[go: up one dir, main page]

JPS6113006A - Joint structure of composite material product - Google Patents

Joint structure of composite material product

Info

Publication number
JPS6113006A
JPS6113006A JP59132198A JP13219884A JPS6113006A JP S6113006 A JPS6113006 A JP S6113006A JP 59132198 A JP59132198 A JP 59132198A JP 13219884 A JP13219884 A JP 13219884A JP S6113006 A JPS6113006 A JP S6113006A
Authority
JP
Japan
Prior art keywords
loop portion
joint structure
composite material
sides
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132198A
Other languages
Japanese (ja)
Other versions
JPH0228002B2 (en
Inventor
舜一 板東
藤原 静雄
正 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59132198A priority Critical patent/JPS6113006A/en
Publication of JPS6113006A publication Critical patent/JPS6113006A/en
Publication of JPH0228002B2 publication Critical patent/JPH0228002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維に樹脂を含浸させた複合材からなる
複合材製品を他の構造物に取付けるための接手構造に関
する。特に、本発明は、繊維方向が一方向に揃えられた
樹脂含浸繊維からなる複合材をU字形に折り返してルー
プ部を形成し、このループ部にボルト等の締結具を挿入
するようになった複合材製品の接手構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a joint structure for attaching a composite product made of a composite material in which reinforcing fibers are impregnated with a resin to another structure. In particular, in the present invention, a composite material made of resin-impregnated fibers whose fiber directions are aligned in one direction is folded back into a U-shape to form a loop portion, and a fastener such as a bolt is inserted into this loop portion. Regarding the joint structure of composite material products.

(従来技術) 強化繊維に樹脂を含浸させた複合材からなる製品は、他
の構造物への取付けのためにドリルなどによシ穿孔を行
なうと1強化繊維が切断されるので強度が低下し、有効
な接手構造を構成することができない。したがって、ヘ
リコプタのロータブレードの取付部や、人工衛屋のスト
ラット力どのように高強度、高信頼性を必要とする接手
構造では、繊維を一方向に揃えた樹脂含浸繊維からなる
複合材をU字形に折シ返してループ部を形成し、このル
ープ部にボルトなどの締結具を挿入するようにした接手
構造が、たとえば米国特許第3、’17乙、lIgl1
号あるいはドイツ特許第1、、S−θls、!;73号
などによシ提案されている。
(Prior art) When a product made of a composite material in which reinforcing fibers are impregnated with resin is drilled with a drill or the like for attachment to another structure, one of the reinforcing fibers is cut, resulting in a decrease in strength. , it is not possible to construct an effective joint structure. Therefore, for joint structures that require high strength and high reliability, such as the attachment part of the rotor blade of a helicopter or the strut force of an artificial guard, composite materials made of resin-impregnated fibers with fibers aligned in one direction are used. A joint structure in which a loop portion is formed by folding back into a letter shape and a fastener such as a bolt is inserted into the loop portion is disclosed in, for example, U.S. Pat.
No. or German Patent No. 1, S-θls,! ; It has been proposed in No. 73, etc.

(発明が解決しようとする問題点) 上述したループ部を有する接手構造では、破かいモード
としては繊維が破断する繊維破かいモードと、樹脂が層
状に剥離する層間剪断破かいモードがあシ、通常は眉間
剪断破かいモードの方が弱いため、繊維の高強度が十分
に活かされない、という問題がある。上述した従来の構
造では、ループ部は樹脂含浸繊維の一方向材を半円形に
巻いて折シ返した形状を有するが、この形式の接手構造
に引張力が作用すると、ループ部を構成する複合材の横
断面は、該ループ部の彎曲形状に応じた回転を伴ないな
から引張方向に叢位するため、該複合材には曲げ力が作
用し、この曲は力のために繊維間に層間剪断応力が発生
する。そして、この層間剪断応力は、ループ部の両側に
あたる位置の半径方向内側で最大になり、ここで層間剪
断破かいが生じる。
(Problems to be Solved by the Invention) In the above-mentioned joint structure having the loop portion, there are two types of breakage mode: a fiber breakage mode in which the fibers break, and an interlayer shear breakage mode in which the resin peels off in layers. Usually, the glabellar shear breaking mode is weaker, so the problem is that the high strength of the fibers is not fully utilized. In the conventional structure described above, the loop part has a shape in which a unidirectional resin-impregnated fiber is rolled in a semicircular shape and folded back. However, when a tensile force is applied to this type of joint structure, the composite material forming the loop part Since the cross section of the material is not rotated in accordance with the curved shape of the loop portion, but is aligned in the tensile direction, a bending force acts on the composite material, and this bending causes a bending between the fibers due to the force. Interlaminar shear stress occurs. This interlaminar shear stress is maximum on the radially inner side of the loop portion on both sides, and interlaminar shear rupture occurs here.

