[go: up one dir, main page]

JPS611202A - Induction motor driven electric railcar - Google Patents

Induction motor driven electric railcar

Info

Publication number
JPS611202A
JPS611202A JP59119651A JP11965184A JPS611202A JP S611202 A JPS611202 A JP S611202A JP 59119651 A JP59119651 A JP 59119651A JP 11965184 A JP11965184 A JP 11965184A JP S611202 A JPS611202 A JP S611202A
Authority
JP
Japan
Prior art keywords
induction motor
axle
electric vehicle
switches
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59119651A
Other languages
Japanese (ja)
Inventor
Tetsuji Oshima
大島 哲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK, Toyo Electric Manufacturing Ltd filed Critical Toyo Denki Seizo KK
Priority to JP59119651A priority Critical patent/JPS611202A/en
Publication of JPS611202A publication Critical patent/JPS611202A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using AC induction motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To increase the tension force and the brake force of an electric railcar by providing a parallel circuit of impedance elements and switches in series with a power supply path of induction motor groups of odd and even number axle positions. CONSTITUTION:Electric railcars of axle drive supported at bodies by two sets of 2-axle bogie trucks are divided into induction motor groups 21, 23 group for driving dynamic wheels 11, 13 axles of odd numbers and induction motor groups 22, 24 for driving dynamic wheels 12, 14 axles of even numbers. Impedance elements 31-33 and switches 37-39, impedance elements 34-36 and switches 40- 42 connected in parallel are respectively inserted between the inverter 8 and motors 21, 23 and 22, 24. When the induction motor currents exceed a set value at electric railcar accelerating/decelerating times, switches 37-39, 40-41 are opened or closed in response to the axial movements occurred during the acceleration or deceleration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘導電動機駆動の電気車の引張力あるいは制動
力の増大に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to increasing the pulling force or braking force of an electric vehicle driven by an induction motor.

〔従来の技術〕[Conventional technology]

第2図および第3図はいずれも従来の誘導電動機駆動電
気車の一例の図で、第2図は主として動力系統を、第3
図は機械的構成を示す側面図であり、極めて一般的な構
成のものを示している。
Both Fig. 2 and Fig. 3 are diagrams of an example of a conventional induction motor-driven electric vehicle, and Fig. 2 mainly shows the power system and the third
The figure is a side view showing the mechanical configuration, and shows a very general configuration.

2組の2軸ボギーの台車枠2,3によりて車体1が支持
されている各軸駆動の誘導電動機駆動電気車は、可変電
圧可変周波数のインバータ7から給電される4個の誘導
電動機21〜24により駆動される。
The induction motor-driven electric vehicle with each shaft driven, in which the car body 1 is supported by two sets of two-shaft bogie bogie frames 2 and 3, is powered by four induction motors 21 to 21 that are supplied with power from a variable voltage variable frequency inverter 7. 24.

誘導電動機21〜24はそれぞれ動輪11〜14を駆動
するもので、軸間距離ノを有する2個の動輪11゜12
および13.14はそれぞれ台車枠2および3に回転可
能に固定されてレール4上を走行する。
The induction motors 21 to 24 drive the driving wheels 11 to 14, respectively, and the two driving wheels 11 to 12 have a distance between their axes.
and 13 and 14 are rotatably fixed to the bogie frames 2 and 3, respectively, and run on the rails 4.

車体1と台車枠2および3との引張力の伝達点矢印で示
す方向化進行するものとし、車体1の進行方向前後には
レール4面からの高さHの位置に連結器5および6が設
けられており、後部連結器6は図示しない付随車を牽引
している。
The transmission point of tensile force between the car body 1 and the bogie frames 2 and 3 is assumed to proceed in the direction shown by the arrow, and couplers 5 and 6 are installed at positions of height H from the rail 4 surface before and after the direction of movement of the car body 1. The rear coupler 6 is used to tow an accompanying vehicle (not shown).

このように構成された電気車の場合、連結器6の高さH
および車体1と台車枠2,3の引張力の伝達点2a 、
 3aの高さhが零でなく、これらの位置がレール4面
と一致していないため、電気車の動輪軸間lこ軸重移動
が発生することはよく知られている。
In the case of an electric vehicle configured in this way, the height H of the coupler 6
and a tensile force transmission point 2a between the car body 1 and the bogie frames 2 and 3,
It is well known that because the height h of the electric vehicle 3a is not zero and these positions do not coincide with the surface of the rail 4, an axle load shift between the driving wheel axles of an electric vehicle occurs.

