[go: up one dir, main page]

JPS61122023A - Heat pump type cooling and heating device for car - Google Patents

Heat pump type cooling and heating device for car

Info

Publication number
JPS61122023A
JPS61122023A JP24379584A JP24379584A JPS61122023A JP S61122023 A JPS61122023 A JP S61122023A JP 24379584 A JP24379584 A JP 24379584A JP 24379584 A JP24379584 A JP 24379584A JP S61122023 A JPS61122023 A JP S61122023A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
suction port
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24379584A
Other languages
Japanese (ja)
Inventor
Noriyoshi Miyajima
則義 宮嶋
Mitsuru Kimata
充 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24379584A priority Critical patent/JPS61122023A/en
Publication of JPS61122023A publication Critical patent/JPS61122023A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To prevent the insufficiency in the amount of coolant by providing two main and sub suction ports in a compressor and connecting a coolant return path that passes through a third heat exchanger to a main suction port and a coolant return path that passes through a first exchanger to a sub suction port. CONSTITUTION:At heating cycle, the main suction port 47 of a compressor 1 is connected to the exit section of a second heat exchanger 5 that is the final component of a coolant circulation system. In addition, the sub suction port 46 of the compressor 1 is connected to the exit section of a capacitor as a first heat exchanger 2 that can anticipate several atmospheric heat absorption functions, interposed in a bypass coolant return path at this cycle. Consequently, even if a leak is generated in a check valve interposed in a coolant circulation system and the coolant is collected gradually in a condenser 2, the coolant is sucked in the sub suction port 46. As a result, there is no insufficiency in the amount of coolant that flows in the coolant circulation system.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエンジン冷却水温を暖房用熱源として冷媒に吸
収させる型式の車両用ヒートポンプ式冷暖房装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a heat pump air conditioning system for a vehicle in which engine cooling water temperature is absorbed into a refrigerant as a heat source for heating.

[従来の技術] 従来、車両殊に自動車の車室内暖房にはエンジン冷却温
水を熱源とする温水ヒータ式暖房装置が一般に使われて
来たが、燃料の燃焼効率の高いジーゼルエンジンや最近
の高回転ガソリンエンジンを搭載した自動車は寒冷地域
において常時暖房能力が不足がちとなり、また普通のガ
ソリンエンジン車でもエンジンの始動時にはラジェータ
水濡が上昇するまで寒い思いを強いられる不便さがあっ
た。そこで、より暖房能力が高くまたいわゆる即効暖房
性も備えた車両用空気調和装置として、工ンジン冷却水
温を暖房用熱源として冷媒に吸収させる新しい方式のヒ
ートポンプ式冷暖房装置が開発された。
[Prior Art] Conventionally, a hot water heater type heating system that uses engine cooling hot water as a heat source has been generally used to heat the interior of a vehicle, especially an automobile, but diesel engines with high fuel combustion efficiency and recent high-speed Cars equipped with rotating gasoline engines tend to lack constant heating capacity in cold regions, and even ordinary gasoline engine cars have the inconvenience of being forced to feel cold when starting the engine until the radiator gets wet. Therefore, a new type of heat pump type air conditioning system was developed as a vehicle air conditioner with higher heating capacity and so-called immediate heating performance, in which engine cooling water temperature is absorbed into the refrigerant as a heat source for heating.

第5図は上記のエンジン冷却水温吸収型のヒートポンプ
式冷暖房装置のシステム図であって、その作動について
略解すると、まず冷房サイクル時には、コンプレッサ1
によって圧縮された高圧高温の気相冷媒は、冷房サイク
ル位置にセットされている冷媒流路切換用四方弁8を通
過する事によって図中の実線矢印で示された流路をたど
り、コンデンサ2に流入して外気によって冷されて液化
し、逆止弁9を通過した後レシーバ3に一旦貯溜される
。レシーバ3から吐出された冷媒はこのサイクル時には
閉ざされている電磁弁12の存在によって減圧装置4に
送り込まれ膨張して霧化状態のちとにエバポレータ5に
供給され、ここで高温下にある室内空気から気化の潜熱
を奪う事によって冷房仕事を行い再び気相冷媒にもどっ
て四方弁8および逆止弁11を経てコンプレッサ1に吸
入される。
FIG. 5 is a system diagram of the heat pump type air-conditioning device that absorbs the temperature of the engine cooling water described above. To briefly explain its operation, first, during the cooling cycle, the compressor 1
The high-pressure, high-temperature gas phase refrigerant compressed by passes through the four-way refrigerant flow switching valve 8 set at the cooling cycle position, follows the flow path shown by the solid arrow in the figure, and is transferred to the condenser 2. It flows in, is cooled by the outside air, becomes liquefied, passes through the check valve 9, and is temporarily stored in the receiver 3. The refrigerant discharged from the receiver 3 is sent to the pressure reducing device 4 due to the existence of the solenoid valve 12 which is closed during this cycle, expands, and is supplied to the evaporator 5 after being atomized. The refrigerant performs cooling work by removing latent heat of vaporization from the refrigerant, returns to a gas phase refrigerant, and is sucked into the compressor 1 via the four-way valve 8 and the check valve 11.

