[go: up one dir, main page]

JPS61132625A - Conjugated fiber of high conductivity - Google Patents

Conjugated fiber of high conductivity

Info

Publication number
JPS61132625A
JPS61132625A JP24971484A JP24971484A JPS61132625A JP S61132625 A JPS61132625 A JP S61132625A JP 24971484 A JP24971484 A JP 24971484A JP 24971484 A JP24971484 A JP 24971484A JP S61132625 A JPS61132625 A JP S61132625A
Authority
JP
Japan
Prior art keywords
layer
conductive
polymer
sheath
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24971484A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takeda
敏之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24971484A priority Critical patent/JPS61132625A/en
Publication of JPS61132625A publication Critical patent/JPS61132625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:The title conjugated fiber that is composed of the core layer and the sheath layer of a non-conductive polymer and the intermediate layer which is eccentrically arranged to the sheath layer and is composed of a conductive polymer containing carbon black where the core has a specific cross section area, the sheath layer has a specific thickness at the thinnest part, thus preventing the conductive substance from falling off the showing good fiber-forming properties. CONSTITUTION:A nonconductive thermoplastic polymer A and a conductive polymer B containing 15-50wt% of conductive carbon black are separately melted and the nonconductive polymer A is introduced from outer inlets 11, 12 one the pate 1 and the conductive polymer B is introduced from the inside inlet 13 on the plate 1. B runs through intermediate plate along the path 23 to double-layered conjugate nozzle 21 to form a sheath-core conjugate stream surrounding the outer surface of the nonconductive polymer A with the conductive polymer B. Then, the conjugate flow flows into the nozzle 31 of triple-layer structure on the lower plate 3 where the polymer flow is surrounded with the nonconductive polymer A from the path 32 ununiformly. Thus, the intermediate layer B is arranged between the core layer A1 and the sheath layer A2 of a nonconductive polymer where the cross section of the core layer is more than 5% and the intermediate layer is eccentrically arranged and the thinnest part of the sheath layer is less than 5/100 of the diameter of the fiber cross section.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、コンピュータ空用カーペットなどのように高
度な導電性が要求される用途に有効な高度導電性複合繊
維に関し、特に、導電性の他に製糸性や耐久性等にも優
れた高度導電性複合繊維に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to highly conductive composite fibers that are effective for applications that require high conductivity, such as carpets for computer rooms, and in particular, to The present invention also relates to highly conductive composite fibers that are excellent in spinnability and durability.

[従来の技術] 導電性カーボンブラックを含有した導電性熱可塑性合成
重合体からなる層(以下、s11層という)を−成分と
してなる複合繊維は、カーペットや防塵衣等の繊維製品
に帯電防止性能を与える素材として広く使用されてきて
いる。その代表的な複合形態としては、導電層を芯とす
る二重芯鞘型(特公昭52−31450号公報)、導電
層を中間層とする三重芯鞘型(特開昭55−1337号
公報等)、導1!層の周囲を部分的に包囲するように導
電層と非導電層とを接合してなる部分包囲接合型(特公
昭53−44579号公報等)、あるいは、複数の導電
層を繊維表面の近傍に対称的に配した多芯分配型(特開
昭58−132119号公報)などがある。
[Prior Art] Composite fibers containing a layer made of a conductive thermoplastic synthetic polymer containing conductive carbon black (hereinafter referred to as the S11 layer) have antistatic properties for textile products such as carpets and dustproof clothing. It has been widely used as a material that provides Typical composite forms include a double core-sheath type with a conductive layer as the core (Japanese Patent Publication No. 52-31450), and a triple core-sheath type with a conductive layer as an intermediate layer (Japanese Patent Laid-Open No. 55-1337). etc.), Guide 1! A partially surrounding bonding type in which a conductive layer and a non-conductive layer are bonded so as to partially surround the periphery of the layer (Japanese Patent Publication No. 53-44579, etc.), or a plurality of conductive layers near the fiber surface. There is a symmetrically arranged multi-core distribution type (Japanese Unexamined Patent Publication No. 132119/1983).

そして、前述の二重芯鞘型や三重芯鞘型の複合繊維は、
導fi層が繊維表面に露出していないので製糸性が良好
であり、また、複合界面剥離によるフィブリル化の問題
もないので、繊維製品中に混用して用いる訓電性素材と
して有用であり、カーペット用等に広く使用されている
The double core-sheath type and triple core-sheath type composite fibers mentioned above are
Since the fi-conducting layer is not exposed on the fiber surface, the spinning property is good, and there is no problem of fibrillation due to delamination at the composite interface, so it is useful as a conductive material for mixed use in textile products. Widely used for carpets, etc.

