが、芯を形成する〃工電性成分の比抵抗(体積抵抗
率)は10Ω・α未満であることが必要であり、10Ω
・1以下が好ましく、102Ω・1以下が待lζ灯まし
い。
The mixing ratio of conductive particles varies depending on the type 81 of the particles, conductivity, particle size, chain-forming ability of the particles, and the properties and crystallinity of the binder polymer to be mixed, but it is usually about 30 to 85% (by weight). The specific resistance (volume resistivity) of the electrical component forming the core must be less than 10Ω・α, and is within the range of 40 to 80% in most cases.
- 1 or less is preferable, and 102Ω/1 or less is preferable.

導電性粒子と混合して導電性重合体(芯成分)を形成す
るポリマーは特に限定されることはなく、任意に通ぶこ
とが出来ろ。例えばポリアミド、ポリエステル、ポリオ
レフィン、ポリビニル系、ポリエーテルなど多数の熱可
塑性ポリマーが挙げられ、繊イ藷形成性のものが可紡性
の見地から好ましいが、鞘成分の1つに用いられろla
紬影形成性1合体03に例丸ばナイロン6、ナイロン6
6、ナイロン12などのポリアミド、ポリエチレンテレ
フタレートやボリブチレンチレフタレートなどのポリエ
ステル、ポリエチレンやポリプロピレンなとのポリオレ
フィン、ポリ塩化ビニルやポリアクリロニトリルなどの
ポリビニル系ポリマー、ポリウレタンなどを使用すれば
充分可紡性の良い複合繊維を得ることが出来る。
The polymer that is mixed with the conductive particles to form the conductive polymer (core component) is not particularly limited, and any polymer may be used. For example, there are many thermoplastic polymers such as polyamides, polyesters, polyolefins, polyvinyls, polyethers, etc., and those with fiber forming properties are preferred from the viewpoint of spinnability, but they cannot be used as one of the sheath components.
Tsumugi shadow forming property 1 combination 03 example round nylon 6, nylon 6
6. Polyamides such as nylon 12, polyesters such as polyethylene terephthalate and polybutylene ethylene phthalate, polyolefins such as polyethylene and polypropylene, polyvinyl polymers such as polyvinyl chloride and polyacrylonitrile, and polyurethane are sufficiently spinnable. Good composite fibers can be obtained.

鞘成分の1つを構成する重合体G3)には通常上述した
ポリマーが使用できるが、導電性重合体(4)を形成す
るポリマーと同一又は同捕である方が重合体(4)と重
合体(B)の剥離防止という観点からは好ましい。しか
し、ffi合体の)が重合体(4)を蟹う割合を高く、
例えば60%以ととすることや、重合体(至)及U/z
は重合体(B)に相互親和性改善剤を添加することによ
っても剥離を防ぐことが出来る、又、使用目的によって
は屈曲やC11擦等を伴なわない場合もあり異種ポリマ
ーであっても充分使用し1尋る場合もある。
The above-mentioned polymers can usually be used for the polymer G3) constituting one of the sheath components, but it is better to use a polymer that is the same as or has the same content as the polymer that forms the conductive polymer (4). This is preferable from the viewpoint of preventing the union (B) from peeling off. However, the ratio of ffi coalescence) to polymer (4) is high;
For example, 60% or more, polymer (up to) and U/z
Peeling can also be prevented by adding a mutual affinity improver to the polymer (B), and depending on the purpose of use, it may not be accompanied by bending or C11 rubbing, so even different polymers may be sufficient. Sometimes it is used and one question is asked.

上記相互親和性改善剤としては、両者の共重合物、いず
れか一方又は両方の末Q、l及び/又は側鎖基を有する
ポリマーなどがあるが、一般に共重合物が使われること
が多い。例えば、ポリエチレンとナイロンの場合ではア
イオノマーの様な金ハイオン含有エチレンーメタクリル
酸共重合体、ポリアミドとポリエステルの場合ではポリ
アミドとボリアルキレングリコールの様なポリエーテル
又はポリアルキレンテレフタレートの様なポリエステル
をブロック状に結合させたブロックポリエーテルアミド
やブロックポリエステルアミドなどがある。
Examples of the above-mentioned mutual affinity improving agent include a copolymer of both, a polymer having one or both of terminal Q, l, and/or side chain groups, and copolymers are generally used. For example, in the case of polyethylene and nylon, a gold ion-containing ethylene-methacrylic acid copolymer such as an ionomer is used, and in the case of polyamide and polyester, polyamide and polyether such as polyalkylene glycol or polyester such as polyalkylene terephthalate are used in block form. There are block polyetheramides and block polyesteramides that are bonded to

鞘成分を樋成するもう1つの重合体0Iζ使用される熱
可塑性重合体は、重合体(4)と03)の組合せに応じ
て選ばなければならない。即ち、重合体(C)を溶解又
は分解する溶剤又は溶液に対して重合体(4)及び■が
不溶又は難溶となる様な組合せとしなければならない。
Another polymer 0Iζ forming the sheath component The thermoplastic polymer used must be chosen depending on the combination of polymers (4) and 03). That is, the combination must be such that polymer (4) and (2) are insoluble or poorly soluble in a solvent or solution that dissolves or decomposes polymer (C).

