[go: up one dir, main page]

JPS61120651A - Classification and collection of fine particle - Google Patents

Classification and collection of fine particle

Info

Publication number
JPS61120651A
JPS61120651A JP24181184A JP24181184A JPS61120651A JP S61120651 A JPS61120651 A JP S61120651A JP 24181184 A JP24181184 A JP 24181184A JP 24181184 A JP24181184 A JP 24181184A JP S61120651 A JPS61120651 A JP S61120651A
Authority
JP
Japan
Prior art keywords
fine particles
classifier
classified
collection plate
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24181184A
Other languages
Japanese (ja)
Inventor
Takayoshi Hamada
浜田 高義
Tsumoru Nakamura
中村 積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24181184A priority Critical patent/JPS61120651A/en
Publication of JPS61120651A publication Critical patent/JPS61120651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To enable the classification of fine particles with a particle size of up to about several mum - 0.01mum, by changing the intensity of the electric field in a classifier corresponding to the particle size of fine particles to be classified. CONSTITUTION:Solid-gas mixed phase gas containing fine particles and purified sheath air are introduced into a classifier 3 from inlet nozzles 10, 12 and high voltage is applied to a discharge wire 7 and a collection plate 8 to generate corona discharge. Fine particles in the classifier 3 are charged negatively by corona discharge and moved to the plus side of the collection plate 8 and moved vertically by sheath air flowing along the surface of the collection plate 8 in an air curtain form and, therefore, finally moved to the vector direction of the vertical moving speed of sheath air and the horizontal moving speed by corona charge. As a result, when a necessary particle size is classified, by applying a certain constant electric field in the classifier 3, only fine particles to be classified are guided to the collector from an opening part 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粒子の分級及び捕集方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for classifying and collecting fine particles.

〔従来の技術と発明が解決しようとする問題点〕近年、
各種の新素材、(幾能素子エレクトロニクス、メカトロ
ニクスなどの先端技術を製品に取込み、商品の付加価値
を向上させることが行われている。この先端技術を取込
んだ製品では新素材の高純度物質を製造することも重要
であるが、中間製品の物質である粉体の粒度を均一化す
ることも機能上極めて重要である。特に製品中に粗大粒
子が混入すると、性能不良または品質低下が発生するた
め品質管理上粒子を均一化する必要がある。
[Problems that conventional technology and inventions attempt to solve] In recent years,
Various new materials, cutting-edge technologies such as geometric element electronics and mechatronics are incorporated into products to improve the added value of products.Products that incorporate this cutting-edge technology use high-purity substances made from new materials. It is important to manufacture powder, but it is also extremely important for functionality to make the particle size of the powder, which is the substance of the intermediate product, uniform.In particular, if coarse particles are mixed into the product, poor performance or quality deterioration will occur. Therefore, it is necessary to make the particles uniform for quality control purposes.

従来、固気混相流体中の粗粒子を除去及び分級する方法
どして実用化されているものは、沈降法や遠心力を利用
したサイクロン分級法などがある。
Conventionally, methods for removing and classifying coarse particles in a solid-gas mixed phase fluid have been put to practical use, such as a sedimentation method and a cyclone classification method using centrifugal force.

しかしながら、これらの分級法は対象粒子径が数μ〜数
百μ程度であり、数μ以下の微粒子を分級する方法は実
用化されていないのが現状である。
However, in these classification methods, the target particle diameter is approximately several microns to several hundred microns, and currently no method for classifying fine particles of several microns or less has been put into practical use.