すなわち、進行方向先頭側から順番に動輪11〜14の
動輪軸の軸位をN[11〜陽4とすると、この軸重移動
の結果電気車の各動輪軸の軸重は、加速中はNnl軸が
最も軽くなり以下Nn3.hh2.隊4軸の順となる。
That is, if the axle positions of the driving wheel axles of the driving wheels 11 to 14 are N[11 to positive 4 in order from the leading side in the direction of travel, then as a result of this axle load shift, the axle load of each driving wheel axle of the electric vehicle is Nnl during acceleration. The shaft becomes the lightest and the following is Nn3. hh2. The order will be the four axes of the squad.

また、減速中は階4軸が最も軽くなり以下m2.m3.
IVhl軸の順となる。
Also, during deceleration, the 4th floor axis is the lightest and is less than m2. m3.
The order is IVhl axis.

従って、例えば加速中について考えれば、車輪11〜1
4とレール4間の摩擦係数が同じであるとするき、軸重
と摩擦係数の積で表される車輪とレール間の限界摩擦力
はNll軸が最も小さく以下階3゜m2.Nn4軸の順
となっている。
Therefore, for example, if we consider during acceleration, the wheels 11 to 1
4 and the rail 4 are the same, the limit frictional force between the wheel and the rail, expressed as the product of the axle load and the friction coefficient, is the smallest for the N11 axis and 3゜m2. The order is Nn4 axes.

Nnl−Nn4軸の車輪周引張力をそれぞれ、pj−F
4で表しているが、電気車が加速中にいずれかの車輪周
引張力が上記の限界摩擦力を超えると、その動輪は空転
し運転に支障を生じるので、電気車の最大引張力は上記
の限界摩擦力によって制約される。
Nnl-NnThe wheel circumference tensile force of the four axes is pj-F, respectively.
4, if the tensile force around any of the wheels exceeds the above limit friction force while the electric car is accelerating, the driving wheels will spin and cause problems in operation, so the maximum tensile force of the electric car is is constrained by the critical frictional force of

減速時についても同様に、いずれかの車輪周制動力が限
界摩擦力を超えると、その動輪は滑走し運転に支障を生
じる。
Similarly, during deceleration, if the circumferential braking force of any wheel exceeds the limit frictional force, the driving wheel will slide, causing trouble in driving.

減速時は加速時に準じて考えられるので、以下の説明は
加速時について行う。
Since the time of deceleration can be considered in the same way as the time of acceleration, the following explanation will be made regarding the time of acceleration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように電気車の引張力ΣFは動輪の空転を発生し
ないようiこ限界摩擦力によって制約される。
As mentioned above, the tensile force ΣF of the electric vehicle is limited by the limit frictional force so as not to cause the driving wheels to spin.

第2図および第3図に示した従来の誘導電動機駆動電気
車においては、N111〜陽4軸を駆動する誘導電動機
21〜24がすべて1個のインバータ7により並列に給
電されているので、車輪周引張力F1〜F4は各軸とも
等しくなり、連結器6における電気車1両分の限界引張
力(空転を生じない最大の引張力ΣF)は、軸重が一番
軽いNll軸における限界摩擦力の4倍(4軸分)とな
り、軸重がこのNnl軸より重い他の軸は限界摩擦力ま
で余裕があるにも拘らず、電気車の引張力として利用で
きていないという欠点があった。
In the conventional induction motor driven electric vehicle shown in FIGS. 2 and 3, the induction motors 21 to 24 that drive the four axles N111 to N111 are all fed power in parallel by one inverter 7, The circumferential tensile forces F1 to F4 are equal for each axis, and the limit tensile force for one electric car in the coupler 6 (maximum tensile force ΣF that does not cause slipping) is the limit friction at the Nll axis where the axle load is the lightest. The force is four times that of the Nnl axis (for 4 axes), and although the other axles, which have heavier axle loads than this Nnl axis, have enough margin to reach the limit frictional force, they have the disadvantage of not being able to be used as a tensile force for electric cars. .