しかし、静電気によるコンピュータの誤動作防゛止のた
め、コンピュータ至に敷くカーペットには一股のカーペ
ットに比べ格段に高い水準の導電性能(具体的には、印
加電圧100■での比抵抗値がlX104未満)が要求
され、このような高度な導電性能は、かなりの厚さの非
導電性鞘を有する従来の二重芯鞘型や三重芯鞘型複合繊
維では得ることが困難である。
However, in order to prevent computers from malfunctioning due to static electricity, the carpet placed between the computer has a much higher level of conductivity than a single carpet (specifically, the specific resistance value at an applied voltage of 100μ is 1×104 Such high conductive performance is difficult to obtain with conventional double core-sheath type or triple core-sheath type composite fibers, which have non-conductive sheaths of considerable thickness.

そこで、高度導電性が要求される用途には、前述した導
電層が繊維表面に露出している複合at維、繊維表面上
に銅塩等の導電性物質をコーティングした後加工導電性
繊維、あるいは金属繊維が用いられている。
Therefore, for applications that require high conductivity, composite AT fibers with the conductive layer exposed on the fiber surface, post-processed conductive fibers coated with a conductive substance such as copper salt on the fiber surface, or Metal fibers are used.

ところが、前記した部分包囲接合型の複合繊維では、導
電層が繊維断面の片側に偏在するので製糸時などにおい
て糸面りやフィブリル化が発生しやすく、また、導電層
の周囲を包囲するように両成分を接合させるには紡糸時
の溶融粘度を厳しく制−しなくてはならないので、製糸
が容易ではなくトラブルが発生しやすい。また、前記多
芯分配型の複合繊維は、複数の導N層を均等に分割し繊
維表面から1〜5μの近い位置に配置することが工業生
産上容易ではないので、導電層と集導電苦との複合ばら
つきが大きく、また、製糸安定性も悪いという問題があ
る。
However, in the above-mentioned partially enclosing bonded composite fiber, the conductive layer is unevenly distributed on one side of the fiber cross section, which tends to cause yarn flattening and fibrillation during spinning. In order to bond the components, the melt viscosity during spinning must be strictly controlled, so spinning is not easy and troubles are likely to occur. In addition, in the multicore distribution type composite fiber, it is not easy in industrial production to divide the plurality of conductive N layers evenly and arrange them at a position 1 to 5 μm from the fiber surface, so it is difficult to separate the conductive layer and the conductive current collecting layer. There is a problem that the composite variation is large and the yarn spinning stability is also poor.

このように、従来の導電MM出型の複合繊維では、製糸
上あるいは糸質上に問題があり、いずれる工業生産上満
足のいくものではなかった。
As described above, the conventional conductive MM type composite fibers have problems in spinning or yarn quality, and are not satisfactory in any industrial production.

一方、後加工導電性繊維は、導電性樹脂のコーティング
という加工を要するため生産が繁雑であり、さらに、コ
ーティングした導電物質が脱落しやすいという問題があ
る。また、金属繊維は使用中にamがフィブリル化する
という問題があり、これら繊維も実用上満足のいくもの
ではない。
On the other hand, post-processed conductive fibers are complicated to produce because they require a process of coating with a conductive resin, and furthermore, there is a problem in that the coated conductive material is likely to fall off. Furthermore, metal fibers have a problem in that am fibrils during use, and these fibers are also unsatisfactory from a practical standpoint.

[発明が解決しようとする問題点1 本発明は、上述した従来の高度導電性繊維の問題点がな
く、製糸性良好で、かつIN物質の脱落による導電性能
の低下やフィブリル化という糸質上の問題もなく、導電
性が優れた高導電性複合繊維を提供することを主な目的
とする。
[Problem to be Solved by the Invention 1] The present invention does not have the above-mentioned problems of conventional highly conductive fibers, has good spinning properties, and has no problems with yarn quality such as deterioration of conductive performance and fibrillation due to shedding of IN substances. The main object of the present invention is to provide a highly conductive conjugate fiber that has excellent conductivity and is free from such problems.

さらに本発明は、製糸時の複合化が容易で複合形態の良
好な高度導電性複合繊維を提供するものである。
Furthermore, the present invention provides highly conductive composite fibers that can be easily composited during spinning and have a good composite form.