次に暖房サイクル時には、コンプレッサ1から吐出され
た高圧高温の気相冷媒は暖房サイクル位置にセットされ
た四方弁を経て図中破線矢印で示された流路をたどり、
冷房時にはエバポレータとしてまた暖房時にはヒータと
して機能する熱交換器5に流入して低温下にある室内空
気に保有熱が奪はれる事によって暖房仕事を行うと共に
自身は液化し、逆止弁10を通過した後、逆止弁9に遮
ぎられてレシーバ3に一旦流入する。レシーバ3から吐
出された液相冷媒はこのサイクル時には閉ざされる減圧
装置4側には流れず、このサイクル時には開弁されてい
る電磁弁12を通過して暖房サイクル用減圧装置6によ
って膨張霧化された後、エンジン冷却渇水を加熱源とす
る熱交換器7を通過する間に温水の保有熱を吸収して再
び気化し再循環のためにコンプレッサ1に吸入される。
Next, during the heating cycle, the high-pressure, high-temperature gas phase refrigerant discharged from the compressor 1 passes through the four-way valve set at the heating cycle position and follows the flow path indicated by the broken line arrow in the figure.
It flows into the heat exchanger 5, which functions as an evaporator during cooling and as a heater during heating, and the retained heat is taken away by the room air at low temperature, thereby performing heating work and liquefying itself, passing through the check valve 10. After that, it is blocked by the check valve 9 and once flows into the receiver 3. The liquid phase refrigerant discharged from the receiver 3 does not flow to the pressure reducing device 4, which is closed during this cycle, but passes through the solenoid valve 12, which is open during this cycle, and is expanded and atomized by the heating cycle pressure reducing device 6. After that, while passing through a heat exchanger 7 that uses engine cooling water as a heat source, the hot water absorbs the retained heat, vaporizes it again, and is sucked into the compressor 1 for recirculation.

上記のごとき構成からなるエンジン冷却水熱吸収型のヒ
ートポンプ式冷暖房装置は、コンデンサ2を通じて外気
温を吸収する型の通常のヒートポンプ式冷暖房装置に比
べて、殊に極寒時において格段に勝った暖房能力を備え
ている事は明かである。
The engine cooling water heat absorption type heat pump air conditioning system with the above configuration has significantly superior heating capacity, especially in extremely cold weather, compared to a normal heat pump air conditioning system that absorbs outside air temperature through the condenser 2. It is clear that it has the following.

[発明が解決しようとする問題点] 上述のエンジン冷加水熱吸収型ヒートポンプ式冷暖房装
置は、暖房サイクル時において、逆止弁9と逆止弁11
の存在によってコンデンサ2への冷媒の流入を防止して
いる。冬期低い外気温に曝されているコンデンサ2内は
この低い温度における飽和圧力にまで減圧されているの
に対して、暖房サイクル時にはコンプレッサ1の吸入圧
は2〜4kg/cm2 Gと高いために、外気温がO℃
程度の時でもコンデンサ2内の圧力はコンプレッサ1の
吸入圧より低く、ヒータ5を通過した後の冷媒は、もし
逆止弁9および11の流体封止能力に欠陥があれば、容
易にコンデンサ2内に侵入して凝縮し次第に蓄積されて
行く事になる。一旦コンデンサ2内に貯溜された冷媒は
冷房サイクル運転に切換えない限り、冷媒循環系内に再
びもどる事はないので、この逆止弁の漏れ状態を放置す
れば、装置は遂には冷媒不足運転状態に陥るに至る。も
つとも、ヒートポンプの起動時には一時的にコンプレッ
サの吸入圧が低下するのでコンデンサ内の冷媒が循環系
内に流出する事は起り得るがその効果はほとんど期待で
きない。したがって逆止弁9および11はシール性能の
信頼性が充分に高い製品を選ぶ必要があるが、現状では
価格と技術の両面から実現が困難な状況にある。この様
な事情は四方弁8についても幾分は当てはまる。
[Problems to be Solved by the Invention] The above-mentioned engine-cooled water heat absorption type heat pump type air-conditioning device has a problem in that the check valve 9 and the check valve 11 are closed during the heating cycle.
The presence of the refrigerant prevents the refrigerant from flowing into the condenser 2. The pressure inside the condenser 2, which is exposed to low outside temperatures in winter, is reduced to the saturation pressure at this low temperature, whereas during the heating cycle, the suction pressure of the compressor 1 is as high as 2 to 4 kg/cm2 G. Outside temperature is O℃
Even when the pressure inside the condenser 2 is lower than the suction pressure of the compressor 1, the refrigerant after passing through the heater 5 can easily leak into the condenser 2 if there is a defect in the fluid sealing ability of the check valves 9 and 11. It invades the body, condenses, and gradually accumulates. Once the refrigerant is stored in the condenser 2, it will not return to the refrigerant circulation system unless switching to cooling cycle operation, so if this check valve leakage is left unchecked, the system will eventually enter a refrigerant starvation state. It leads to falling into. However, since the suction pressure of the compressor temporarily decreases when the heat pump is started, it is possible that the refrigerant in the condenser may flow out into the circulation system, but this effect is hardly expected. Therefore, it is necessary to select check valves 9 and 11 that have sufficiently reliable sealing performance, but this is currently difficult to achieve due to both cost and technology. This situation also applies to the four-way valve 8 to some extent.