本発明は上述の欠点を改良し、電気車の引張力をほぼ限
界摩擦力−ぽいまで利用できるようにしたものである。
The present invention improves the above-mentioned drawbacks and makes it possible to utilize the tensile force of an electric vehicle almost up to the limit frictional force.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記の問題点を解決するために、電気車を駆動
する複数個の誘導電動機を、奇数番軸位の動輪軸を駆動
する誘導電動機群と、偶数番軸位の動輪軸を駆動する誘
導電動機群との2群に分割すると共に、これらの群に給
電する可変電圧可変周波数のインバータと誘導電動機群
との間に並列接続されたインピーダンス要素と開閉器を
介在せしめ、常時は短絡用の開閉器を閉じておき、電気
車の加速、減速中に誘導電動機電流が設定値を越えた場
合lこ電気車の加速、減速中に発生する軸重移動に対応
して軸重の軽くなる方の動輪軸群の開閉器を開いて電動
機への給電経路をインピーダンス要素側とし、この動輪
軸群の電動機電流を減少せしめ、動輪軸の車輪周引張力
を低減させるようにしたものである。
In order to solve the above-mentioned problems, the present invention includes a plurality of induction motors that drive an electric vehicle, including a group of induction motors that drive odd-numbered driving wheel axles, and an induction motor group that drives even-numbered driving wheel axles. The system is divided into two groups: a group of induction motors, and an impedance element and a switch are connected in parallel between the variable voltage variable frequency inverter that supplies power to these groups and the group of induction motors. If the switch is closed and the induction motor current exceeds the set value during acceleration or deceleration of the electric vehicle, the axle load will be reduced in response to the axle load shift that occurs during acceleration or deceleration of the electric vehicle. The switch of the driving wheel axle group is opened to set the power supply path to the motor to the impedance element side, thereby reducing the motor current of this driving wheel axle group and reducing the tensile force around the wheels of the driving wheel axle group.

〔発明の概要〕[Summary of the invention]

第3図に示したような2組の2軸ボギー台車により車体
を支持されている各軸駆動の電気車において、付随車(
図示せず)を牽引して矢印方向に進行し加速している時
、軸重移動により進行方向先頭軸から数えて奇数番軸位
であるml、1lh3軸の軸重は、前記したごとく偶数
番軸位である11&12゜+1&L4軸の軸重に比して
小さくなる。
In an electric car driven by each axle, whose body is supported by two sets of two-axle bogies as shown in Fig. 3, the accompanying car (
When accelerating in the direction of the arrow while towing a vehicle (not shown), the axle loads on the ml, 1lh and 3 axles, which are odd-numbered axles counting from the leading axle in the direction of travel due to the axle load shift, will change as described above to the even-numbered axles. The axle load is smaller than that of the 11&12°+1&L4 axles, which are the axle positions.

この軸重の小さくなる比率は後述するように車両の諸元
により概略範囲が定まっているので、インバータと誘導
電動機群を結ぶ給電経路に直列接続するインピーダンス
要素の値を、直列接続した場合の電動機トルクと直列接
続しない場合の電動機トルクの比率が軸重の小さくなる
比率にほぼ等しくなるように選定する。そして、インバ
ータから電動機に給電される電流がある設定値を越えた
場合には奇数番軸位の動輪軸を駆動する誘導電動機群の
開閉器を開くように指命を与える。この指令により、奇
数番軸位の誘導電動機群の給電径路にはインピーダンス
要素が直列に挿入され、電動機の電流が減少するのでト
ルクが減少し、動輪11゜13、ずなわちN11l 、
 Nn3軸の車輪周引張力Fl 、 Fsは動輪12.
14すなわちNn2.Nnd軸の車輪周引張力F2 、
 F4より前記の比率だけ小さくなり、IVII11〜
Nn4の全軸がそれぞれの軸重に対応した限界摩擦力に
ほぼ等しい車輪周引張力を発生することになる。
As will be described later, the range in which the axle load decreases is approximately determined by the specifications of the vehicle. Select so that the ratio of motor torque and motor torque when not connected in series is approximately equal to the ratio that reduces the axle load. When the current supplied from the inverter to the electric motor exceeds a certain set value, an instruction is given to open the switches of the induction motor groups that drive the odd-numbered driving wheel axles. According to this command, an impedance element is inserted in series in the power supply path of the induction motor group at the odd numbered axis position, the current of the motor decreases, the torque decreases, and the driving wheels 11°13, that is, N11l,
The wheel circumferential tensile forces Fl and Fs of the Nn three axes are the driving wheels 12.
14 or Nn2. Nnd axis wheel circumference tensile force F2,
It is smaller than F4 by the above ratio, and IVII11~
All the axles of Nn4 generate a wheel circumferential tensile force that is approximately equal to the limit frictional force corresponding to each axle load.