L問題点を解決するための手段] この目的を達成するため、本発明は、熱可塑性合成重合
体からなる芯層および鞘層と、15〜50重發%の導電
性カーボンブラックを含有した導電性熱可塑性合成重合
体からなり、前記芯層と鞘層との間に配された中間層と
で構成される芯鞘型複合繊維であって、前記芯層はam
m部面積5%以上の断面積を占め、前記中11層は前記
鞘層に対し偏心して配され、かつ、前記鞘層のうちの最
baい部分の厚みが繊維断面直径の5/100以下であ
ることを特徴とする高度導電性複合繊維からなる。
[Means for Solving Problem L] To achieve this object, the present invention provides a conductive material comprising a core layer and a sheath layer made of a thermoplastic synthetic polymer, and a conductive carbon black containing 15 to 50% by weight of conductive carbon black. A core-sheath type composite fiber comprising a thermoplastic synthetic polymer and an intermediate layer disposed between the core layer and the sheath layer, wherein the core layer is made of am
occupies a cross-sectional area of 5% or more of the area of part m, the middle 11 layer is arranged eccentrically with respect to the sheath layer, and the thickness of the thickest part of the sheath layer is 5/100 or less of the fiber cross-sectional diameter It is made of highly conductive composite fibers characterized by:

本発明にかかる高導電性複合繊維の芯層A1および鞘層
A2をなす熱可塑性合成手合体(以下、非導電性重合体
Aという)としては、繊維形成能の高い溶融紡糸可能な
合成重合体、例えば、ポリアミド、ポリエステル、ポリ
オレフィンなどが用いられるが、なかでもナイロン6、
ナイロン66などで代表されるポリアミド、およびポリ
エチレンテレフタレート、ポリブチレンテレフタレート
などで代表されるポリエステルが好ましい。この非導電
性重合体A中には、ポリアルキレングリコール、ポリア
ルキレンエーテルグリコール、ポリエーテルポリアミド
、N−アルキルポリアミドおよびそれらの誘導体の如き
帯電防止向上剤を配合してもよいし、また、通常の繊維
用添加剤を配合してもよい。中間層の黒色を抑えるため
には、この非導電性重合体A中、特に鞘層A2中に酸化
チタンなどの艶消剤を配合することが有効である。
The thermoplastic synthetic polymer (hereinafter referred to as non-conductive polymer A) forming the core layer A1 and sheath layer A2 of the highly conductive composite fiber according to the present invention is a melt-spun synthetic polymer with high fiber-forming ability. For example, polyamide, polyester, polyolefin, etc. are used, among which nylon 6,
Preferred are polyamides such as nylon 66, and polyesters such as polyethylene terephthalate and polybutylene terephthalate. In this non-conductive polymer A, antistatic improvers such as polyalkylene glycol, polyalkylene ether glycol, polyether polyamide, N-alkyl polyamide and derivatives thereof may be blended. Fiber additives may also be blended. In order to suppress the black color of the intermediate layer, it is effective to incorporate a matting agent such as titanium oxide into the non-conductive polymer A, particularly into the sheath layer A2.

一方、中間層B1をなす熱可塑性合成重合体(ベースポ
リマ)としては、非導電性重合体Aとして例示したと同
様な重合体が用いられる。芯層A1、中間層B1、鞘層
A2の相互の接着性を良くするためには、非導電性重合
体Aと同種の重合体を中間層B1のベースポリマに用い
ることが好ましい。
On the other hand, as the thermoplastic synthetic polymer (base polymer) forming the intermediate layer B1, the same polymer as exemplified as the non-conductive polymer A is used. In order to improve the mutual adhesion of the core layer A1, intermediate layer B1, and sheath layer A2, it is preferable to use a polymer of the same type as the non-conductive polymer A as the base polymer of the intermediate layer B1.

中間層B1中に均一分散さUで配合される導電性カーボ
ンブラックとしては公知の物を用いればよく、その配合
量は中間層をなすベースポリマの15〜50重量%であ
ることが必要である。この配合量が少なすぎると導電性
能が不十分であり、また多すぎると製糸性が低下する。
Any known conductive carbon black may be used as the conductive carbon black to be uniformly dispersed U in the intermediate layer B1, and the amount thereof needs to be 15 to 50% by weight of the base polymer constituting the intermediate layer. . If the blending amount is too small, the conductive performance will be insufficient, and if the blending amount is too large, the silk-spinning properties will be reduced.

[作用] 本発明にかかる高度導電性複合繊維の一実施態様を示す
第13図(繊維の横断面図)、および、その製糸に用い
る複合紡糸口金の一実施態様を示す第2図(この口金を
紡糸バックに組込んで紡糸する状態を模式的に示す部分
縦断面図)、第3図(この口金のうちの下口金板の上面
図)に沿って以下説明する。
[Function] FIG. 13 (cross-sectional view of the fiber) showing an embodiment of the highly conductive composite fiber according to the present invention, and FIG. The explanation will be given below with reference to FIG. 3 (a partial vertical cross-sectional view schematically showing a state in which the spinneret is assembled into a spinning bag and spun) and FIG. 3 (a top view of the lower die plate of this spinneret).

第2.3図に示す態様の複合紡糸口金は、上口金板1、
中口金板2および下口金板3の3枚の口金板で構成され
る。
The composite spinneret of the embodiment shown in FIG. 2.3 includes an upper spinneret plate 1,
It is composed of three cap plates: a middle cap plate 2 and a bottom cap plate 3.