(発明の目的〕 本発明はこのような事情に鑑みなされたもので、その目
的とするところは数μ〜00.1μ程度までの微粒子を
必要に応じて分級及び捕集することができる微粒子の分
級及び捕集方法を提供することにある。
(Objective of the Invention) The present invention was made in view of the above circumstances, and its purpose is to develop a fine particle collection system that can classify and collect fine particles ranging from several microns to approximately 0.1 microns as necessary. The object of the present invention is to provide a classification and collection method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するために、次のような方法
としたことを特徴とするものである。すなわち本発明に
よる微粒子の分級及び捕集方法は、微粒子を含んだ固気
混相流体と清浄シースガスを高さ方向の所定位置にスリ
ット状の開口部を有する筒状の分級器内へ導入し、この
分級器内でコロナ放電を発生させて上記微粒子を帯電さ
せるとともに前記清浄シースガスを分級器内壁に沿って
エアカーテン状に流°下させ、このシースガスの垂直流
とコロナ放電による静電力とにより分級すべき微粒子の
みを前記スリット状の開口部から吸引して捕集器へ導き
、この捕集器で上記分級すべき微粒子を捕集するように
したものである。
In order to achieve the above object, the present invention is characterized by the following method. That is, in the method for classifying and collecting fine particles according to the present invention, a solid-gas mixed phase fluid containing fine particles and a clean sheath gas are introduced into a cylindrical classifier having a slit-shaped opening at a predetermined position in the height direction. A corona discharge is generated in the classifier to charge the fine particles, and the clean sheath gas is caused to flow down like an air curtain along the inner wall of the classifier, and the vertical flow of the sheath gas and the electrostatic force caused by the corona discharge are used to classify the particles. Only the fine particles to be classified are sucked through the slit-shaped opening and guided to the collector, and the fine particles to be classified are collected by the collector.

〔作用〕[Effect]

上記の方法によれば、コロナ放電によって帯電され゛た
微粒子は流体の垂直移動速度とコロナ放電による水平移
動速度とのベクトル方向へ移動することになるので、分
級器内にある一定の電界を与えることにより分級すべき
微粒子のみをスリット状の開口部より取出すことができ
る。
According to the above method, the particles charged by the corona discharge move in the vector direction of the vertical movement speed of the fluid and the horizontal movement speed by the corona discharge, so a certain electric field is applied inside the classifier. This makes it possible to take out only the fine particles to be classified through the slit-shaped opening.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば分級器内の電界強度を分級すべ
き微粒子の粒径に応じて変えることにより、数μ〜00
.1μ程度までの微粒子を分級することができ、しかも
これらを捕集器で捕集することができる。
Therefore, according to the present invention, by changing the electric field strength in the classifier according to the particle size of the fine particles to be classified,
.. It is possible to classify fine particles up to about 1 μm in size, and moreover, these particles can be collected by a collector.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明の一実施例を示すもので、
第1図は本方法に用いる装置の概略図で、第2図は同装
置の分級器を示す断面図である。第・1図において1は
微粒子を含んだ固気混相流体を□ 分級器3内へ導入するための配管で、2は同じく清浄シ
ースエアを分級器3内へ導入するための配管である。こ
れらの導入配管1.2は分級器3の上端部に接続され、
固気混相流体および清浄シースエアは分級器3の上部よ
り導入されるようになっている。
1 and 2 show an embodiment of the present invention,
FIG. 1 is a schematic diagram of an apparatus used in this method, and FIG. 2 is a sectional view showing a classifier of the same apparatus. In FIG. 1, 1 is a pipe for introducing a solid-gas mixed phase fluid containing fine particles into the classifier 3, and 2 is a pipe for introducing clean sheath air into the classifier 3. These introduction pipes 1.2 are connected to the upper end of the classifier 3,
The solid-gas mixed phase fluid and clean sheath air are introduced from the upper part of the classifier 3.

上記分級器3は第2図に示すように全体が筒状をしてお
り、その高さ方向の所定位置にはスリット状の開口部4
が設けられている。この開口部4には分級すべき微粒子
を吸引するための吸引管5が接続され、吸引した微粒子
を第1図に示す如く捕集器6へ導くようになっている。
The classifier 3 has a cylindrical shape as a whole as shown in FIG. 2, and has a slit-shaped opening 4 at a predetermined position in the height direction.
is provided. A suction pipe 5 for suctioning fine particles to be classified is connected to this opening 4, and the suctioned fine particles are guided to a collector 6 as shown in FIG.

また分級器3内にはコロナ放電を発生させるための放電
線7と、放電線7は分級器 3の上端に固設された固気混相流体入口ノズル10の出
口近くに設けられ、捕集板8は分級器3の内壁に絶縁部
材等を介して内張すされている。
Further, inside the classifier 3, there is a discharge wire 7 for generating corona discharge, and the discharge wire 7 is installed near the outlet of the solid-gas mixed-phase fluid inlet nozzle 10 fixedly installed at the upper end of the classifier 3, and 8 is lined on the inner wall of the classifier 3 with an insulating member or the like interposed therebetween.