例えば、重合体(2)及び(B)が一般に使用される繊
維形成性ポリマ−(ポリアミド、ポリエステル、ポリア
クリロニトリル、ポリ塩化ビニル、ポリオレフィン、ぼ
りウレタン)の場合には、例えばベンゼンやトルエンの
様なWRg 剤に可溶なポリスチレン及びその誘導体や
、水或いは弱アルカリに易溶なポリエチレングリコール
、ポリプロピレングリコール、ぼりビニルアルコール及
びそれらの誘導体などが使用できる。
For example, when polymers (2) and (B) are commonly used fiber-forming polymers (polyamide, polyester, polyacrylonitrile, polyvinyl chloride, polyolefin, polyurethane), for example, benzene, toluene, etc. Polystyrene and its derivatives which are soluble in the WRg agent, polyethylene glycol, polypropylene glycol, vinyl alcohol and their derivatives which are easily soluble in water or weak alkali can be used.

重合体囚及びΦ)が特定のポリマーの組合せである場合
には、その組合せに応じて適当なポリマーを選ぶことが
必要である。例えば、重合体(4)及び[F])がポリ
アミドやポリオレフィンの場合はアルカリ水溶液に可溶
なぼりエステルやポリエーテル及びその誘導体が、重合
体(2)及び(8)がポリエステルやポリアクリロニト
リル、ポリ塩化ビニルの場合にはギ酸や塩酸などの酸に
対して可溶なポリアミド及びその誘導体が、重合体がポ
リウレタンの場合はアルカリ溶液に可溶なポリエステル
、ポリエーテル又は酸に可溶なポリアミドなどが使用で
きる。重合体(4)と(B)が異なるポリマー、例えば
ポリアミドとポリエステル、ポリアミドとポリオレフィ
ン、ポリアクリロニトリルとポリ塩化ビニルなどの組合
せであっても、ポリエチレングリフール、ポリエステル
やポリエーテル、lリアミドやポリエステルなどのポリ
マーをそれぞれの組合せに応じて選ぶことが出来る。唯
、紡糸等の操業性や重合体0の溶解又は分解速度を考慮
して適切なf 1マーを選ぶ必要がある。
When the polymer matrix and Φ) are a combination of specific polymers, it is necessary to select appropriate polymers depending on the combination. For example, when polymers (4) and [F]) are polyamides or polyolefins, esters, polyethers, and derivatives thereof are soluble in alkaline aqueous solutions, and polymers (2) and (8) are polyesters, polyacrylonitrile, In the case of polyvinyl chloride, polyamides and derivatives thereof are soluble in acids such as formic acid and hydrochloric acid, and in the case of polyurethane, polyesters, polyethers, or polyamides soluble in acids are soluble in alkaline solutions. can be used. Even if polymers (4) and (B) are a combination of different polymers, such as polyamide and polyester, polyamide and polyolefin, polyacrylonitrile and polyvinyl chloride, polyethylene glyfur, polyester, polyether, l-lyamide, polyester, etc. Polymers can be selected according to each combination. However, it is necessary to select an appropriate f 1 mer in consideration of operability such as spinning and the dissolution or decomposition rate of polymer 0.

例えば、重合体(2)と重合体(8)の組合せがポリオ
ルコール、常温で固体である高分子量のポリエチレング
リコールやプリエチレングリコールとポリエステルの共
重合物が紡糸性に優れ、取扱いが容易な水又はアルカリ
水溶液に対して易溶であるので好ましく、取合体囚と重
合体[F])の組合せがポリエステルとポリオレフィン
の場合には、硫酸や塩Fl 等の酸に可溶であるナイロ
ン6やナイロン12などのポリアミドの他、水に゛可溶
なプリビニルアルコールやポリエチレングリコールも勿
論使用できるつ又、重合体(2)と重合体の)がポリア
ミドとポリエステルの組合せの場合は酸・アルカリIζ
不溶で且つベンゼン、トルエン等の有機溶媒に可溶なポ
リスチレンが好ましい。
For example, the combination of polymer (2) and polymer (8) is polyol, high molecular weight polyethylene glycol that is solid at room temperature, and copolymer of preethylene glycol and polyester have excellent spinnability, and water is easy to handle. Alternatively, it is preferable because it is easily soluble in an alkaline aqueous solution, and when the combination of the aggregate and the polymer [F] is polyester and polyolefin, nylon 6 or nylon that is soluble in acids such as sulfuric acid or salt Fl is preferable. In addition to polyamides such as No. 12, water-soluble previnyl alcohol and polyethylene glycol can of course be used.Also, when polymer (2) and polymer (2) are a combination of polyamide and polyester, acid/alkali Iζ can be used.
Polystyrene which is insoluble and soluble in organic solvents such as benzene and toluene is preferred.