本発明は、シール機能が必ずしも充分でない逆止弁を使
用しても、上述のごとき=1ンデンサへの冷媒流入問題
を生じさせる事のない新規な冷媒循環系を備えた車両用
ヒートポンプ式冷暖房装置を提供する事を目的とする。
The present invention provides a heat pump air-conditioning system for vehicles equipped with a novel refrigerant circulation system that does not cause the above-mentioned problem of refrigerant flowing into the 1-denser even if a check valve that does not necessarily have a sufficient sealing function is used. The purpose is to provide.

[問題点を解決づるための手段] 上記の目的を達成するために、本発明の車両用ヒートポ
ンプ式冷暖房装置は気相冷媒のコンブレッサと、冷房サ
イクル時に加圧気相冷媒のコンデンサとして動く第1熱
交換器と、液化冷媒のレシーバと、液相冷媒の霧化用減
圧装置と、冷房サイクル時にエバポレータとしてまた暖
房サイクル時にヒータとして機能する第2熱交換器と、
該第2熱交換器の下流に設けられると共に、エンジン冷
却水熱を吸収するための第3熱交換器とを備えた、エン
ジン冷却水温吸収型のヒートポンプ式冷暖房装置におい
て、 前記コンプレツナに主・副2つの吸入口を設け、前記第
3熱交換器を経由する冷媒帰路を前記主吸入口に接続さ
せると共に、前記第3熱交換器と並列関係をもって、前
記第1熱交換器を経由して前記コンプレッサの副吸入口
に接続するバイパス冷媒帰路を設けた事を構成とする。
[Means for Solving the Problems] In order to achieve the above object, the heat pump type air conditioning system for vehicles of the present invention includes a compressor for gas phase refrigerant and a first heat pump that acts as a condenser for pressurized gas phase refrigerant during the cooling cycle. an exchanger, a receiver for liquefied refrigerant, a pressure reducing device for atomizing liquid refrigerant, and a second heat exchanger that functions as an evaporator during a cooling cycle and as a heater during a heating cycle;
In the engine cooling water temperature absorption type heat pump air conditioning system, which is provided downstream of the second heat exchanger and is equipped with a third heat exchanger for absorbing engine cooling water heat, Two suction ports are provided, and a refrigerant return path passing through the third heat exchanger is connected to the main suction port, and the refrigerant is connected to the main suction port via the first heat exchanger in parallel with the third heat exchanger. The configuration includes a bypass refrigerant return path connected to the sub-intake port of the compressor.

[作用] 上記の構成からなる車両用ヒートポンプ式冷暖房装置は
、暖房サイクル時において、コンプレッサの主吸入口は
、冷媒循環系における系の最終構成要素である第2熱交
換器の出口部に連らなっている他に、コンプレッサの副
吸入口がこのサイクル時のバイパス冷媒帰路に介在させ
た幾分かの外気熱吸収機能を期待できる第1熱交換器と
してのコンデンサの出口部に接続されているので、もし
冷媒循環系中に介在されている逆止弁に漏れが生じてコ
ンデンサ内に冷媒が次第に滞留されて行く状況が生じた
としても従来の同種装置とは異ってコンプレッサに設け
られた副吸入口に吸引されて行くので、冷媒循環系を流
れる冷媒量に不足をきたす不都合を生じない。
[Function] In the vehicle heat pump air conditioning system having the above configuration, during the heating cycle, the main suction port of the compressor is connected to the outlet of the second heat exchanger, which is the final component of the refrigerant circulation system. In addition, the sub-inlet of the compressor is connected to the outlet of the condenser as the first heat exchanger, which can be expected to absorb some outside air heat through the bypass refrigerant return path during this cycle. Therefore, even if a leak occurs in the check valve installed in the refrigerant circulation system and refrigerant gradually accumulates in the condenser, unlike conventional similar devices, the check valve installed in the compressor Since the refrigerant is sucked into the auxiliary suction port, there is no problem of insufficient amount of refrigerant flowing through the refrigerant circulation system.

[実施例] 以下に、付図によって本発明の具体的構成を説明する。[Example] The specific configuration of the present invention will be explained below with reference to the accompanying drawings.