また、分級器3向上部には筒状の整流部材11が同心円
状に配設されており、シースガス入口ノズル12より導
入された清浄シースガスを捕集板7に沿ってエアカーテ
ン状に垂直流下させるようになっている。また分級器3
の下部開口部には捕集板8に付着した微粒子を排出する
た、めの排出管13が接続されている。なお、図中14
は変圧器、15は排気ガス吸引ファン、16a、16b
、16Cは仕切弁である。
Further, a cylindrical rectifying member 11 is arranged concentrically in the upper part of the classifier 3, and allows the clean sheath gas introduced from the sheath gas inlet nozzle 12 to flow down vertically in an air curtain shape along the collection plate 7. It looks like this. Also classifier 3
A discharge pipe 13 for discharging fine particles adhering to the collection plate 8 is connected to the lower opening of the collection plate 8 . In addition, 14 in the figure
is a transformer, 15 is an exhaust gas suction fan, 16a, 16b
, 16C is a gate valve.

次に上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

まず、微粒子を含んだ固気混相流体と清浄シースエアを
それぞれ固気混相流体入口ノズル10およびシースエア
入ロノズル12より分級器3内に導入し、放電線7と捕
集板8に高電圧を印加して分級器3内にコロナ放電を発
生させる。ここで、分級器3内の微粒子はコロナ放電に
よりマイナスに帯電され、捕集板8のプラス側に移動す
るとともに、捕集板8の表面をエアカーテン状に流れる
シースエアにより垂直方向に移動する。従って、分級器
3内に導入された微粒子はシースガスの垂直移動速度V
yとコロナ放電による水平移動速度Vxとのベクトル方
向に移動する。
First, a solid-gas multiphase fluid containing fine particles and clean sheath air are introduced into the classifier 3 through the solid-gas multiphase fluid inlet nozzle 10 and the sheath air inlet nozzle 12, respectively, and a high voltage is applied to the discharge wire 7 and the collection plate 8. corona discharge is generated within the classifier 3. Here, the fine particles in the classifier 3 are negatively charged by the corona discharge and move toward the positive side of the collection plate 8, and are also moved vertically by the sheath air flowing in an air curtain shape on the surface of the collection plate 8. Therefore, the fine particles introduced into the classifier 3 move at the vertical movement speed V of the sheath gas.
It moves in the vector direction of y and the horizontal movement speed Vx due to corona discharge.

ここで、上記垂直移動速度VYと水平移動速度Vxは(
1)及び(2)式で表される。
Here, the vertical movement speed VY and horizontal movement speed Vx are (
It is expressed by formulas 1) and (2).

Vy=D/S  ・・・ (1) Vx=ZpE  ・・・ (2> 上式において、Q:全ガスfit (cm3/sea 
ン、3 :前ガス通過面積(α2)、Zp:電気移動度
(aR2/volt 5ec) 、E :電気強度(e
−s−u)であり、Zpは(3)式で表される。
Vy=D/S... (1) Vx=ZpE... (2> In the above equation, Q: total gas fit (cm3/sea
3: Front gas passage area (α2), Zp: Electrical mobility (aR2/volt 5ec), E: Electrical strength (e
-su), and Zp is expressed by formula (3).

Zp−(、QE”/127r・μg)Dp  −(3)
上式において、Dp:粒子径(μ)、92粒子の誘電作
用係数、μg:ガス粘度(C−1))である。
Zp-(,QE”/127r・μg)Dp-(3)
In the above equation, Dp: particle diameter (μ), dielectric coefficient of 92 particles, μg: gas viscosity (C-1)).

(3)式よりZpは微粒子径Opに比例しており、(2
)式の電界強度Eを考えることによりX。
From equation (3), Zp is proportional to the particle diameter Op, and (2
) by considering the electric field strength E of the equation.

Y点での微粒子径Dpを計算することができる。The fine particle diameter Dp at the Y point can be calculated.

従って、必要な粒子径を分級する場合、分級器3内にあ
る一定の電界Eを与えることにより、分級すべき微粒子
のみが開口部4より吸引され、吸引管5を通って捕集器
7に導かれる。捕集器7ではプラスに荷電した捕集板(
図示せず)を設置しておくことにより、開口部4より吸
引されたマイナスの荷*m粒子が捕集板に捕集される。
Therefore, when classifying the required particle size, by applying a certain electric field E in the classifier 3, only the fine particles to be classified are sucked through the opening 4, and passed through the suction tube 5 to the collector 7. be guided. In the collector 7, a positively charged collection plate (
(not shown), the negative charge*m particles sucked through the opening 4 are collected on the collection plate.