更−ζ、重合体(4)及J又はの)と同温のポリマーで
あっても溶解又は分解速度が重合体(4)及びの)と比
べて充分大きいものであれば使用できる。重合体囚、G
3)、(C)の複合比によっても異なるが、重合体(0
)の溶解又は分解速度は重合体(2)及び田)のそれに
比べて少なくとも8倍以上が必要であり、6倍以上が史
に好ましく、lO倍以とが最も好ましい。
Furthermore, even if the temperature is the same as that of polymer (4) and (J or 2), a polymer whose dissolution or decomposition rate is sufficiently higher than that of polymer (4) or (2) can be used. Polymer prisoner, G
Although it varies depending on the composite ratio of 3) and (C), polymer (0
The dissolution or decomposition rate of ) must be at least 8 times that of polymer (2) and polymer (2), preferably 6 times or more, and most preferably 10 times or more.

導電性重合体■から成る芯成分と重合体(B)及び(0
から成る鞘成分の複合比については特に限定されること
はないが、芯成分の複合比率は通常3〜80%であり、
好ましくは6〜60%程度である。
A core component consisting of conductive polymer ■ and polymers (B) and (0
The composite ratio of the sheath component consisting of is not particularly limited, but the composite ratio of the core component is usually 3 to 80%,
Preferably it is about 6 to 60%.

一方、重合体■と0の複合比は通常9515〜40/6
0であるが、使用される状況に応じて複合比を選ぶ必要
がある。例えば曲げや引張り及びMBを受けるカーペッ
トや衣服等に用いられる場合はゑ合体■の比率を腐くす
ることが好ましく、フィルター等四げや翠擦を殆ど受け
ない所に用いられる場合は重合体の)の比率は低くても
充分使用に耐えるものが得られる。通常、織物、編物、
不繊布、ブラシ等製品となった後に重合体((C)を除
去して使用するからである。
On the other hand, the composite ratio of polymer ① and 0 is usually 9515 to 40/6
0, but it is necessary to choose the composite ratio depending on the usage situation. For example, when used in carpets, clothing, etc. that are subject to bending, tension, and MB, it is preferable to increase the polymer ratio.When used in areas that are not subject to burrs or scratches, such as filters, it is preferable to increase the polymer ratio. ) can be sufficiently usable even if the ratio is low. Usually woven, knitted,
This is because the polymer ((C)) is removed and used after it is made into products such as nonwoven fabrics and brushes.

芯成分、鞘成分、度合線維の断面形状及びそれらの複合
形態については、第1図及び筒3〜第8図にその1例を
示したが、これに限定されることなく、使用目的に応じ
てあらゆる形、複合形態をとることが出来る。
Examples of the cross-sectional shapes of the core component, sheath component, and fibers and their composite forms are shown in Fig. 1 and Figs. It can take any form or compound form.

(発明の効M) 本発明の被合繊維の大きな特長は、最終製品又は場合I
こよってはその直曲の工程に於いて重合体(5)を除去
すれば良いので、製品となる迄の工程(@えば、紡糸、
延伸、仮撚加工、合撚、混紡、交織、交編等)での導電
成分の目出によろガイド類、針類、プレートヒーター、
紡糸、ノズル等の摩粍・損鋺がなく工業曲番こ極めて容
易且つ効率良く製造できろことにある。
(Effect M of the invention) The major feature of the fiber to be coated according to the present invention is that the final product or case I
Therefore, it is only necessary to remove the polymer (5) during the straight bending process, so the process (for example, spinning,
Guides, needles, plate heaters,
There is no wear and tear on spinning, nozzles, etc., and industrial curves can be manufactured very easily and efficiently.

又、便用時沓ζは重合体a)が溶剤又は溶故によって除
去されており、導電性成分である重合体(4)が拠出し
ている為に#曜々荷の移動やコロナ放電が容易に起こり
、優れたtlE性を発揮することが出来る。
In addition, during toilet use, polymer a) is removed by a solvent or melting process, and polymer (4), which is a conductive component, contributes to #day-to-day load movement and corona discharge. This occurs easily and can exhibit excellent tlE properties.