第1図は本発明になる車両用ヒートポンプ式冷暖房装置
の作動サイクル図であって1はコンプレッサ、60はコ
ンプレッサ1の冷媒吐出口、47は冷媒の主吸入口、4
6は冷媒の副吸入口、2はコンデンサとしての第1熱交
換器、3はレシーバ、4は液相冷媒の霧化Rr gA 
tx 装a 、  5は冷房サイクル時にエバポレータ
としてまた暖房サイクル時にヒータとして機能する第2
熱交換器、6は暖房サイクル用減圧装置、7は冷媒にエ
ンジン冷却水温を吸収させるための第3熱交換器、8は
冷房サイクルと暖房サイクルとの切換えのための冷媒流
路切換用四方弁、9.10および11は冷媒流路に介在
させた逆止弁、12は第3熱交換器1の上流側に設けた
電磁弁、13は第3熱交換器7の入口部と第1熱交換器
2の暖房サイクル時入口部との間に設けたバイパス冷媒
帰路、14はバイパス冷媒帰路13に介在させた第1熱
交換器用減圧装置、15はコンプレッサ1の副吸入口4
6への冷媒帰路、16.17.18は感熱筒、そしてA
は車両エンジン、19と20はエンジンへのウォーター
ジャケット内の温水で第3熱交換器7を加熱するための
温水循環用配管である。
FIG. 1 is an operation cycle diagram of a heat pump air conditioning system for a vehicle according to the present invention, in which 1 is a compressor, 60 is a refrigerant discharge port of the compressor 1, 47 is a main refrigerant suction port, 4
6 is a refrigerant sub-intake port, 2 is a first heat exchanger as a condenser, 3 is a receiver, 4 is a liquid phase refrigerant atomization Rr gA
tx unit a, 5 is a second unit that functions as an evaporator during the cooling cycle and as a heater during the heating cycle.
A heat exchanger, 6 a pressure reducing device for the heating cycle, 7 a third heat exchanger for allowing the refrigerant to absorb the engine cooling water temperature, 8 a four-way valve for switching the refrigerant flow path for switching between the cooling cycle and the heating cycle. , 9.10 and 11 are check valves interposed in the refrigerant flow path, 12 is a solenoid valve provided on the upstream side of the third heat exchanger 1, and 13 is a connection between the inlet of the third heat exchanger 7 and the first heat exchanger. A bypass refrigerant return path provided between the heating cycle inlet of the exchanger 2, 14 a pressure reducing device for the first heat exchanger interposed in the bypass refrigerant return path 13, and 15 a sub suction port 4 of the compressor 1.
Refrigerant return path to 6, 16.17.18 is heat sensitive cylinder, and A
1 is a vehicle engine, and 19 and 20 are hot water circulation piping for heating the third heat exchanger 7 with hot water in a water jacket to the engine.

第2図および第3図は、本発明装置に使われる主・副2
つの吸入口を備えたコンプレッサの構造の一例を示した
側断面図とそのB−B断面図であって、コンプレッサの
タイプは10気筒の斜板型であり、30はシリンダ室を
形成させるためのセンタハウジング、31と32はそれ
ぞれ流体の出入ボートを形成させるためのフロントおよ
びリヤハウジング、33はセンタハウジング30の中央
部に形成させた斜板室であり、34は斜板、35は斜板
34の回転用シャフトである。36は斜板34がシセフ
ト35の軸方向に対して斜めに回転する動きを受けて前
後動するピストンであって、シャフト35の周りを取り
囲む様にして5本設けられている。斜板34の周縁部は
ピストン36に設けた凹溝36a内に位置し、斜板34
の動きをピストン36にスムーズに伝達させるために、
シュー37とボール38とがこの両者間に介在させであ
る。39および40はピストン36の前後両端面とセン
タハウジング30内に形成されたシリンダ壁面41に囲
まれて形成された、それぞれフロントおよびリヤシリン
ダ室であって、各5苗づつ、したがってコンプレッサ全
体としては計10至が設けられている。そして本発明目
的に使用するコンプレッサには、これら10のシリンダ
室の内の唯1つのシリンダ室39だけに主吸入口の他に
副吸入口を設け、残余のシリンダ室40を始めとする9
つのシリンダ室には通常のコンプレッサと同様に主吸入
口のみを設ける様に構成した。シリンダ室39のピスト
ン上死点側に位置するバルブプレート42には、弾性金
属板からなる弁体43を添わせた弁口44が設けられて
おり、吸入ポート45を経て副吸入口46に連らなって
いる。またピストン下死点近くのシリンダ壁41には斜
板至33の空間を経て主吸入口47に連通ずるスリット
48が設けられている。一方、シリンダ室40はバルブ
プレート42に弁体43を添わせて設けた弁口49から
吸入ボート50を経て前記の主吸入口47に連らなって
いる。残余の8つのシリンダ室はシリンダ室40と同様
に主吸入口47にのみ連通されている。51は圧縮冷媒
の吐出ポートである。
Figures 2 and 3 show the main and sub 2 parts used in the device of the present invention.
3 is a side sectional view showing an example of the structure of a compressor equipped with two suction ports, and a BB sectional view thereof, in which the compressor type is a 10-cylinder swash plate type, and 30 is a cylinder chamber for forming a cylinder chamber. The center housing, 31 and 32 are front and rear housings for forming fluid inlet/outlet boats, respectively, 33 is a swash plate chamber formed in the center of the center housing 30, 34 is a swash plate, and 35 is a swash plate chamber for the swash plate 34. It is a rotating shaft. Numeral 36 indicates five pistons which move back and forth as the swash plate 34 rotates obliquely with respect to the axial direction of the shaft 35, and five pistons are provided so as to surround the shaft 35. The peripheral edge of the swash plate 34 is located within a groove 36a provided in the piston 36, and the swash plate 34
In order to smoothly transmit the movement to the piston 36,
A shoe 37 and a ball 38 are interposed between the two. Reference numerals 39 and 40 denote front and rear cylinder chambers, respectively, which are surrounded by both the front and rear end surfaces of the piston 36 and the cylinder wall surface 41 formed in the center housing 30, and each have five seedlings, so the total capacity of the compressor as a whole is There are 10 solstice. In the compressor used for the purpose of the present invention, only one cylinder chamber 39 among these ten cylinder chambers is provided with a sub suction port in addition to the main suction port, and the remaining cylinder chambers 40 and 9
The two cylinder chambers were configured to have only a main suction port, similar to a normal compressor. A valve plate 42 located on the piston top dead center side of the cylinder chamber 39 is provided with a valve port 44 having a valve body 43 made of an elastic metal plate, which is connected to an auxiliary suction port 46 via a suction port 45. It is becoming more and more. Further, a slit 48 is provided in the cylinder wall 41 near the bottom dead center of the piston, which communicates with the main suction port 47 through the space between the swash plate 33. On the other hand, the cylinder chamber 40 is connected to the main suction port 47 via a suction boat 50 from a valve port 49 provided with a valve body 43 attached to a valve plate 42 . The remaining eight cylinder chambers, like the cylinder chamber 40, communicate only with the main suction port 47. 51 is a discharge port for compressed refrigerant.