非導電性重合体Aおよび導電性重合体Bは、それぞれ別
々に溶融され、濾過された後、紡糸口金上のポリマ溜り
に流入する。
Non-conductive polymer A and conductive polymer B are each separately melted and filtered before flowing into the polymer reservoir on the spinneret.

次いで、非導電性重合体Aは、上口金板1の外側流入孔
11.12内に流入し、それらの計量孔端によりそれぞ
れ計量されつつ中口金板2内に流入する。外側流入孔の
一方11の直下の位置には二層複合孔21が穿設され、
また、外側流入孔の他方12の直下の位Iには流下孔2
2が穿設されている。
The non-conductive polymer A then flows into the outer inlet holes 11.12 of the upper cap plate 1 and into the inner cap plate 2, being metered by the respective metering hole ends. A two-layer composite hole 21 is bored at a position directly below one of the outer inflow holes 11,
In addition, a downstream hole 2 is provided at a position I directly below the other outside inflow hole 12.
2 is drilled.

一方、導電性重合体Bは、上口金板1の内側流入孔13
内に流入し、その計量孔端で計量されつつ、中口金板2
内に流入し、次に、咳中口金板2の流路23に沿って二
層複合孔21の位置に流送される。
On the other hand, the conductive polymer B is
while being measured at the end of the measuring hole, the middle mouth metal plate 2
Then, it flows along the channel 23 of the cough mouthpiece plate 2 to the position of the two-layer composite hole 21 .

二層複合孔21において、非導電性重合体Aの外周界面
を導電性重合体8が包囲して二層芯鞘複合流が形成され
、その計量孔端から下口金板3の三層複合孔31内に流
入する。該三層複合孔31において、二層芯鞘複合流は
、外1111J流入孔12、流下孔22、および下口金
板3の流路32を経て三層複合孔31に達した非導電性
重合体Bで不均一に包囲され、三層複合流が形成される
第1図に示す如き本発明の特定の三層複合形態は、三層
複合孔31の周囲の非導電性重合体B供給用のしぼり部
のスリット幅を部分的に狭めさせる方法(第2.3図の
態様)、二層複合孔21の吐出端を三層複合孔31に対
して偏心させる方法、あるいは、これらの方法を組合わ
せた方法等により形成させることができる。
In the two-layer composite hole 21, the conductive polymer 8 surrounds the outer peripheral interface of the non-conductive polymer A to form a two-layer core-sheath composite flow, and from the metering hole end to the three-layer composite hole of the lower cap plate 3. 31. In the three-layer composite hole 31, the two-layer core-sheath composite flow passes through the outer 1111J inflow hole 12, the flow hole 22, and the flow path 32 of the lower metal plate 3, and reaches the three-layer composite hole 31 through the non-conductive polymer. The particular three-layer composite configuration of the present invention, as shown in FIG. A method of partially narrowing the slit width of the throttle part (the embodiment shown in Fig. 2.3), a method of eccentrically discharging the discharge end of the two-layer composite hole 21 with respect to the three-layer composite hole 31, or a combination of these methods. It can be formed by a suitable method or the like.

第2.3図においては、非導電性重合体Bは三層複合孔
31内に、しぼり部33.33′で制御されつつ流入す
るが、そのしぼり部の一部分のスリット幅を狭めさせて
いる(狭幅部33′ )ので、該狭幅部の方向からの非
導電性重合体Bの流入量は少なくなり、この部分におい
て最外層(鞘層)の厚みは特に薄くなる。このようにし
て、中間層が偏心し、鞘層が部分的に特に薄くなってい
る複合形態が1qられる。狭幅部33′のスリット幅お
よび/または、狭幅部とこれ以外のしぼり部(広幅部3
3)との割合を変えることにより、鞘層の扉も薄い部分
の厚み(d)を変えることができる。
In Fig. 2.3, the non-conductive polymer B flows into the three-layer composite hole 31 while being controlled by the restricting portion 33, 33', and the slit width is narrowed in a portion of the restricting portion. (Narrow width portion 33'), the amount of non-conductive polymer B flowing in from the direction of the narrow width portion is reduced, and the thickness of the outermost layer (sheath layer) is particularly thin in this portion. In this way, a composite configuration is obtained in which the intermediate layer is eccentric and the sheath layer is partially particularly thin. The slit width of the narrow part 33' and/or the narrow part and other squeeze parts (wide part 3
By changing the ratio of 3), the thickness (d) of the thin portion of the door of the sheath layer can also be changed.

例えば、最薄部の鞘層の厚み(d)を繊維断面直径の5
/100以下とするためには、狭幅部のスリット幅(L
l)は広幅部のスリットf%(Ll)の415以下程度
、および、狭幅部の割合が、その中心角度θで20〜1
80度程度であればよい。
For example, set the thickness (d) of the sheath layer at the thinnest part to 5% of the fiber cross-sectional diameter.
/100 or less, the slit width (L
l), the slit f% (Ll) of the wide part is about 415 or less, and the ratio of the narrow part is 20 to 1 at the center angle θ.
It may be about 80 degrees.