本発明の複合繊維は、連続フィラメント又はステープル
状で他の帯電性の繊維と混用して繊維製品に制vthを
付与することが出来る。
The composite fiber of the present invention is in the form of a continuous filament or a staple, and can be mixed with other chargeable fibers to impart Vth control to textile products.

通常混率は0.1〜10%程度であるが、勿論目的によ
っては10〜100%や0.1以下の混用率が適用され
る場合がある。混合は、混綿、金糸。
The mixing ratio is usually about 0.1 to 10%, but depending on the purpose, a mixing ratio of 10 to 100% or 0.1 or less may be applied. The mixture is mixed cotton and gold thread.

合撚糸、混紡、交織、交編その他公知のあらゆる手段で
行なわれる。
This can be done by twisting, blending, interweaving, interweaving, or any other known method.

(実施例) 以下実施例1ζよ7て本発明の効果を具体的1こ説明す
る。部及び%は特記しない限りMk比をホす。
(Example) The effects of the present invention will be specifically explained below using Examples 1 and 7. Parts and percentages refer to Mk ratios unless otherwise specified.

実施例1 平均粒径0.24μmの酸化チタンに重散約12%の酸
化錫皮膜を形成させたもの昏ζ酸化アンチモン微粒子(
粒径的0.02μm)を2%混合焼成して得た導電性粉
末をム1とする。粉末ム1の平均粒径は0.25μm、
比抵抗9Ω・α、反射率82%でわずかに灰青色を呈し
ていた。
Example 1 Titanium oxide with an average particle size of 0.24 μm was coated with a tin oxide film with a concentration of about 12%. Antimony oxide fine particles (
M1 is a conductive powder obtained by mixing and firing 2% of 0.02 μm in particle size. The average particle size of Powder Mu 1 is 0.25 μm,
It had a specific resistance of 9Ω·α, a reflectance of 82%, and a slightly gray-blue color.

分子量約ts、ooo、融点216°Cのナイロン6粉
末26R1上記導IEt!E粉末人175部、分散剤と
してステアリン酸マグネシウム0.5部を粉末状で混合
した後、2軸混線機で2回繰返して溶融混練し、導電性
ポリマーOF、を得た。得られたポリマーOPtの体積
抵抗率は1.5X10Ω・αでありた。
Nylon 6 powder 26R1 with a molecular weight of about ts, ooo and a melting point of 216°C. After mixing 175 parts of E powder and 0.5 parts of magnesium stearate as a dispersant in powder form, the mixture was melt-kneaded twice using a twin-screw mixer to obtain a conductive polymer OF. The volume resistivity of the obtained polymer OPt was 1.5×10Ω·α.

CPlに使用したと同じナイロン6に艶消剤として酸化
チタン粒子1.5%を分散させたポリマーをPlとする
。分子量約1000のポリエチレングリコール15%を
共重合させた変性ポリエステルをp、とする。
Pl is a polymer obtained by dispersing 1.5% of titanium oxide particles as a matting agent in the same nylon 6 used for CPl. A modified polyester copolymerized with 15% polyethylene glycol having a molecular weight of about 1000 is designated as p.

CPlを芯成分、PlとP2を鞘成分として第1図の様
に複合紡糸した。又、CPlをfl[成分、ptを保護
成分として第9図及び第10図の様な芯/鞘及びサイド
バイサイド型に複合紡糸した。OF。
Composite spinning was carried out as shown in Fig. 1 using CPl as a core component and Pl and P2 as sheath components. Further, composite spinning was carried out in a core/sheath and side-by-side type as shown in FIGS. 9 and 10 using CPl as a fl component and PT as a protective component. OF.

/PI/P2及びOF t /P tの複合比は10/
80/10及び10/90とした。
The composite ratio of /PI/P2 and OF t /P t is 10/
80/10 and 10/90.