なお、分級すべき粒子より粒子径が小さい微粒子は開口
部へ 4を通過せず、その上部の捕集板8で捕集され、それよ
り大きい粗大粒子は開口部4本部の捕集板8で捕集され
る。
Incidentally, fine particles whose particle size is smaller than the particles to be classified do not pass through the opening 4 and are collected by the collection plate 8 above the opening 4, and larger coarse particles are collected by the collection plate 8 at the center of the opening 4. be captured.

また、分級器3内の捕集板8に多量の粒子が付着した場
合には、性能低下となるため間欠的に払い落し操作を行
なう。なお、払い落し操作の要領はまず固気混相流体の
供給を停止し、仕切弁16a及び16bを全閉にして捕
集器6内の分級された微粒子をできるだけ回収後、分級
器3内の捕集板8に付着した粒子をハンマリング等で払
い落し、仕切弁16cを開弁して排出管13より捕集器
6に導き、捕集器6で捕集すればよい。
Furthermore, if a large amount of particles adhere to the collection plate 8 in the classifier 3, the performance will be degraded, so a dusting operation is performed intermittently. The key to the dusting operation is to first stop the supply of the solid-gas mixed phase fluid, fully close the gate valves 16a and 16b to collect as much of the classified fine particles as possible in the collector 6, and then remove the trapped particles in the classifier 3. Particles adhering to the collection plate 8 may be knocked off by hammering or the like, and the gate valve 16c may be opened to guide the particles through the discharge pipe 13 to the collector 6, where the particles may be collected.

このように本実施例によれば、固気混相流体中の微粒子
を粒径別に分級及び捕集することができるので、製品中
に粗大粒子が混入するのを防止できる。なお、本発明者
らの実験によると、固気混相流体として表1に示すよう
な粒径分布の燃焼排ガスを分級!!!3内に約2J2/
1n導入し、これと共にシースエアを約110β/ak
in導入して分級器3内にある一定の電圧をかけた場合
、表2に示す如くほぼ0.1μの微粒子を開口部4より
取出すことができた。
As described above, according to this embodiment, fine particles in a solid-gas mixed phase fluid can be classified and collected according to particle size, so that it is possible to prevent coarse particles from being mixed into a product. According to experiments conducted by the present inventors, combustion exhaust gas with a particle size distribution as shown in Table 1 can be classified as a solid-gas multiphase fluid! ! ! Approximately 2J2/ within 3
1n is introduced, and along with this, sheath air is introduced at about 110β/ak.
When the particles were introduced into the classifier 3 and a certain voltage was applied inside the classifier 3, fine particles of approximately 0.1μ could be taken out from the opening 4 as shown in Table 2.

表1 固気混相副体中の粒径分布(分級前)表2 分級
器の開口部から得られる粒径分布
Table 1 Particle size distribution in solid-gas mixed phase sub-product (before classification) Table 2 Particle size distribution obtained from the opening of the classifier

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す図で、第
1図は本方法に用いる装置の概略図、第2図は同装置の
分級器を示す断面図である。 1・・・固気混相流体導入配管、2・:・シースエア導
入配管、3・・・分級器、5・・・吸引管、6・・・捕
集器。
1 and 2 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a schematic diagram of an apparatus used in this method, and FIG. 2 is a sectional view showing a classifier of the same apparatus. DESCRIPTION OF SYMBOLS 1... Solid-gas mixed phase fluid introduction piping, 2... Sheath air introduction piping, 3... Classifier, 5... Suction pipe, 6... Collector.