また、狭幅部33′と広幅部33との境は、その中央円
IV −IVに沿った断面図である第4図(イ)に示し
たように、階段状になっていてもよいし、また、第4図
(0)のようにテーパー状になっていてもよい。
Further, the boundary between the narrow part 33' and the wide part 33 may be stepped, as shown in FIG. 4(A), which is a cross-sectional view taken along the central circle IV-IV. , or may be tapered as shown in FIG. 4(0).

上述のようにして三mm合孔31内に形成された三層複
合流は、吐出端31′から紡出され、通常の方法で冷却
、給油、引取りされ、必要に応じて延伸、熱処理、交絡
等を施されて製糸される。
The three-layer composite flow formed in the 3 mm joint hole 31 as described above is spun out from the discharge end 31', cooled, lubricated, and taken off in the usual manner, and subjected to stretching, heat treatment, and treatment as necessary. It is interlaced and then spun.

この製糸工程において、鞘層および芯層をな寸非′4電
性重合体Aは、繊維として必要な機械的特性を得るため
に、通常の方法で配向、結晶化される。
In this spinning process, the sheath layer and the core layer are oriented and crystallized using a conventional method in order to obtain the necessary mechanical properties as a fiber.

本発明に係る高度導電性複合繊維は、芯層の断面積割合
が5%以上であること、および、中間かが鞘層に対し偏
心していて、鞘層のRa部の厚み(d >が繊維断面直
径の5/100以下であることを特徴とするものである
。芯層の断面積割合が小さすぎると、三層複合構造とし
た効果、すなわら製糸性および機械的特性の向上が上方
得られない。また、中間層を偏心させても111層の最
薄部が原寸ぎると、高度の導電性を得ることができない
In the highly conductive composite fiber according to the present invention, the cross-sectional area ratio of the core layer is 5% or more, the intermediate core is eccentric with respect to the sheath layer, and the thickness of the Ra portion of the sheath layer (d > It is characterized by having a cross-sectional area of 5/100 or less of the cross-sectional diameter.If the cross-sectional area ratio of the core layer is too small, the effect of creating a three-layer composite structure, that is, the improvement of the straw spinning property and mechanical properties, will be improved. Furthermore, even if the intermediate layer is made eccentric, if the thinnest part of the 111 layer is too large to its original size, a high degree of conductivity cannot be obtained.

非導電層(=芯層+1v層)と導電層(=中間層)との
複合割合は、98:2〜70:30であることが好まし
く、また、芯層と鞘層との割合は、5:95〜65:3
5であることが好ましい。
The composite ratio of the non-conductive layer (= core layer + 1V layer) and the conductive layer (= intermediate layer) is preferably 98:2 to 70:30, and the ratio of the core layer to the sheath layer is 5. :95-65:3
It is preferable that it is 5.

なお、中間層の断面形状は、第1図に示すような丸形が
好ましいが、楕円形、半円形あるいは三角形等の異形で
あってもよい。
Note that the cross-sectional shape of the intermediate layer is preferably round as shown in FIG. 1, but may be of other shapes such as an ellipse, a semicircle, or a triangle.

し実施例および比較例] 非導電性重合体Aとして、酸化チタンを0.4重量%分
散添加した硫酸相対粘度2.63のナイロン6ポリマを
用い、一方、導電性重合体Bとして、4電性カーボンブ
ラツクを35重量%分散添加したナイロン6ポリマを用
い、それぞれ290゛Cで溶融、濾過後、第2.3図に
示す複合紡糸口金(狭幅部の中心角度θ=120°、L
2/L1−215)を用いて芯層、中間層、鞘層の複合
比(断面積比)−25:10:65になるように複合紡
糸し、冷却、給油後700m/分で巻取った。
Examples and Comparative Examples] As the non-conductive polymer A, a nylon 6 polymer having a sulfuric acid relative viscosity of 2.63 and containing 0.4% by weight of titanium oxide was used. Nylon 6 polymer containing 35% by weight of carbon black dispersed therein was melted at 290°C and filtered, then the composite spinneret shown in Figure 2.3 (center angle θ of narrow part = 120°, L
2/L1-215) to give a composite ratio (cross-sectional area ratio) of core layer, intermediate layer, and sheath layer of -25:10:65, and after cooling and oiling, it was wound at 700 m/min. .