溶融複合した8成分又は2成分を280 ’C直径0.
25ffのオリフィスより紡出し、冷却、オイリングし
て8007ff/min  の速度で椿取り、55デニ
ール/3フイラメントの未延伸糸UYI −UYgを得
たう未延伸糸UYI〜UY、を延伸倍率2.2倍、85
°Cの加熱ローラーを用いて延伸、緊張下170°Cで
熱同定をして捲取り、25デニール/3フイラメントの
延伸糸Y1〜Y8を得た。得られた糸Y、〜Y8を各々
ナイロン6普通糸(210デニール154フイラメント
)で作つた丸編物に約6ffの間隔で編み込み、界面活
性剤で紡糸油剤を除去しり後、95’C,2%の水酸化
す) IIウム水溶液で処理してポリマーP!をほぼ完
全に除去した編物に、−xsを得た。尚、対照として導
電糸を含まない編物を作成し同様の処理をして編物に4
を得た。
Melt composite 8 components or 2 components in a 280'C diameter 0.
The undrawn yarns UYI to UY were spun from a 25 ff orifice, cooled, oiled, and removed at a speed of 8007 ff/min to obtain undrawn yarns UYI-UYg of 55 denier/3 filaments at a draw ratio of 2.2. times, 85
The yarn was drawn using a heated roller at 170° C. and then wound under tension at 170° C. to obtain drawn yarns Y1 to Y8 of 25 denier/3 filaments. The obtained yarns Y and ~Y8 were each knitted into a circular knitted fabric made of nylon 6 ordinary yarn (210 denier 154 filament) at intervals of about 6 ff, and after removing the spinning oil with a surfactant, the yarn was woven at 95'C, 2%. Polymer P! is treated with an aqueous solution of II hydroxide). -xs was obtained from the knitted fabric in which the As a control, a knitted fabric containing no conductive yarn was prepared and subjected to the same treatment.
I got it.

得られた編物に1〜に4はよく水洗し、80’Cで3時
間かけて乾燥した後、25℃、88%RHの雰囲気中で
6時間[iを行い、同雰囲気中でJ′l!擦帯電正帯電
圧した。測定は本発明音等が、待屍昭56−48550
号にて提案した方法fこて行い、摩擦布としては綿布を
用いた。帯電圧は摩擦10秒後の値を読み取った。結果
を導電糸の紡糸・延伸に於ける操業性と併せて第1表に
示す。
The obtained knitted fabric was thoroughly washed with water in Steps 1 to 4, dried at 80'C for 3 hours, and then dried in an atmosphere of 25°C and 88% RH for 6 hours. ! The friction charge had a positive charging voltage. The measurement was performed using the sound of the present invention.
The method proposed in the issue was carried out using a trowel, and a cotton cloth was used as the friction cloth. The charging voltage was measured 10 seconds after friction. The results are shown in Table 1 together with the operability in spinning and drawing conductive yarn.

第1表 導W1.5y、分がm雑表面に露出している糸Y8は、
紡糸中オリフィスを出た所で糸が曲って糸切れを起こし
たり、延伸・捲取中トラベラを著しく摩耗させ糸切れが
多発した為、3〜500fL、か捲取ることが出来なか
った。更に、熱固定用のプレートヒーターにも摩耗がみ
られた。導電成分が完全に封包されている糸Y!は操業
性は良好であったが制電性は満足できるものではなかっ
た。
The first surface conductor W1.5y, the yarn Y8 exposed on the uneven surface is
During spinning, the yarn was bent at the point where it exited the orifice, causing yarn breakage, and during drawing and winding, the traveler was significantly worn and yarn breakage occurred frequently, so it was not possible to wind up 3 to 500 fL. Furthermore, wear was also observed on the plate heater for heat fixation. Yarn Y in which the conductive component is completely encapsulated! Although the operability was good, the antistatic property was not satisfactory.

実施例2 実施例1で用いた導電粒子Al70部と分子量約50,
000.融点102℃の低密度ポリエチレン30邪を粉
末状で2軸混練機を用いて溶融混練し、導電性ポリマー
CP!を得た。得られたポリマーap2の体積抵抗率は
15.8X10Ω・αであった。
Example 2 70 parts of the conductive particles Al used in Example 1 and a molecular weight of about 50,
000. Low-density polyethylene 30% with a melting point of 102°C is melt-kneaded in powder form using a twin-screw kneader to form conductive polymer CP! I got it. The volume resistivity of the obtained polymer ap2 was 15.8×10Ω·α.

ニッケルテトラカルボニルを熱分解して製造した平均粒
径2μmのニッケル微粉末60部と分子量約17.00
0 、融点215℃のナイロン6 40部を粉末状で、
又、平均粒径0.15μmの酸化亜鉛粉末1ζ平均粒径
0.02μmの酸化アルミニウム及び−酸化アルミニウ
ムを混合・焼成した後更に微粉砕して得られた平均粒径
0.22μm1体積抵抗率20Ω・αの導電性酸化亜鉛
微粉末75邪、分子量約16.000.融点257°C
のポリエチレンテレフタレート25部、分散剤としてポ
リエチレンオキシド/ポリプロピレンオキシドのブロッ
クコポリマー0.5部を前記と同じ2軸混1[81で溶
融混練し、導電性ポリマーOF、及びC1(C)を得た
60 parts of nickel fine powder with an average particle size of 2 μm and a molecular weight of about 17.00 produced by thermally decomposing nickel tetracarbonyl
0, 40 parts of nylon 6 with a melting point of 215°C in powder form,
In addition, zinc oxide powder with an average particle size of 0.15 μm 1 ζ Aluminum oxide and -aluminum oxide with an average particle size of 0.02 μm were mixed and fired, and then further pulverized to obtain an average particle size of 0.22 μm 1 Volume resistivity 20 Ω - α conductive zinc oxide fine powder 75%, molecular weight approximately 16,000. Melting point 257°C
25 parts of polyethylene terephthalate and 0.5 parts of a polyethylene oxide/polypropylene oxide block copolymer as a dispersant were melt-kneaded in the same twin-screw mixer 1 [81] to obtain conductive polymers OF and C1 (C).