52はセンタ、フロントおよびリアハウジング30.3
1および32の接合合体用スルーボルト、53はバルブ
プレート42に設けた、スルーボルト52の挿通と斜板
空33と吸入ボート50との連通機能を兼ねるボルト穴
であり、54は潤滑油の貯溜用オイルパンである。
52 is the center, front and rear housing 30.3
1 and 32 are through-bolts for joining; 53 is a bolt hole provided in the valve plate 42 that serves both the function of inserting the through-bolt 52 and communicating between the swash plate cavity 33 and the suction boat 50; and 54 is a bolt hole for storing lubricating oil. This is an oil pan for use.

第4図は、第2および第3図に示されたコンプレッサの
冷媒流路を説明したコンプレッサの模式図であって、6
0は冷媒吐出口、61はコンプレッサの駆動用ブーりで
あり、他の符号は前記のそれと共通する。なおこの実施
例では、斜板式10気筒コンプレツサの唯1つの気筒の
みに副吸入口を設けたが、必要に応じて2つ以上の気筒
に副吸入口を付設する事も自由である。
FIG. 4 is a schematic diagram of the compressor illustrating the refrigerant flow path of the compressor shown in FIGS. 2 and 3;
0 is a refrigerant discharge port, 61 is a compressor driving boob, and other symbols are the same as those described above. In this embodiment, only one cylinder of the swash plate type 10-cylinder compressor is provided with a sub-intake port, but if necessary, sub-intake ports may be provided in two or more cylinders.

つぎに上記構成を備えた本発明装置の作動を説明する。Next, the operation of the apparatus of the present invention having the above configuration will be explained.

暖房サイクル作動時においてコンプレッサ1から吐出さ
れた高圧高温の冷媒は、四方弁8を通過する事によって
図中に破線矢印で示された流路をたどり、暖房時にはコ
ンデンサ兼暖房用ヒータとして機能する第2熱交換器5
に流入して車至内冷気によって冷却液化すると共に冷気
にその保有熱を与える事によって暖房仕事をおこなった
のち、このサイクル時に減圧装置4は閉鎖されているの
で逆止弁を通過し、逆止弁9に遮ぎられてレシーバ3に
流入して一旦蓄えられる。レシーバ3から吐出された冷
媒は暖房サイクル時に開かれている電流弁12を通過し
て霧化用減圧装置6具体的には温度式膨張弁などによっ
て減圧霧化された状態のもとに、エンジン冷却温水の温
熱の供給を受けている第3熱交換器7に通人させられる
事によって温熱を吸収しながら蒸発気化した後、第1熱
交換器2からの冷媒帰路に介在された逆止弁11に遮ぎ
られてコンプレッサの副吸入口46への冷媒帰路15に
は流入せず、コンプレッサの主吸入口47に到達して冷
媒循環の1サイクルを終える。外気温が一20℃の場合
には、第3熱交換器1内の圧力は約3kg/cm2 G
に保たれ、コンプレッサ1の主吸入口47部においても
これと同等圧を維持する。
During the heating cycle, the high-pressure, high-temperature refrigerant discharged from the compressor 1 passes through the four-way valve 8 and follows the flow path indicated by the broken line arrow in the figure. 2 heat exchanger 5
The cool air flows into the vehicle and is liquefied by the cold air inside the car, and the cold air gives its retained heat to perform heating work. During this cycle, the pressure reducing device 4 is closed, so it passes through the check valve and the non-return valve It is blocked by the valve 9, flows into the receiver 3, and is temporarily stored. The refrigerant discharged from the receiver 3 passes through the current valve 12 which is opened during the heating cycle, and is reduced in pressure and atomized by a pressure reducing device 6 for atomization, specifically by a thermostatic expansion valve, etc., and is then sent to the engine. A check valve that is interposed in the refrigerant return path from the first heat exchanger 2 after the refrigerant is evaporated while absorbing the heat by being passed through the third heat exchanger 7 that is supplied with the heat of the cooling hot water. 11, the refrigerant does not flow into the refrigerant return path 15 to the auxiliary suction port 46 of the compressor, and reaches the main suction port 47 of the compressor, completing one cycle of refrigerant circulation. When the outside temperature is -20°C, the pressure inside the third heat exchanger 1 is approximately 3 kg/cm2 G
The same pressure is maintained at the main suction port 47 of the compressor 1 as well.