Claims (1)

【特許請求の範囲】[Claims] 微粒子を含んだ固気混相流体と清浄シースガスを高さ方
向の所定位置にスリット状の開口部を有する筒状の分級
器内へ導入し、この分級器内でコロナ放電を発生させて
上記微粒子を帯電させるとともに前記清浄シースガスを
分級器内壁に沿ってエアカーテン状に流下させ、このシ
ースガスの垂直流とコロナ放電による静電力とにより分
級すべき微粒子のみを前記スリット状の開口部から吸引
して捕集器へ導き、この捕集器で上記分級すべき微粒子
を捕集することを特徴とする微粒子の分級及び捕集方法
A solid-gas mixed phase fluid containing fine particles and a clean sheath gas are introduced into a cylindrical classifier having a slit-shaped opening at a predetermined position in the height direction, and a corona discharge is generated within this classifier to remove the fine particles. While being charged, the clean sheath gas is caused to flow down like an air curtain along the inner wall of the classifier, and only the fine particles to be classified are sucked through the slit-shaped opening and captured by the vertical flow of the sheath gas and the electrostatic force generated by the corona discharge. A method for classifying and collecting fine particles, which comprises introducing the fine particles to a collector and collecting the fine particles to be classified in the collector.
JP24181184A 1984-11-16 1984-11-16 Classification and collection of fine particle Pending JPS61120651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24181184A JPS61120651A (en) 1984-11-16 1984-11-16 Classification and collection of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24181184A JPS61120651A (en) 1984-11-16 1984-11-16 Classification and collection of fine particle

Publications (1)

Publication Number Publication Date
JPS61120651A true JPS61120651A (en) 1986-06-07

Family

ID=17079849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24181184A Pending JPS61120651A (en) 1984-11-16 1984-11-16 Classification and collection of fine particle

Country Status (1)

Country Link
JP (1) JPS61120651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755689A (en) * 1993-08-16 1995-03-03 Agency Of Ind Science & Technol Aerosol particle mass spectrograph
WO2013183652A1 (en) * 2012-06-06 2013-12-12 株式会社島津製作所 Fine particle classification measurement device, sample creation device with uniform particle concentration, and nanoparticle film forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755689A (en) * 1993-08-16 1995-03-03 Agency Of Ind Science & Technol Aerosol particle mass spectrograph
WO2013183652A1 (en) * 2012-06-06 2013-12-12 株式会社島津製作所 Fine particle classification measurement device, sample creation device with uniform particle concentration, and nanoparticle film forming device
CN104380078A (en) * 2012-06-06 2015-02-25 株式会社岛津制作所 Fine particle classification measurement device, sample creation device with uniform particle concentration, and nanoparticle film forming device
JPWO2013183652A1 (en) * 2012-06-06 2016-02-01 株式会社島津製作所 Fine particle classification measurement device, sample preparation device with uniform particle concentration distribution, and nanoparticle film formation device

Similar Documents

Publication Publication Date Title
US2756842A (en) Electrostatic gas cleaning method
US4597780A (en) Electro-inertial precipitator unit
US4072477A (en) Electrostatic precipitation process
Yoo et al. Charging and collection of submicron particles in two-stage parallel-plate electrostatic precipitators
US4178156A (en) Process and apparatus for the collection of high-resistance dust
KR100710697B1 (en) Method and apparatus for separating material in particle and / or droplet form from a gas stream
US3740925A (en) Methods of and apparatus for separating solid and liquid particles from air and other gases
US4073265A (en) Electrostatic powder coating apparatus
US6949715B2 (en) Method and apparatus for particle size separation
JPS571454A (en) Electrostatic type ultrahigh capacity filter
US4308038A (en) Inertial-electrostatic wet precipitator
CN106000654B (en) A kind of particle reversely feeds friction electrical selection separator
CN106362880B (en) Bipolar charge-cyclone separator and technique for flue gas dedusting
US2853151A (en) Electrified centrifugal dust separating device
US4529418A (en) Inlet section for inertial-electrostatic precipitator unit
US3818678A (en) Methods of and apparatus for separating solid and liquid particles from air and other gases
JPS61120651A (en) Classification and collection of fine particle
Liao et al. Electrostatic precipitation of submicron particles with an enhanced unipolar pre-charger
US20100011960A1 (en) Electrostatic Air Filter
Sobczyk et al. Electrostatic agglomeration of fly ash particles for hybrid gas cleaning devices.
CN109682648A (en) A kind of alternating electric field dust coagulation and effectiveness of explosion suppression test device and method
Alonso et al. Electrostatic precipitation of ultrafine particles enhanced by simultaneous diffusional deposition on wire screens
JPH02218412A (en) Production of clean gas
CN112915707A (en) Coupling cyclone electric bag particle separation device and separation method
GB1428183A (en) Process and apparatus for the treatment of a vapour or a gas containing a very finely divided solid or liquid