分子量約16,000.融点257°Cのポリエチレン
テレフタレート100部に対し、酸化チタン微粒子を0
.6部分数させたポリマーをPs とする。
Molecular weight approximately 16,000. 0 parts of titanium oxide fine particles were added to 100 parts of polyethylene terephthalate with a melting point of 257°C.
.. Let Ps be the polymer containing 6 moieties.

メルトフローインデックスが247/10分(200℃
、荷if 5 kg)のイリスチレンをP4 とする。
Melt flow index is 247/10 minutes (200℃
, if 5 kg) of iristyrene is designated as P4.

平均分子量約20.OOO,M固点約60℃のポリエチ
レンオキシドをPs とする。
Average molecular weight approximately 20. OOO,M Let Ps be polyethylene oxide with a solid point of about 60°C.

導電性ポリマーOF、〜OP4及び−リマーP1〜P6
  を用いて第6図の様な複合形状で複合紡糸を行い、
4Nの糸Y4〜Y1を得た。導電性重合体■及び重合体
■、0の組合せ及び複合比は第2表の通りであ”る。
Conductive polymers OF, ~OP4 and -rimers P1-P6
Perform composite spinning with a composite shape as shown in Figure 6 using
4N yarns Y4 to Y1 were obtained. The combinations and composite ratios of conductive polymer (1) and polymers (2) and (0) are shown in Table 2.

第2表 紡糸及び延伸は以下の要領で行った。溶融した8成分を
紡糸パック内で複合し、直径0.251111のオリフ
ィスより紡出し、冷却・オイリングして100、0 m
/minの速度で捲取った。但し紡糸温度は、糸Y4は
270℃、糸Y6〜7は285℃とした。
Table 2 Spinning and stretching were performed in the following manner. The eight molten components were combined in a spinning pack, spun through an orifice with a diameter of 0.251111, cooled and oiled, and then spun into a yarn of 100,0 m.
It was wound up at a speed of /min. However, the spinning temperature was 270°C for yarn Y4 and 285°C for yarns Y6 and Y7.

得られた未延伸糸はいずれも85°Cの加熱ローラーを
用いて2.2倍に延伸し、170℃の熱プレートで熱固
定を行い、30デニール15フイラメントの延伸糸Y4
〜Y7を得た。いずれも延伸糸を得る迄の工程中のトラ
ブル(紡糸・延伸中の糸切れやガイド類、ローラー類、
ヒータープレート等の摩千も)もなく普通糸とほぼ同等
の操業性であった。
The obtained undrawn yarns were each drawn 2.2 times using a heated roller at 85°C, and heat-fixed using a heat plate at 170°C to obtain drawn yarn Y4 of 30 denier 15 filament.
~Y7 was obtained. Both problems occur during the process of obtaining drawn yarn (thread breakage during spinning/drawing, guides, rollers, etc.)
There were no mechanical problems such as heater plates, etc., and the operability was almost the same as that of ordinary yarn.

得られた糸は実施例1と同様にして丸編物に4〜に丁を
作成した。得られた丸編物は界面活性剤で紡糸油剤を落
した後s lc4及びに6は95℃、2%の水酸化ナト
リウム溶液で、K6はトルエンで、KTは98°Cの熱
水で重合体(C)をほぼ完全に除去した。
The obtained yarn was used to create circular knitted fabrics in the same manner as in Example 1. After removing the spinning oil with a surfactant, the obtained circular knitted fabric was polymerized with 2% sodium hydroxide solution at 95°C for LC4 and 2% sodium hydroxide solution at 95°C, K6 in toluene, and KT in hot water at 98°C. (C) was almost completely removed.

重合体(C)を除去した丸編物に4〜KVは、よく水洗
し、実施例1と同じ方法で摩擦帯電圧を測定した。
The circular knitted fabric from which the polymer (C) had been removed was thoroughly washed with water, and the frictional charging voltage was measured in the same manner as in Example 1.