本発明は、従来のループ部を有する複合材製品接手構造
の上述した問題を解決し、層間剪断応力を大巾に軽減す
ることのできる接手構造を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the conventional composite product joint structure having a loop portion, and to provide a joint structure that can greatly reduce interlaminar shear stress.

(問題を解決するための手段) 本発明は、上記目的を解決するために、上述したような
ループ部を有する複合@製品の接手構造において、ルー
プ部の曲率半径を頂点付近で最小とし、該頂点から両側
に向って次第に曲率半径を増加させ2両側部で曲率半径
を最大としたものである。ループ部の曲率半径の変化率
は頂点付近で最大とし、両側に向って変化率が次第に小
さくなるようにすることが好ましい。たとえば、ループ
部は、長軸がループ部の長手方向に向き、短軸が長手方
向に対し直交する方向に向いた楕円形状にすればよく、
このばあいには、ループ部を構成する楕円形状の長径と
短径の比は%1.3ないし1.7とすることが好ましい
(Means for Solving the Problem) In order to solve the above object, the present invention provides a joint structure for a composite @ product having a loop portion as described above, in which the radius of curvature of the loop portion is minimized near the apex, and the radius of curvature of the loop portion is minimized near the apex. The radius of curvature gradually increases from the apex toward both sides, and the radius of curvature is maximized at the two sides. It is preferable that the rate of change in the radius of curvature of the loop portion is maximum near the apex, and that the rate of change gradually decreases toward both sides. For example, the loop portion may have an elliptical shape with the long axis oriented in the longitudinal direction of the loop portion and the short axis oriented in a direction perpendicular to the longitudinal direction.
In this case, the ratio of the major axis to the minor axis of the elliptical shape constituting the loop portion is preferably %1.3 to 1.7.

(発明の効果) 本発明においては、接手構造を構成する複合材のループ
部は両側部において曲率半径が大きくなっているので、
複合材に引張力が作用したとき。
(Effects of the Invention) In the present invention, since the loop portion of the composite material constituting the joint structure has a large radius of curvature on both sides,
When tensile force is applied to the composite material.

該両側部では複合材の横11面の回転変位が小さくなυ
、したがって該複合材に作用する曲は力が小さくなり、
層間剪断力が減少する。特に、ループ部の曲率半径の変
化を適肖に定めることによシ、従来層間剪断応力が最大
であったループ部の両側部内側での応力を他の部分の応
力とはに同一にして、材料強度の有効な利用をはかるこ
とができる。
On both sides, the rotational displacement of the 11 horizontal planes of the composite material is small υ
, so the bending force acting on the composite material becomes smaller;
Interlaminar shear forces are reduced. In particular, by appropriately determining the change in the radius of curvature of the loop portion, the stress on the inner side of both sides of the loop portion, where the interlaminar shear stress conventionally was maximum, can be made equal to the stress on other portions. Effective use of material strength can be achieved.