厳密にはM1〜階゛4の各軸の軸重に差があるわけであ
るが、N111軸とNa3軸の軸重の差およびNCLZ
軸とN[14軸の軸重の差は一般に僅少なので、本発明
においてはN111軸とNn3軸および陽2軸と陽4軸
をそれぞれ一括して制御することによって、装置の簡略
化を図っているものである。
Strictly speaking, there is a difference in the axle load of each axle from M1 to floor 4, but the difference in axle load between the N111 axle and Na3 axle and the NCLZ
Since the difference in axle load between the axle and the N[14 axle is generally small, the present invention aims to simplify the device by collectively controlling the N111 axis, the Nn3 axis, the positive 2 axis, and the positive 4 axis, respectively. It is something that exists.

すなわち、FkL2軸の限界摩擦力にほぼ等しくなるま
でNn2軸およびm4軸の動輪12および14の車輪周
引張力F2およびF4を高めることにより、全車輪周引
張力F1〜F4を総計した電気車1両分の限界引張力を
従来の電気車より大きくすることができる。
That is, by increasing the wheel circumferential tensile forces F2 and F4 of the driving wheels 12 and 14 of the Nn2 and m4 axes until they become approximately equal to the limit frictional force of the FkL2 axes, the electric vehicle 1 which is the sum of all the wheel circumferential tensile forces F1 to F4 is generated. The ultimate tensile force for both parts can be made larger than that of conventional electric cars.

な詔、開閉器を開く指命を与える電流の設定値について
第3図tこ基づき説明すると、軸重の小さくなる−1 
、NcLa軸の発生する車輪周引張力が限界摩擦力に達
する電動機電流より僅か下回った値を設定値とする。
The setting value of the current that gives the instruction to open the switch is explained based on Figure 3.The axle load is reduced by -1.
, the set value is set to a value slightly lower than the motor current at which the wheel circumference tensile force generated by the NcLa shaft reaches the limit frictional force.

このことにより、起動時のように大きな加速力を必要と
する場合だけ開閉器を開いてインピーダンス要素を介在
せしめ、高速走行時の再加速など加速力の小さい場合に
はインピーダンス要素の介在を避けることができる。
This allows the impedance element to be inserted by opening the switch only when a large acceleration force is required, such as during startup, and to avoid the intervention of the impedance element when the acceleration force is small, such as when re-accelerating at high speed. I can do it.

また、電気車の減速時には上記加速時とは逆に、偶数番
軸位の動輪軸の軸重が小さくなるので、電動機電流があ
る設定値を越えた場合に動輪軸を駆動する誘導電動機群
の開閉器を開くように指令を与え、電動機トルクを減少
することにより同様の効果が生じ、電気車の制動を増大
することができる。更lこ、電気車の進行方向が逆の場
合には、前記と全く逆の指令を与えることにより同様の
効果が得られる。
In addition, when an electric vehicle decelerates, the axle load of the even-numbered driving wheel axles decreases, contrary to the above-mentioned acceleration, so when the motor current exceeds a certain set value, the induction motor group that drives the driving wheel axles decreases. A similar effect can be achieved by commanding the switch to open and reducing the motor torque to increase the braking of the electric vehicle. Additionally, when the electric vehicle is traveling in the opposite direction, the same effect can be obtained by giving a completely opposite command to that described above.

このような加速、減速に伴なう指命の切り換えおよび進
行方向の変更による指令の切り換えは、主幹制御器の操
作などに連動させることにより、容易に行うことが可能
である。
Such switching of commands due to acceleration and deceleration, and switching of commands due to changes in the traveling direction can be easily performed by linking with the operation of the master controller.