一方バイパス冷媒帰路13をたどった冷媒は、霧化用減
圧装置14を通過する事によって外気温を下回る温度に
まで膨張冷FiJされるので、第1熱交換器2は低い外
気温にもかかわらず幾分ではあるが外気熱の吸収機能を
果す事ができる。この第1熱交換器2への冷媒流入量は
もともと少ないので、冷媒圧は外気温における飽和圧力
より若干下がるだけで、およそ0.2〜0.3kg/c
m 2 Gのレベルをもって第1熱交換器から排出され
た冷媒は帰路配管15を経てコンプレッサ1の副吸入口
46に帰着する。減圧装置14は第1熱交換器2の出口
部において冷媒が過熱蒸気となる様に冷媒供給ωを制御
する働きをもっているので、暖房される空間が定常状態
下にあれば、第1熱交換器2内の冷媒流量を一定レベル
に保ち、外部条件が変動すればこれに対応させて冷媒供
給ωを増減させる能力を備えている。したがってもし逆
止弁9または11の冷媒シール機能が低下してこれらの
逆止弁を通過して第1熱交換器2内に冷媒が流入してく
ればバイパス冷媒帰路13を経て流入する冷媒量を抑制
し、あるいは暖房開始前に第1熱交換器2内に冷媒が溜
っている様な事があれば、当然この熱交換器2内の冷媒
量が適正レベルにさがるまでは冷媒供給を停止させる役
目を果すので、第1熱交換器2内に過度に冷媒が滞留す
る事による暖房サイクル時における冷媒循環系内での冷
媒不足状態の発生を予防する事ができ、レシーバ容量の
増大などの対応策は不要となる。
On the other hand, the refrigerant that has followed the bypass refrigerant return path 13 is expanded and cooled to a temperature lower than the outside temperature by passing through the atomization pressure reducing device 14, so that the first heat exchanger 2 is heated even though the outside temperature is low. Although it is somewhat effective, it can perform the function of absorbing outside heat. Since the amount of refrigerant flowing into the first heat exchanger 2 is originally small, the refrigerant pressure is only slightly lower than the saturation pressure at the outside temperature, which is approximately 0.2 to 0.3 kg/c.
The refrigerant discharged from the first heat exchanger at a level of m 2 G returns to the auxiliary suction port 46 of the compressor 1 via the return pipe 15 . The pressure reducing device 14 has the function of controlling the refrigerant supply ω so that the refrigerant turns into superheated steam at the outlet of the first heat exchanger 2. Therefore, if the space to be heated is in a steady state, the first heat exchanger 2 It has the ability to maintain the flow rate of refrigerant in 2 at a constant level and increase or decrease the refrigerant supply ω in response to changes in external conditions. Therefore, if the refrigerant sealing function of the check valves 9 or 11 deteriorates and refrigerant passes through these check valves and flows into the first heat exchanger 2, the amount of refrigerant flowing through the bypass refrigerant return path 13 will decrease. If refrigerant accumulates in the first heat exchanger 2 before heating starts, the refrigerant supply will naturally be stopped until the amount of refrigerant in the heat exchanger 2 falls to an appropriate level. Therefore, it is possible to prevent the occurrence of a refrigerant shortage state in the refrigerant circulation system during the heating cycle due to excessive refrigerant retention in the first heat exchanger 2, and it is possible to prevent the occurrence of a refrigerant shortage state in the refrigerant circulation system during the heating cycle. No countermeasures are required.