(実施例の説明) 第1図は本発明の一実施例を示すもので%接手構造1は
、繊維方向を長さ方向に揃えた樹脂含浸繊維からなる複
合材10からなシ、この複合材10は金属製ブツシュ9
のまわシに巻かれたループ部10gを有する。ブツシュ
9はがシト穴9aを有し、ブツシュ9の背後において複
合材10の側部10bの間に形成された空間部には、チ
ョツプドファイバーに樹脂を含浸させて硬化させたイン
サー)11が挿入され、複合材10に接着されている。
(Explanation of an Embodiment) FIG. 1 shows an embodiment of the present invention, in which the joint structure 1 is made of a composite material 10 made of resin-impregnated fibers with fiber directions aligned in the length direction. 10 is a metal bushing 9
It has a loop portion 10g that is wound around the body. The bushing 9 has a seat hole 9a, and in the space formed between the side parts 10b of the composite material 10 behind the bushing 9, there is an insert 11 in which chopped fibers are impregnated with resin and hardened. is inserted and adhered to the composite material 10.

また、図に示されていないが、′61合材10は、公知
の手法によシ、複合材製品、たとえばヘリコプタのロー
タブレードと一体に形成される。このようにして形成さ
れた接手構造は、相手側構造物の金具12に挿入され、
ボルト13およびナツト14によ多結合される。
Although not shown in the drawings, the '61 composite material 10 is formed integrally with a composite product, such as a rotor blade of a helicopter, by a known method. The joint structure formed in this way is inserted into the metal fitting 12 of the counterpart structure,
Multiple connections are made to bolts 13 and nuts 14.

第1図および第一図に示すように、ループ部10aの内
側のブツシュ9は、楕円を短−(で部分した形状を有し
、楕円の長軸が接手の長手方向に。
As shown in FIGS. 1 and 1, the bush 9 inside the loop portion 10a has a shape obtained by dividing an ellipse by a short (-), with the long axis of the ellipse extending in the longitudinal direction of the joint.

短軸がそれと直角方向に向くように配置されている。し
たがって、ループ部108では、複合材10も楕円形に
彎曲させられている。第3図は、この接手構造の作用を
示すもので、複合材10に引張力Pが作用すると、ルー
プ部108の側部の横断面Aは5図にBで示すまで変位
する。この変位は、引張力P方向の変位δとループ部の
曲率に起因する回転変位Iの合成である。その結果、複
合材の側部101)は1図にA′で示す位置からピに示
す位置に変位しようとするが、引張力Pの方向は不変で
あるので結局はC′の位置になシ、ループ部10aの両
側部では複合材10に曲け力が作用することに々る。し
かし1本例の接手構造は8%前述のように楕円形で楕円
の短軸が画一に向い゛ているので、該両側部では曲率半
径が大き(、シたがって回転変位θが従来に比して小さ
くなる。複合材10に作用する曲げ力は、この回転変位
θの減少とともに小さくなるので、lv4間剪断力もそ
れに応じて減少させられる。
The short axis is oriented perpendicular to it. Therefore, in the loop portion 108, the composite material 10 is also curved into an oval shape. FIG. 3 shows the action of this joint structure. When a tensile force P is applied to the composite material 10, the cross section A of the side portion of the loop portion 108 is displaced to the point indicated by B in FIG. This displacement is a combination of the displacement δ in the direction of the tensile force P and the rotational displacement I caused by the curvature of the loop portion. As a result, the side part 101) of the composite material tries to displace from the position shown at A' in Figure 1 to the position shown at P, but since the direction of the tensile force P remains unchanged, it ends up at position C'. , bending force often acts on the composite material 10 on both sides of the loop portion 10a. However, since the joint structure in this example is 8% elliptical and the short axis of the ellipse is uniformly oriented as described above, the radius of curvature is large on both sides (therefore, the rotational displacement θ is smaller than before). Since the bending force acting on the composite material 10 becomes smaller as the rotational displacement θ decreases, the lv4 shearing force is also reduced accordingly.