結果は第8表Cζ示した通りいずれも優れた制電性を有
していた。
As shown in Table 8 Cζ, all had excellent antistatic properties.

第8表 尚、糸Y6に使用した重合体(4)及び03)と五合体
匂は、いずれもアルカリ水溶液で分解されるが、アルカ
リ水溶液に対する分解速度は前者が1に対し後者は約5
0であって、重合体(6)をほぼ完全に分解させる程度
の時間では重合体03)及び(Oは殆ど分解されず、強
度低下も認められなかった。
Table 8: Polymers (4) and 03) used in yarn Y6 and the pentapolymer are both decomposed in an alkaline aqueous solution, but the decomposition rate for the alkali aqueous solution is 1 for the former and approximately 5 for the latter.
0, polymers 03) and (0) were hardly decomposed and no decrease in strength was observed in the time that was sufficient to almost completely decompose polymer (6).

【図面の簡単な説明】[Brief explanation of drawings]

@1図〜第8図は本発明の複合繊維の横断面の具体例で
ある。但し、第2図は第1図の複合p4維中の重合体(
C)を除去した後の横断面の具体例である。第9図及び
第10図は従来の2成分から成る複合m雑の横断面の例
である。図中の1は導電性重合体(4)を、2は非導電
性重合体(3)を、8は非導電性は合体((C)を示す
。 〃    カネボウ合繊株式会社− 手続補正書 昭和60年4月10日 rin庁長官志賀 手段 1、事件の表示 昭和59年特許願第254849号 3、補正をする者 事件との関係  特許出願人 住 所  東京都墨田区墨田五丁目17番4号名称(0
96)鐘紡株式会社 代表者 岡 本  進 “°ユ) 連絡先 〒684   大阪市部島区友淵町1丁目5番90号鐘
紡株式会社特許部 電話(06)Hl−1251 4、補正命令の日付 昭和60年8月26日(発送日) 5、補正によシ増加する発明の数  な し6、補正の
対象 7、補正の内容 (1)第1〜10図を別添の通シ補正するつ坑iff 
   第2図   第3フ 情4閏    第5図    16図 ぎ7フ    第8図    第9図 第10ワ
@Figures 1 to 8 are specific examples of cross sections of composite fibers of the present invention. However, Fig. 2 shows the polymer (
This is a specific example of a cross section after removing C). FIGS. 9 and 10 are examples of cross-sections of a conventional composite m-miscellaneous structure consisting of two components. In the figure, 1 indicates the conductive polymer (4), 2 indicates the non-conductive polymer (3), and 8 indicates the non-conductive polymer ((C).〃 Kanebo Gosen Co., Ltd. - Procedural Amendments Showa April 10, 1960 Rin Agency Director Shiga Means 1, Indication of the case 1982 Patent Application No. 254849 3, Relationship with the person making the amendment Patent applicant Address 17-4 Sumida 5-chome, Sumida-ku, Tokyo Name (0
96) Representative of Kanebo Co., Ltd. Susumu Okamoto “°yu” Contact address: 1-5-90 Tomobuchi-cho, Bejima-ku, Osaka 684 Kanebo Co., Ltd. Patent Department Tel: (06) Hl-1251 4. Date of amendment order August 26, 1985 (shipment date) 5. Number of inventions increased by amendment None 6. Subject of amendment 7. Contents of amendment (1) Figures 1 to 10 will be amended in the attached circular. Two wells if
Figure 2 Figure 3 Figure 4 Figure 5 Figure 16 Figure 7 Figure 8 Figure 9 Figure 10

Claims (7)