つぎに=1ンブレッサ1の主・副2つの吸入口から、そ
れぞれ保有圧の異る2系統の気相冷媒を吸入して1つの
共通吐出口から送出させる仕組みについて、第2図を参
照しながら説明する。ピストン36が図の右端側の上死
点位置から下死点に向けて移動する吸入工程が始まると
、副吸入口46から前述のごとき0.2〜0.3kg/
cm 2 Gといった低い圧力レベルにある第1熱交換
器2からの比較的少ない量の冷媒が吸入ボート45およ
び弁口44を経てシリンダ室39内に吸入される。ピス
トン36が下死点近くにまで後退すると、今までピスト
ン36によって封鎖されていたスリット48が斜板室3
3を経て主吸入口47に連通させられるので、第3熱交
換器7から排出された圧力が3kg/cII12 G内
外で、相対的に前者よりはるかに多い伝の冷媒がすでに
シリンダ内に流入している低圧冷媒との圧力差によって
流入してくる。そしてピストン36が圧縮工程に移ると
、主副両眼入口から流入して混合された冷媒は吐出ボー
ト51に加圧下に押し出され、この図では省略されてい
る吐出口60から、他の主吸入口のみを備えているシリ
ンダ室から吐出ボート51を経て排出された同一レベル
に与圧されている冷媒と共に冷媒循環系に向けて送出さ
れる。シリンダ室39は、圧縮工程の始まる直前に至っ
て、スリット48を介して、シリンダ室40を始めとす
る残余のシリンダ室に連通されるために、第3熱交換器
7内の圧力レベルに達すまで冷媒を吸入した後圧縮工程
に入る事になり、実質的には第3熱交換Pr7への冷媒
循環量はおよそシリンダ容量の半分程度減少するにとど
まる。
Next, with reference to Figure 2, we will explain the mechanism for sucking two systems of gas phase refrigerant, each with a different pressure, from the two main and sub suction ports of =1 refrigerant 1 and sending them out from one common discharge port. explain. When the suction process in which the piston 36 moves from the top dead center position on the right side of the figure toward the bottom dead center begins, 0.2 to 0.3 kg/kg as described above is released from the sub suction port 46.
A relatively small amount of refrigerant from the first heat exchanger 2 at a low pressure level of cm 2 G is sucked into the cylinder chamber 39 via the suction boat 45 and the valve port 44 . When the piston 36 retreats to near the bottom dead center, the slit 48 that was previously blocked by the piston 36 opens into the swash plate chamber 3.
Since the refrigerant is communicated with the main suction port 47 through the third heat exchanger 7, the pressure discharged from the third heat exchanger 7 is 3 kg/cII12G. The low-pressure refrigerant flows in due to the pressure difference between the refrigerant and the low-pressure refrigerant. Then, when the piston 36 moves to the compression process, the mixed refrigerant that flows in from the main and sub-eye inlets is pushed out under pressure to the discharge boat 51, and from the discharge port 60, which is omitted in this figure, to the other main suction port. It is sent out toward the refrigerant circulation system together with the refrigerant pressurized to the same level discharged from the cylinder chamber having only a port via the discharge boat 51. The cylinder chamber 39 remains in communication with the remaining cylinder chambers including the cylinder chamber 40 through the slit 48 until the pressure level within the third heat exchanger 7 is reached just before the compression process begins. After the refrigerant is sucked, the compression process begins, and the amount of refrigerant circulated to the third heat exchanger Pr7 is reduced to approximately half of the cylinder capacity.

なお、上述の実施例において、バイパス冷媒帰路Bおよ
び減圧装置14を設けなくても、負圧運転に耐え得るよ
うなコンプレッサを使用すれば第1熱交換器2内の冷媒
を吸引させることが可能である。
In addition, in the above embodiment, even if the bypass refrigerant return path B and the pressure reducing device 14 are not provided, the refrigerant in the first heat exchanger 2 can be sucked by using a compressor that can withstand negative pressure operation. It is.

[発明の効果] 上述のごとき構成からなる本発明の車両用ヒートポンプ
式冷暖房装置は、下記のごとき効果を奏する。
[Effects of the Invention] The vehicle heat pump air-conditioning device of the present invention having the above-described configuration has the following effects.

暖房サイクル時において、冷房用コンデンサへの冷媒の
流入防止の役割を担っている逆止弁がそのシール機能に
支障をきたして、コンデンサ内に次第に冷媒が蓄積され
て行く事態が万−生じたとしても、コンデンサの冷媒出
口側が主吸入口の他にスペア的な副吸入口を備えたコン
プレッサの副吸入口に接続されているので、コンデンサ
内に流入した冷媒はその内部に滞留する事なくコンプレ
ッサに吸入されて正常な冷媒循環系に強制的にもどされ
る事となり、現段階では技術的に作成がむずかしく、し
たがって高価となる高品質の逆止弁をあえて採用する事
の経済的不利を避け、次善策ではあるが、普通品質の逆
止弁を使用しても実用上の不都合を生じない効果かえら
れる。
In the unlikely event that the check valve, which is responsible for preventing refrigerant from flowing into the cooling condenser during the heating cycle, fails in its sealing function, refrigerant gradually accumulates inside the condenser. Also, the refrigerant outlet side of the condenser is connected to the auxiliary suction port of the compressor, which has a spare auxiliary suction port in addition to the main suction port, so the refrigerant that flows into the condenser does not stay inside and flows into the compressor. This will cause the refrigerant to be inhaled and forcibly returned to the normal refrigerant circulation system, avoiding the economic disadvantage of deliberately adopting a high-quality check valve that is technically difficult to manufacture at this stage and therefore expensive. Although this is a good measure, it is possible to use a check valve of ordinary quality without causing any practical inconvenience.

4、図の簡単な説明 第1図は本発明による車両用ヒートポンプ式冷暖房装置
の作動サイクル図、第2図、第3図および第4図はそれ
ぞ杭木発明装置に使われるコンプレッサの側断面図、第
3図のB−B断面図および冷媒流路を説明したコンプレ
ッサの模式図であり、第5図は従来の車両用ヒートポン
プ式冷暖房装置の作動サイクル図である。
4. Brief explanation of the figures Figure 1 is an operating cycle diagram of the vehicle heat pump air conditioning system according to the present invention, and Figures 2, 3, and 4 are side cross sections of the compressor used in the pile-wood invention device. FIG. 5 is a schematic diagram of a compressor illustrating a BB sectional view and a refrigerant flow path in FIG.