第7図および第S図は従来の接手構造および本発明の一
実施例による接手構造における複合材内の層間剪断応力
を有限要素解析により求めた結果をそれぞれ示すもので
、分割された各要素内の線が剪断応力の大きさを表わし
ている。第7図によシ明らかなとおシ、従来の接手構造
では図にワθ0として示すループ部のamの内fAII
Dで最大Lc力が発生し、接手構造の長手方向端部すな
わち図に00として示す頂点に向って漸次減少する。こ
れに対し、楕円形状のループ部を有する接手構造では、
第S図に示すように側部Eのはかに、頂点からある角度
、本例では約λり0の位置下に大きな応力が発生する。
Fig. 7 and Fig. S show the results obtained by finite element analysis of the interlaminar shear stress in the composite material in the conventional joint structure and the joint structure according to an embodiment of the present invention. The line represents the magnitude of shear stress. As is clear from FIG. 7, in the conventional joint structure, fAII in am of the loop portion shown as θ0 in the figure.
The maximum Lc force occurs at D and gradually decreases towards the longitudinal end of the joint structure, i.e. the apex shown as 00 in the figure. On the other hand, in a joint structure having an elliptical loop part,
As shown in FIG. S, a large stress is generated on the side E at a certain angle from the apex, in this example, at a position of approximately λ0.

第6図は、層間剪断応力と楕円の長短径比との関係を示
すものである。図から知シ得るように、楕円が長くなる
ほど側部εの層間剪断応力は低下するが、逆に230位
置位置下力は増加する。そして長短径比がはぼ1.5の
とき上記−りの位置での応力がはは等しくなる。このと
きの応力は、長短径比がl、θのばあい、すなわち円形
のばあいの応力の約%である。長短径比が約1.3から
糺1.7の間では円形のばあいに比し、顕著な応力低下
がみられる。第7図は、従来の接手構造と長短径比を1
.lIとした本発明の実施例における接手疲労強度試駆
結果を示すものである。図から明らかなとおシ、本発明
の実施例によれは、従来の接手構造に比し、著しい疲労
強度の向上が達成される。
FIG. 6 shows the relationship between the interlayer shear stress and the ratio of the major axis to the minor axis of the ellipse. As can be seen from the figure, as the ellipse becomes longer, the interlaminar shear stress at the side ε decreases, but conversely, the 230 position lower force increases. When the length/breadth ratio is approximately 1.5, the stress at the above-mentioned position becomes equal. The stress at this time is about % of the stress when the length ratio is l and θ, that is, when the shape is circular. When the length/breadth ratio is between about 1.3 and 1.7, a significant decrease in stress is observed compared to the case of a circular shape. Figure 7 shows the conventional joint structure and the long/short axis ratio of 1.
.. This figure shows the test results of joint fatigue strength in an example of the present invention with lI. As is clear from the figures, the embodiment of the present invention achieves a significant improvement in fatigue strength compared to the conventional joint structure.

前述のように、ループ部が楕円のばあいには、ループ部
の頂点から約25’の部分に層間剪断応力の大きなとこ
ろが生ずるが、これは接手形状が理想的ではないことに
起因するのであって、適当な曲線を選択すればループ部
全体にわたシ内部の層間剪断応力の分布を均一にするこ
とが可能になる。
As mentioned above, when the loop part is elliptical, a large area of interlaminar shear stress occurs at a portion approximately 25' from the apex of the loop part, but this is due to the non-ideal shape of the joint. By selecting an appropriate curve, it is possible to make the distribution of interlayer shear stress inside the wadding uniform over the entire loop portion.