【特許請求の範囲】[Claims] (1)金属粒子、導電性金属化合物粒子及び金属又は導
電性金属化合物の皮膜を有する無機粒子よりなる群から
選ばれた少なくとも1種の導電性粒子を含有する導電性
熱可塑性重合体(A)を芯成分、2種の非導電性熱可塑
性重合体(B)及び(C)を鞘成分とからなり、重合体
(C)を溶解又は分解させる溶剤又は溶液に対して重合
体(A)及び(B)が不溶又は難溶であることを特徴と
する導電性複合繊維。
(1) Conductive thermoplastic polymer (A) containing at least one conductive particle selected from the group consisting of metal particles, conductive metal compound particles, and inorganic particles having a film of metal or conductive metal compound. It consists of a core component and two types of non-conductive thermoplastic polymers (B) and (C) as a sheath component, and the polymer (A) and A conductive composite fiber characterized in that (B) is insoluble or hardly soluble.
(2)導電性金属化合物が、酸化錫、酸化亜鉛、酸化イ
ンジウム、硫化銅又は沃化銅である特許請求の範囲第1
項記載の繊維。
(2) Claim 1 in which the conductive metal compound is tin oxide, zinc oxide, indium oxide, copper sulfide or copper iodide.
Fibers as described in Section.
(3)金属粒子が銀、ニッケル、銅又はアルミニウムで
ある特許請求の範囲第1項記載の繊維。
(3) The fiber according to claim 1, wherein the metal particles are silver, nickel, copper, or aluminum.
(4)重合体(A)を形成する熱可塑性重合体と重合体
(B)が同一又は同種のポリマーである特許請求の範囲
第1項記載の繊維。
(4) The fiber according to claim 1, wherein the thermoplastic polymer forming the polymer (A) and the polymer (B) are the same or the same type of polymer.
(5)重合体(A)及び/又は重合体(B)が相互親和
性改善剤を含有する特許請求の範囲第1項記載の繊維。
(5) The fiber according to claim 1, wherein the polymer (A) and/or the polymer (B) contain a mutual affinity improver.
(6)重合体(B)がポリアミド、ポリエステル、ポリ
エーテル、ポリビニル系ポリマー又はポリオレフィンで
ある特許請求の範囲第1項記載の繊維。
(6) The fiber according to claim 1, wherein the polymer (B) is polyamide, polyester, polyether, polyvinyl polymer, or polyolefin.
(7)重合体(C)が水又はアルカリ水溶液に可溶なも
のである特許請求の範囲第1項記載の繊維。
(7) The fiber according to claim 1, wherein the polymer (C) is soluble in water or an aqueous alkaline solution.
JP25484984A 1984-11-30 1984-11-30 Conjugated fiber of high conductivity Granted JPS61132626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25484984A JPS61132626A (en) 1984-11-30 1984-11-30 Conjugated fiber of high conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25484984A JPS61132626A (en) 1984-11-30 1984-11-30 Conjugated fiber of high conductivity

Publications (2)

Publication Number Publication Date
JPS61132626A true JPS61132626A (en) 1986-06-20
JPH0157167B2 JPH0157167B2 (en) 1989-12-04

Family

ID=17270699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25484984A Granted JPS61132626A (en) 1984-11-30 1984-11-30 Conjugated fiber of high conductivity

Country Status (1)

Country Link
JP (1) JPS61132626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148811A (en) * 1987-12-02 1989-06-12 Kanebo Ltd Production of electrically conductive conjugate fiber
JPH02300316A (en) * 1989-05-12 1990-12-12 Kuraray Co Ltd conductive fiber
JP2008138304A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fiber and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165014A (en) * 1980-05-19 1981-12-18 Japan Exlan Co Ltd Antistatic filament of combined sheath-core type
JPS5782526A (en) * 1980-10-31 1982-05-24 Toray Ind Inc Splitting type antistatic conjugate fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165014A (en) * 1980-05-19 1981-12-18 Japan Exlan Co Ltd Antistatic filament of combined sheath-core type
JPS5782526A (en) * 1980-10-31 1982-05-24 Toray Ind Inc Splitting type antistatic conjugate fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148811A (en) * 1987-12-02 1989-06-12 Kanebo Ltd Production of electrically conductive conjugate fiber
JPH02300316A (en) * 1989-05-12 1990-12-12 Kuraray Co Ltd conductive fiber
JP2008138304A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fiber and use thereof

Also Published As

Publication number Publication date
JPH0157167B2 (en) 1989-12-04

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
JP4916460B2 (en) Core-sheath composite type conductive fiber
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
DE60016136T2 (en) Electrically conductive composite fiber
JP3917524B2 (en) Fiber composite and use thereof
JPS61132626A (en) Conjugated fiber of high conductivity
JPH05263318A (en) Conductive composite fiber
JP2010236167A (en) Electroconductive sewing machine sewing thread and woven and knit fabric
JPH01292116A (en) Electrically conductive fiber and production thereof
JP2004044071A (en) Conductive conjugated fiber and conductive woven/knitted fabric
JPS6156334B2 (en)
JPS6350446B2 (en)
JPS61174469A (en) Production of conductive composite fiber
JPS60224813A (en) Antistatic conjugated fiber
JP2599785B2 (en) Conductive composite fiber
JPS6240444B2 (en)
JP3635152B2 (en) Conductive composite fiber
JPH02289118A (en) Electrically conductive white conjugate fiber
JP2721599B2 (en) Composite fiber
JP3210787B2 (en) Conductive mixed yarn
JP2778981B2 (en) Conductive composite fiber and method for producing the same
JP2856798B2 (en) Conductive fiber
JP7107226B2 (en) conductive composite fiber
JPH03241010A (en) Electrically conductive conjugate fiber
JPH0978377A (en) Antistatic acrylic spun yarn

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term