得られた未延伸糸を170℃の熱板で3.4倍に延伸し
、25.7デニール、3フイラメントの複合繊維糸条を
得た。得られた複合繊維の、uA維断面直径に対する鞘
層最薄部の厚み(d/D)は4.5/100であった(
実施例1)。
The obtained undrawn yarn was drawn 3.4 times on a hot plate at 170° C. to obtain a 25.7 denier, 3-filament composite fiber yarn. The thickness (d/D) of the thinnest part of the sheath layer relative to the uA fiber cross-sectional diameter of the obtained composite fiber was 4.5/100 (
Example 1).

、また、芯層、中間層、鞘層の複合比を20 : 15
 : 65とした以外は前記と同様な条件で複合紡糸し
延伸して複合繊維糸条を得た。この複合繊維の、繊維断
面直径に対する鞘m最薄部の厚み(d/D)は 3/1
00であった(実施例2)。
In addition, the composite ratio of the core layer, middle layer, and sheath layer was 20:15.
: Composite fiber yarn was obtained by composite spinning and drawing under the same conditions as above except that the yarn was adjusted to 65%. The thickness (d/D) of the thinnest part of the sheath m relative to the fiber cross-sectional diameter of this composite fiber is 3/1
00 (Example 2).

一方、比較例として、複合形態を、導電性重合体Bの周
囲を部分的に非導電層で包囲接合した部分包囲接合型と
し、S重層と非導電層との複合比を10:90とした以
外は、前記と同様に複合紡糸し延伸して、部分包囲接合
型複合繊維糸条を1りた(比較例1)。
On the other hand, as a comparative example, the composite form was a partially surrounding bonded type in which conductive polymer B was partially surrounded by a non-conductive layer, and the composite ratio of the S layer and the non-conductive layer was 10:90. Except for this, composite spinning and drawing were carried out in the same manner as above to obtain one partially enclosed and bonded composite fiber yarn (Comparative Example 1).

また比較例と()て、複合形態を、導電層を四分割して
繊維表面近傍に対称的に配置したR8分割型とし、導電
層と非導電層との複合比を15二85とした以外は、実
施例1と同様に複合紡糸し延伸して、多芯分配型の複合
繊維糸条(繊維断面直径に対する、繊維表面から導電層
までの距離は5/100)を得た(比較例2)。
In addition, as a comparative example (), the composite form was an R8 split type in which the conductive layer was divided into four and arranged symmetrically near the fiber surface, and the composite ratio of the conductive layer and the non-conductive layer was 15285. was composite spun and drawn in the same manner as in Example 1 to obtain a multicore distributed composite fiber yarn (distance from the fiber surface to the conductive layer relative to the fiber cross-sectional diameter was 5/100) (Comparative Example 2) ).

さらに比較例として、複合形態を、芯層に導電性重合体
Bを用いた二層同心状芯鞘型とし、導電層と非導電層と
の複合比を10:90とした以外は、実施例1と同様に
複合紡糸し延伸して、二層同心状芯鞘型複合繊維糸条を
得たく比較例3)。
Furthermore, as a comparative example, the composite form was a two-layer concentric core-sheath type using conductive polymer B as the core layer, and the composite ratio of the conductive layer and the non-conductive layer was 10:90. Composite spinning and drawing were performed in the same manner as in Example 1 to obtain a two-layer concentric core-sheath type composite fiber yarn (Comparative Example 3).

得られた複合繊維糸条の比抵抗値および強伸度は第1表
のとおりであった。また、複合繊維糸条を得る際の紡糸
性および延伸性は第1表のとおりであった。
The specific resistance value and strength and elongation of the obtained composite fiber yarn were as shown in Table 1. Further, the spinnability and drawability when obtaining the composite fiber yarn were as shown in Table 1.

糸条の比抵抗値の測定法: 四塩化炭素で脱油した後束ねて1000デニールの試利
束どし、測定長が1Qcmになるように切断し、両端に
導電性樹脂を塗布して電極どし、20℃、65%RHの
雰囲気下で、直流100■を印加した時の抵抗値を測定
し、比抵抗(Ωam>に換算した。
Measuring method of specific resistance value of yarn: After deoiling with carbon tetrachloride, bundle it into a 1000 denier trial bundle, cut it to a measurement length of 1Qcm, coat both ends with conductive resin, and use it as an electrode. Then, in an atmosphere of 20° C. and 65% RH, the resistance value when 100 μm of direct current was applied was measured and converted to specific resistance (Ωam>).

第1表の結果から明らかなように、本発明に係る複合繊
維(実施例1.2)は、従来の複合繊維(比較例1〜3
)と同程度あるいはそれ以上に導電性が高く、しかも、
紡糸、延伸も良好に行なうことができた。
As is clear from the results in Table 1, the composite fiber according to the present invention (Example 1.2) is different from the conventional composite fiber (Comparative Examples 1 to 3).
) has a conductivity as high as or higher than that of
Spinning and stretching were also successful.