〔実施例〕〔Example〕

第1図は本発明にかかる誘導電動機駆動電気車の一実施
例の動力系統を示す側面図であり、第2図、第3図と同
一の符号は同一部分を示す。機械的構成は第3図に示し
たものと全く同一であるので、これを用いて説明する。
FIG. 1 is a side view showing a power system of an embodiment of an induction motor-driven electric vehicle according to the present invention, and the same reference numerals as in FIGS. 2 and 3 indicate the same parts. Since the mechanical configuration is exactly the same as that shown in FIG. 3, this will be used for explanation.

2組の2軸ボギー台車により車体1を支持されている各
軸駆動の電気車は、奇数番軸位の動輪11゜13軸を駆
動する誘導電動機21 、23群と偶数番軸位の動輪1
2.14軸を駆動する誘導電動機22 、24群に分割
されている。そして、インバータ8と誘導電動機21 
、23および22.24間には並列接続したインピーダ
ンス要素31 、32 、33と開閉器37 、38 
、39詔よびインピーダンス要素34 、35 、36
と開閉器40゜41 、42のそれぞれが挿入されてい
る。ここで、43は電動機電流の検出器、44は電動機
電流が設定値を越えたとき、主幹制御器(図示せず)な
どからの指命により電気車の加速時、減速時および進行
方向によって開閉器37〜39または開閉器40〜42
のいずれかを選択して回路を開く指命を与えたり、電動
機電流が設定値以下に下ると回路を閉じる指令を与えた
りする制御器である。開閉器37〜42は通常開じてお
り、制御器44からの指令により開閉動作を行う。
The electric vehicle with each axis driven, in which the car body 1 is supported by two sets of two-axle bogies, has induction motor groups 21 and 23 that drive the odd-numbered driving wheels 11 and 13, and the even-numbered driving wheels 1.
2. It is divided into 22 and 24 groups of induction motors that drive 14 axes. Then, the inverter 8 and the induction motor 21
, 23 and 22. Impedance elements 31, 32, 33 and switches 37, 38 are connected in parallel between each other.
, 39 and impedance elements 34 , 35 , 36
and switches 40, 41 and 42 are inserted, respectively. Here, 43 is a motor current detector, and 44 is opened and closed according to instructions from a master controller (not shown) or the like when the electric vehicle accelerates, decelerates, and travels when the motor current exceeds a set value. containers 37 to 39 or switches 40 to 42
This is a controller that gives a command to open the circuit by selecting one of the following, or gives a command to close the circuit when the motor current falls below a set value. The switches 37 to 42 are normally open and perform opening and closing operations according to commands from the controller 44.

かくして、このように構成された電気車において、電気
車が矢印方向に加速進行した場合、車輪周引張力がある
値、すなわち電動機電流が設定値以上になると、最も軸
重の軽くなる階1軸が空転するようになる。そこで、空
転させないために電流が設定値に達すると制御器44か
らの指命により開閉器37〜39が開かれ、電流はイン
ピーダンス要素31〜33によって制御され、FkLl
 、1Vha軸の電動機トルクが減少することにより車
輪周引張力も減少し、動輪11.13が空転することな
く運転を継続することができる。
Thus, in an electric car configured as described above, when the electric car accelerates in the direction of the arrow, when the wheel circumferential tension reaches a certain value, that is, the motor current exceeds a set value, the first axle with the lightest axle load starts to spin idly. Therefore, when the current reaches the set value in order to prevent idling, the switches 37 to 39 are opened according to an instruction from the controller 44, the current is controlled by the impedance elements 31 to 33, and the FkLl
, 1Vha shaft electric motor torque is reduced, the tensile force around the wheels is also reduced, and driving can be continued without the driving wheels 11, 13 idling.

本例における車両の機械的構成の諸元は次の通りである
The specifications of the mechanical structure of the vehicle in this example are as follows.

連結器5,6のレール4面からの高さ H= 0.88m 車体1と台車枠2,3との引張力の伝達点2a。Height of couplers 5 and 6 from the 4th rail surface H = 0.88m A tensile force transmission point 2a between the vehicle body 1 and the bogie frames 2 and 3.