すなわち、上述したような接手構造では、外力による複
合材の伸びのため、内側のブッシングの形状との間に差
異が生じ、この形状差が層間剪断応力の発生原因となる
。したがってループ部が円形のばあいには、第4図に示
すようにループ部の側部以外では層間剪断応力は小さい
。このことを考慮して層間剪断応力を軽減するには次の
ようにすればよい。すなわち、複合材の伸び変位はルー
プ部の頂点付近ではゼロに近く、側面に回るにつれて次
第に増大するのであるから、接手形状の変化、すなわち
2曲率半径の変化率もまた。頂点付近が最も太きく側面
に回るにつれて次第に小さくなって900付近で緻小に
なるという変化をすることが良い。この条件を満足する
には三次曲線が適しているが、厳密に言えば、頂点から
両側面にかけての各部の複合材の伸び量と1曲率半径の
変化量を等しくすることによシ、最適形状を設定するこ
とができる。
That is, in the above-mentioned joint structure, due to elongation of the composite material due to external force, a difference in shape from the inner bushing occurs, and this difference in shape causes generation of interlaminar shear stress. Therefore, when the loop portion is circular, as shown in FIG. 4, the interlayer shear stress is small in areas other than the sides of the loop portion. Taking this into consideration, the interlayer shear stress can be reduced as follows. That is, since the elongation displacement of the composite material is close to zero near the apex of the loop portion and gradually increases as it moves toward the sides, the change in the shape of the joint, that is, the rate of change in the two radii of curvature also changes. It is preferable to change the thickness so that it is thickest near the apex, gradually becomes smaller toward the sides, and becomes finer around 900. A cubic curve is suitable to satisfy this condition, but strictly speaking, the optimal shape is achieved by making the amount of elongation of the composite material equal to the amount of change in one radius of curvature from the vertex to both sides. can be set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による接手構造の一実施例を示す分解斜
視図、第一図はその平面図、第3図は曲げ力の発生を説
明するための概略図、第4図は従来の接手構造における
眉間剪断応力の分布を示す図、第S図は本発明の実施例
における層間剪断応力の分布を示す図、第6図はII!
間剪断応力のピーク値とループ部の楕円の長短径比の関
係を示す図表、第り図は疲労試験の結果を示す図である
。 1・・・接手構造、9・・・ブツシュ%10・・・複合
材、10a・・・ループ部。 第 1 図 壊 年明 歌 腰 昭 −3:
Fig. 1 is an exploded perspective view showing an embodiment of the joint structure according to the present invention, Fig. 1 is a plan view thereof, Fig. 3 is a schematic diagram for explaining the generation of bending force, and Fig. 4 is a conventional joint structure. A diagram showing the distribution of glabella shear stress in the structure, Figure S is a diagram showing the distribution of interlayer shear stress in an example of the present invention, and Figure 6 is II!
Figure 1 is a diagram showing the relationship between the peak value of inter-shear stress and the ratio of major to minor axis of the ellipse of the loop portion, and Figure 2 is a diagram showing the results of a fatigue test. DESCRIPTION OF SYMBOLS 1... Joint structure, 9... Bush %10... Composite material, 10a... Loop part. Part 1: Toshiaki Toshiaki - 3:

Claims (4)

【特許請求の範囲】[Claims] (1)繊維方向が一方向に揃えられた樹脂含浸繊維から
なる複合材をU字形に折り返してループ部を形成し、こ
のループ部に締結具が挿入されるようになつた複合材製
品の接手構造において、前記ループ部は、頂点付近で曲
率半径が最小で、該頂点から両側に向つて次第に曲率半
径が増大し、両側部で最大の曲率半径を有することを特
徴とする複合材製品の接手構造
(1) A joint of a composite material product in which a composite material made of resin-impregnated fibers whose fiber directions are aligned in one direction is folded back in a U-shape to form a loop portion, and a fastener is inserted into this loop portion. In the structure, the loop portion has a minimum radius of curvature near the apex, gradually increases in radius from the apex toward both sides, and has a maximum radius of curvature at both sides. structure
(2)前記第(1)項の接手構造において、前記ループ
部は長軸が該ループ部の長手方向に、短軸が該長手方向
に対し直交する方向にそれぞれ向いた楕円形状であるこ
とを特徴とする接手構造
(2) In the joint structure of item (1) above, the loop portion has an elliptical shape with its major axis oriented in the longitudinal direction of the loop portion and its minor axis oriented in a direction perpendicular to the longitudinal direction. Characteristic joint structure
(3)前記第(2)項の接手構造において、前記ループ
部を構成する楕円形状の長径と短径の寸法比は1.3な
いし1.7であることを特徴とする接手構造
(3) The joint structure according to item (2) above, wherein the dimensional ratio of the major axis to the minor axis of the elliptical shape constituting the loop portion is 1.3 to 1.7.
(4)前記第(1)項の接手構造において、前記ループ
部は、頂点付近で曲率半径の変化率が最大で、両側に向
つて該変化率が次第に小さくなり両側部で最小の変化率
を有することを特徴とする接手構造
(4) In the joint structure of item (1) above, the loop portion has a maximum rate of change in the radius of curvature near the apex, and the rate of change gradually decreases toward both sides, reaching the minimum rate of change at both sides. A joint structure characterized by having
JP59132198A 1984-06-27 1984-06-27 Joint structure of composite material product Granted JPS6113006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132198A JPS6113006A (en) 1984-06-27 1984-06-27 Joint structure of composite material product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132198A JPS6113006A (en) 1984-06-27 1984-06-27 Joint structure of composite material product