また、得られた複合繊維糸条を、1300デニール、8
0フイラメントのナイロン6延伸糸条3本と40t/m
で合撚して3925デニールとし、1/10ゲージ、1
インチ当りのステッチ8、パイル高さ10)のレベルル
ープカーペット〜を作り、炭素繊維を0.2%含有する
スチレン・ブタジェンからなるラテックスによりバッキ
ング処理を施した。
In addition, the obtained composite fiber thread was 1300 denier, 8
3 0 filament nylon 6 drawn yarns and 40t/m
3925 denier, 1/10 gauge, 1
A level loop carpet with 8 stitches per inch and a pile height of 10 was prepared and backed with a latex made of styrene-butadiene containing 0.2% carbon fiber.

得られたカーペットの表面抵坑および人体帯電圧を次の
方法で測定したところ、第2表のとおりであった。
The surface resistance and human body charge voltage of the obtained carpet were measured using the following method, and the results were as shown in Table 2.

カーペットの表面抵抗: 9Qcm四方の試料片を、20℃、20%RH(7)雰
囲気下に24時間放置後、直径60111111.重量
2旬の金属円柱を電極として15cm離して試料片上に
載せ、超絶縁訂で抵抗値を測定した、。電極の置く方向
を縦、横、斜めと異ならせて4回測定し、その平均をと
って比抵抗値とした。
Surface resistance of carpet: After leaving a 9Qcm square sample piece in an atmosphere of 20% RH (7) at 20°C for 24 hours, the diameter was 60111111. A metal cylinder with a weight of about 20% was placed on the sample piece at a distance of 15 cm as an electrode, and the resistance value was measured using a superinsulation method. The measurement was performed four times with the electrode placed in different directions: vertically, horizontally, and diagonally, and the average was taken as the specific resistance value.

カーペットの人体帯電圧: 上記と同じ条件下に放置した9Qcm四方の試料片を、
敷物試験方法(Jts  L  1021)のストロー
ル法に準じて測定した。
Carpet human body voltage: A 9Qcm square sample piece left under the same conditions as above.
It was measured according to the Stroll method of Rug Test Method (Jts L 1021).

また、カーペットを製織する際の工程通過性を評価し、
その結果を第2表に示した。
In addition, we evaluated the process passability when weaving carpets,
The results are shown in Table 2.

第2表の結果から明らかなように、本発明に係る複合m
Miを用いたカーペットは、導電性が高く、しかも、カ
ーペット¥J織時の工程通過性も良好であった。
As is clear from the results in Table 2, the composite m according to the present invention
The carpet using Mi had high conductivity and also had good process passability during carpet ¥J weaving.

[発明の効果] 本発明に係る高度導電性複合繊維は、製糸性良好で、フ
ィブリル化およびカーボン脱落という糸質上の問題がな
(、かつ、導電性が高く、機械的特性が良好であるとい
う優れた特性を具備している。しかも、製糸時の複合化
が容易であって、複合形態の均一性の高い複合繊維を得
ることができる。すなわち、本発明によると、導電性が
高く、かつ糸質が優れた複合繊維を製糸性良く生産する
ことができ、工業生産に好適である。
[Effects of the Invention] The highly conductive conjugate fiber according to the present invention has good spinnability, does not have yarn quality problems such as fibrillation and carbon shedding (and has high conductivity and good mechanical properties). In addition, it is easy to compose fibers during spinning, and it is possible to obtain composite fibers with highly uniform composite morphology.In other words, according to the present invention, the fibers have high electrical conductivity, Moreover, composite fibers with excellent yarn quality can be produced with good spinability, and are suitable for industrial production.

この高度導電性複合繊維は、高度な導電性能が要求され
る用途、例えばコンピユータ室用カーペット、コンピュ
ータ関連用品、防塵衣、防爆衣、訓電性衣料、スクリー
ン紗などに有効であり、特に、使用中のカーボン脱落が
なく高度導11性である点から防塵衣に好適である。
This highly conductive composite fiber is effective in applications that require high conductivity, such as computer room carpets, computer-related supplies, dust-proof clothing, explosion-proof clothing, electrically conductive clothing, and screen gauze. It is suitable for dustproof clothing because it has high conductivity and no carbon shedding inside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る高度導電性複合繊維の一実施態
様を示す繊維横断面図である。 第2図は、その製糸に用いる複合紡糸口金を紡糸バック
内に組込んで紡糸する状態を模式的に示す部分縦断面図
である。第3図は、その複合紡糸口金のうちの下口金板
3の上面図である。第4図(イ)は、第3図における曲
線rV−rVに沿った断面図であり、第4図(ロ)は別
の態様を示す断面図である。 [符号の説明I A: 非導電性重合体
FIG. 1 is a fiber cross-sectional view showing one embodiment of the highly conductive composite fiber according to the present invention. FIG. 2 is a partial longitudinal sectional view schematically showing a state in which a composite spinneret used for spinning the yarn is assembled into a spinning bag and spinning is performed. FIG. 3 is a top view of the lower spinneret plate 3 of the composite spinneret. FIG. 4(a) is a sectional view taken along the curve rV-rV in FIG. 3, and FIG. 4(b) is a sectional view showing another aspect. [Explanation of symbols I A: Non-conductive polymer