3aのレール4面からの高さ h=0.6m 車体1と台車枠2,3との引張力の伝達点2a。Height from 4th rail of 3a h=0.6m A tensile force transmission point 2a between the vehicle body 1 and the bogie frames 2 and 3.

33間の距離 L=13.5m 台車枠2および3内における動輪11と12および動輪
13と14の動輪軸間距離 J=2.1m 乗客も含む車両重量 W+ = 48600Kg その他、以下の説明に使用する符号は、先番こ説明した
ものも含め次の通りである。
Distance L between 33 = 13.5m Distance J between driving wheels 11 and 12 and driving wheels 13 and 14 in bogie frames 2 and 3 = 2.1m Vehicle weight including passengers W+ = 48600Kg Others used in the following explanation The symbols to be used are as follows, including those explained above.

F1〜Fi;Nnl−11h4軸の各車輪周引張力ΣF
  ;電気車の引張力= FJ +F2+F3+F4W
* −W4  ;陽1〜Nn4軸の各軸重ΔW1〜ΔW
4 ; Nn 1〜Nn4軸の各軸重移動量上記のよう
な機械的構成が同一の場合に、第2図に示した従来の動
力系統と、第1図に示した本実施例の動力系統によるも
のとにつき、電気車の限界引張力を比較する。
F1~Fi;Nnl-11hTension force around each wheel of 4 axes ΣF
; Tensile force of electric car = FJ +F2+F3+F4W
* -W4 ; Each axle load ΔW1 to ΔW of positive 1 to Nn4 axes
4 ; Weight movement of each axis of Nn 1 to Nn 4 axes When the mechanical configurations as described above are the same, the conventional power system shown in Fig. 2 and the power system of this embodiment shown in Fig. 1 Compare the ultimate tensile force of an electric car.

各軸位の軸重移動量は次の式で表される。軸重の軽くな
る方向を負とする。
The amount of axle load movement at each axial position is expressed by the following formula. The direction in which the axle load becomes lighter is considered negative.

各軸の軸重は Ws = Wt / 4+ΔWs          
  (5)W2 = Wt / 4+ΔW2     
       (6)Wa = Wt / 4+ΔWs
            (7)W4 = Wt / 
4+ΔW4            (8)(a)  
従来の動力系統による場合 第2図に示した従来の動力系統による誘導電動機駆動電
気車の限界引張力を計算する。全ての誘導電動機21〜
24が単一のインバータ7から並列に給電されているの
で、各軸の車輪周引張力F1〜F4は全て等しい。
The axle load of each axis is Ws = Wt / 4+ΔWs
(5) W2 = Wt / 4+ΔW2
(6) Wa = Wt / 4+ΔWs
(7) W4 = Wt /
4+ΔW4 (8)(a)
In the case of a conventional power system The limit tensile force of the induction motor-driven electric vehicle with the conventional power system shown in FIG. 2 is calculated. All induction motors 21~
24 are supplied with power in parallel from a single inverter 7, the wheel circumference tensile forces F1 to F4 of each axis are all equal.

Fi = Ft =: Fs == Fa・°・F+ 
+ F2 = Fa + F4 =ΣF/2この式を(
1)〜(4)式に代入し整理するとΣFbH−h ΔW3−2(7L ) ΣF  h  H−h、 ΔW4=+  、  (7+ Iフーノ第3図からも明
らかなようtこ通常 h   H−h 7>]T であるから ΔW1(0、ΔW2 :> Q 、ΔWa < 0 、
ΔW4 > 0また 1ΔWs l ) lΔWa l 故に、(5)〜(8)式からM1〜N[L4軸中でNl
l軸が最も軸重が小さくなる。従って、階1軸が最も空
転を発生し易く、電気車の車輪周引張力は階1軸の軸重
の値によりおさえられる。
Fi = Ft =: Fs == Fa・°・F+
+ F2 = Fa + F4 = ΣF/2 This formula is (
Substituting into equations 1) to (4) and rearranging, we get ΣFbH−h ΔW3−2(7L) ΣF h H−h, ΔW4=+ , (7+ 7>]T, so ΔW1(0, ΔW2 :> Q, ΔWa < 0,
ΔW4 > 0 or 1ΔWs l ) lΔWa l Therefore, from equations (5) to (8), M1 to N [Nl in the L4 axis
The l-axis has the smallest axle load. Therefore, the first floor axle is most prone to slipping, and the tensile force around the wheels of the electric car is suppressed by the value of the axle load of the first floor axle.