Publications (2)

Publication Number Publication Date
JPS6113006A true JPS6113006A (en) 1986-01-21
JPH0228002B2 JPH0228002B2 (en) 1990-06-21

Family

ID=15075684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132198A Granted JPS6113006A (en) 1984-06-27 1984-06-27 Joint structure of composite material product

Country Status (1)

Country Link
JP (1) JPS6113006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261003A (en) * 2010-12-08 2013-08-21 戴姆勒股份公司 Motor vehicle body with stiffening struts
US9410307B2 (en) 2012-02-03 2016-08-09 Kyb Corporation Hybrid construction machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820847U (en) * 1971-07-14 1973-03-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820847U (en) * 1971-07-14 1973-03-09

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261003A (en) * 2010-12-08 2013-08-21 戴姆勒股份公司 Motor vehicle body with stiffening struts
JP2014502232A (en) * 2010-12-08 2014-01-30 ダイムラー・アクチェンゲゼルシャフト Auto body with reinforced struts
US9090289B2 (en) 2010-12-08 2015-07-28 Daimler Ag Motor vehicle body with stiffening struts
CN103261003B (en) * 2010-12-08 2016-10-12 戴姆勒股份公司 There is the motorcar body of reinforcing cross member
US9410307B2 (en) 2012-02-03 2016-08-09 Kyb Corporation Hybrid construction machine

Also Published As

Publication number Publication date
JPH0228002B2 (en) 1990-06-21

Similar Documents

Publication Publication Date Title
EP1607573B2 (en) Compressor blade with reduced aerodynamic vibration induction
US5464422A (en) Suture needle
EP0174406B1 (en) Composite rivet
DE2829605C2 (en) Rotor hub
US5314282A (en) Composite fastener
US4412784A (en) Monocoque type rotor blade
CN107201919B (en) Airfoil with multi-material reinforcement
US4457500A (en) Bending spring made of fiber compound material
To A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis
Shu Buckling of multiple delaminated beams
US20070213136A1 (en) Composite torque tube captured end fitting
JP2009527417A (en) Helicopter rotor yoke and manufacturing method thereof
US4883713A (en) Moldable material reinforcement fibers with hydraulic or non-hydraulic binder and manufacturing thereof
GB2025339A (en) Fibre reinforced plastics blade
DE2658876C3 (en) Shell bodies, for example hydrofoils or rotor blades, in composite construction
JPS6113006A (en) Joint structure of composite material product
GB2342424A (en) Flexible annular coupling with predetermined buckling direction
US5043217A (en) Composite to metal joint for torsional shafts
DE2624652A1 (en) FASTENING ARRANGEMENT FOR PLASTIC HANDLES ON SCISSORS AND THE LIKE
AU727902B2 (en) Concrete reinforcing fiber
EP0948718B1 (en) Rotor blade
US5927138A (en) Method of forming a structural member from tubular material
JP5113734B2 (en) Flex beam cross section determination method and flex beam
JPH01141723A (en) Method of fixing connecting body to product composed of composite product and connecting body used for said method
JPH03227616A (en) Pipy structural matter