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性合成重合体からなる芯層および鞘層と、15〜
50重量%の導電性カーボンブラックを含有した導電性
熱可塑性合成重合体からなり、前記芯層と鞘層との間に
配された中間層とで構成される芯鞘型複合繊維であって
、前記芯層は繊維断面積の5%以上の断面積を占め、前
記中間層は前記鞘層に対し偏心して配され、かつ、前記
鞘層のうらの最も薄い部分の厚みが繊維断面直径の5/
100以下であることを特徴とする高度導電性複合繊維
a core layer and a sheath layer made of a thermoplastic synthetic polymer;
A core-sheath type composite fiber made of a conductive thermoplastic synthetic polymer containing 50% by weight of conductive carbon black, and comprising an intermediate layer disposed between the core layer and the sheath layer, The core layer occupies a cross-sectional area of 5% or more of the cross-sectional area of the fiber, the intermediate layer is arranged eccentrically with respect to the sheath layer, and the thickness of the thinnest part at the back of the sheath layer is 5% of the cross-sectional diameter of the fiber. /
A highly conductive composite fiber characterized by having a conductivity of 100 or less.
JP24971484A 1984-11-28 1984-11-28 Conjugated fiber of high conductivity Pending JPS61132625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24971484A JPS61132625A (en) 1984-11-28 1984-11-28 Conjugated fiber of high conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24971484A JPS61132625A (en) 1984-11-28 1984-11-28 Conjugated fiber of high conductivity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15638585A Division JPS61132613A (en) 1985-07-16 1985-07-16 Spinneret for producing eccentric sheath-core composite fiber

Publications (1)

Publication Number Publication Date
JPS61132625A true JPS61132625A (en) 1986-06-20

Family

ID=17197104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24971484A Pending JPS61132625A (en) 1984-11-28 1984-11-28 Conjugated fiber of high conductivity

Country Status (1)

Country Link
JP (1) JPS61132625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133950A (en) * 2013-01-09 2014-07-24 Kuraray Co Ltd Conductive composite fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551337A (en) * 1978-06-15 1980-01-08 Toray Ind Inc Electrically conducitive synthetic fiber and its production
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS5819360A (en) * 1981-07-27 1983-02-04 Unitika Ltd Electrically conductive polymer composition
JPS5860014A (en) * 1981-10-06 1983-04-09 Teisan Seiyaku Kk Composite fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551337A (en) * 1978-06-15 1980-01-08 Toray Ind Inc Electrically conducitive synthetic fiber and its production
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS5819360A (en) * 1981-07-27 1983-02-04 Unitika Ltd Electrically conductive polymer composition
JPS5860014A (en) * 1981-10-06 1983-04-09 Teisan Seiyaku Kk Composite fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133950A (en) * 2013-01-09 2014-07-24 Kuraray Co Ltd Conductive composite fiber

Similar Documents

Publication Publication Date Title
JPS61132624A (en) Conjugated fiber of high conductivity
US4207376A (en) Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
US3969559A (en) Man-made textile antistatic strand
US4309479A (en) Conductive composite filaments
US5202185A (en) Sheath-core spinning of multilobal conductive core filaments
CN1028177C (en) Sheath-core spinning of multilobal conductive
JP4790954B2 (en) Core-sheath composite type conductive fiber
US5318845A (en) Conductive composite filament and process for producing the same
US5260013A (en) Sheath-core spinning of multilobal conductive core filaments
US5277855A (en) Process for forming a yarn having at least one electrically conductive filament by simultaneously cospinning conductive and non-conductive filaments
JPS5841910A (en) Electrically conductive mixed filament yarn
JPS61132625A (en) Conjugated fiber of high conductivity
JPS61132623A (en) Conjugated fiber of high conductivity
KR900008725B1 (en) Conductive composite filaments and fibrous articles containing the same
JPS6350446B2 (en)
JPS6059122A (en) Production of antistatic combined filament yarn
KR840002345B1 (en) Antistatic Composite Fiber
JP7107226B2 (en) conductive composite fiber
JPS6346171B2 (en)
JP2834256B2 (en) Conductive composite fiber
JPH02200827A (en) Electroconductive combined filament yarn and production thereof
CA2276193C (en) Sheath-core spinning of multilobal conductive core filaments
JPS6254884B2 (en)
JPS62104907A (en) Spinneret for melt spinning
JP2022109879A (en) Conductive fiber and clothing including the same