図中 1・・・コンプレッサ 2・・・第1熱交換器5
・・・第2熱交換器 γ・・・第3熱交換器 8・・・
四方弁 13・・・バイパス冷媒帰路 46・・・副吸
入口 47・・・主吸入口
In the diagram: 1... Compressor 2... First heat exchanger 5
...Second heat exchanger γ...Third heat exchanger 8...
Four-way valve 13...Bypass refrigerant return path 46...Sub suction port 47...Main suction port

Claims (1)

【特許請求の範囲】 1)気相冷媒のコンプレッサと、冷房サイクル時に加圧
気相冷媒のコンデンサとして働く第1熱交換器と、液化
冷媒のレシーバと、液相冷媒の霧化用減圧装置と、冷房
サイクル時にエバポレータとしてまた暖房サイクル時に
ヒータとして機能する第2熱交換器と、該第2熱交換器
の下流に設けられると共に、エンジン冷却水熱を吸収す
るための第3熱交換器とを備えた、エンジン冷却水熱量
吸収型のヒートポンプ式冷暖房装置において、 前記コンプレッサに主・副2つの吸入口を設け、前記第
3熱交換器を経由する冷媒帰路を前記主吸入口に接続さ
せると共に、前記第3熱交換器と並列関係をもって、前
記第1熱交換器を経由して前記コンプレッサの副吸入口
に接続するバイパス冷媒帰路を設けた事を特徴とする車
両用ヒートポンプ式冷暖房装置。
[Scope of Claims] 1) A compressor for a gas phase refrigerant, a first heat exchanger that functions as a condenser for pressurized gas phase refrigerant during a cooling cycle, a receiver for a liquefied refrigerant, and a pressure reducing device for atomizing the liquid phase refrigerant; A second heat exchanger that functions as an evaporator during a cooling cycle and as a heater during a heating cycle, and a third heat exchanger that is provided downstream of the second heat exchanger and is configured to absorb engine cooling water heat. In addition, in the heat pump air-conditioning device of the engine cooling water heat absorption type, the compressor is provided with two main and sub suction ports, a refrigerant return path via the third heat exchanger is connected to the main suction port, and the A heat pump air-conditioning system for a vehicle, characterized in that a bypass refrigerant return path is provided in parallel with a third heat exchanger and connected to a sub-intake port of the compressor via the first heat exchanger.
JP24379584A 1984-11-19 1984-11-19 Heat pump type cooling and heating device for car Pending JPS61122023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24379584A JPS61122023A (en) 1984-11-19 1984-11-19 Heat pump type cooling and heating device for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24379584A JPS61122023A (en) 1984-11-19 1984-11-19 Heat pump type cooling and heating device for car

Publications (1)

Publication Number Publication Date
JPS61122023A true JPS61122023A (en) 1986-06-10

Family

ID=17109059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24379584A Pending JPS61122023A (en) 1984-11-19 1984-11-19 Heat pump type cooling and heating device for car

Country Status (1)

Country Link
JP (1) JPS61122023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800940A2 (en) * 1996-04-10 1997-10-15 Denso Corporation Vehicular air conditioning system for electric vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800940A2 (en) * 1996-04-10 1997-10-15 Denso Corporation Vehicular air conditioning system for electric vehicles
EP0800940A3 (en) * 1996-04-10 2001-06-06 Denso Corporation Vehicular air conditioning system for electric vehicles

Similar Documents

Publication Publication Date Title
RU2472643C1 (en) System for cooling and heating
US20030046945A1 (en) Coolant circuit of a motor vehicle having a coolant/refrigerant heat exchanger
JPWO2011087001A1 (en) Vehicle air conditioning system
CN101910758A (en) Mounting of pressure relief devices in a high pressure refrigeration system
AU2022355229A1 (en) Vehicle thermal management system and vehicle
US20100101271A1 (en) Air conditioning system with an absorption compressor
JPS61122023A (en) Heat pump type cooling and heating device for car
CN1440889A (en) Energy-accumulating automobile air conditioning system
CN2598783Y (en) Energy-storing type air conditioner for car
CN103017391A (en) Airborne evaporation circulatory system of displacement compressor under high overload conditions
CN210478336U (en) An injection-efficiency electric vehicle heat pump system
KR102004480B1 (en) Gas heat-pump system
JPS62210362A (en) Heat pump type air conditioner for car
JP2600482Y2 (en) Automotive air conditioners
CN219624277U (en) Novel jet enthalpy-increasing compressor economizer assembly
CN111452593A (en) Tractor air conditioning system, control method of tractor air conditioning system and tractor
JP3617742B2 (en) Scroll compressor and air conditioner
US12157348B2 (en) Injection-type heat exchange module and vehicle thermal management system using same
CN221476648U (en) Thermal management system and vehicle
JPS63101117A (en) Heat pump type air conditioner for vehicle
JPH11310032A (en) Air conditioner for automobile
JPS63315866A (en) Chilling unit
JPH0324825Y2 (en)
JP3793330B2 (en) Heat pump type automotive air conditioner
JPH04129670U (en) gasoline cooling system