To = 4 μc1= 4 A (Wt / 4+Δ
Ws )h   H−h =μwt −2μΣF(7+−T−) ここで、To=ΣFであるから (b)  本発明ζこかかる動力系統による場合筒1図
iζ示した動力系統による誘導電動機駆動電気車におい
て、加速力が大きくて開閉器37〜39が開かれている
場合の限界引張力を計算する。奇数番軸位すなわちNl
l 、 rha軸を駆動する誘導電動機11 、13は
インバータ8からインピーダンス要素31〜33を介し
て並列に給電され、偶数番軸位すなわちNn2 、 N
114軸を駆動する誘導電動機12.14はインバータ
8からインピーダンス要素34〜36が短絡されて並列
に給電されているので、Fr = F3Fl = F4 、°、 Ft +F2 = Fs + Fa−ΣF/2
この式を(1)〜(4)に代入し整理するとΣF  h
  H−h ΔW・=−7(7+7) ΔW2 =+^p(h−辻」) 7L ΣF   h   t(−h Δ”=  2(l  L  ) ΣF  h  H−h lWa −+7(7+−T7−) これは前記の従来の動力系統による場合と同じであるか
ら ΔW+ < 0 、 ΔW2 ) O、ΔW2 < 0
 、 lWa > 0また 1ΔWs l ) lΔWs l 、  ΔW2 (Δ
W4故に、(5)〜(8)式から奇数番軸位ではN11
l軸の軸重が小さく、偶数番軸位では阻2軸の軸重が小
さい。従って、電気車の限界引張力は阻1軸と阻2軸の
軸重の値によって制約される。
To = 4 μc1 = 4 A (Wt / 4+Δ
Ws ) h H-h = μwt -2μΣF (7+-T-) Here, since To = ΣF, (b) In the case of the power system according to the present invention In a car, the limit tensile force is calculated when the acceleration force is large and the switches 37 to 39 are opened. Odd numbered axis position i.e. Nl
The induction motors 11 and 13 that drive the l and rha axes are supplied with power in parallel from the inverter 8 via impedance elements 31 to 33, and the even numbered axes, that is,
The induction motor 12.14 that drives the 114 axis is supplied with power from the inverter 8 in parallel with the impedance elements 34 to 36 short-circuited, so Fr = F3Fl = F4, °, Ft + F2 = Fs + Fa - ΣF/2
Substituting this formula into (1) to (4) and rearranging it, ΣF h
H−h ΔW・=−7(7+7) ΔW2 =+^p(h−T7−) 7L ΣF h t(−h Δ”= 2(l L) ΣF h H−h lWa −+7(7+−T7− ) This is the same as the case with the conventional power system described above, so ΔW+ < 0, ΔW2 ) O, ΔW2 < 0
, lWa > 0 or 1ΔWs l ) lΔWs l , ΔW2 (Δ
Since W4, from equations (5) to (8), N11 at odd numbered axis positions.
The axle load on the l-axis is small, and at even-numbered axles, the axle load on the second axle is small. Therefore, the limit tensile force of an electric vehicle is restricted by the values of the axle loads of the first and second axles.

但し、ここで であると考えることができるので ΔW1中ΔWs 、ΔW2中ΔW4 であり、従って Wl、+W3.W2+W4 と考えることができる。However, here Since it can be considered that ΔWs in ΔW1, ΔW4 in ΔW2 and therefore Wl, +W3. W2+W4 You can think about it.

車輪11〜14とレール4間の摩擦係数を全て等しく 
μ=0.25  とすれば、本発明にかかる電気車1両
分の限界引張力TNは TN、=2μWt + 2μW2 =2μ(Wt/4+ΔW1) + 2μ(Wt/4+Δ
W2)ΣFhH−h   ΣFhH−h =μWt+2μ−丁(7十−■−)+7(7−−T−)
=μWt −2μΣF(H−h)/L ここで、TN””ΣF であるから μWt TN=          = 12024Kg1+2
μ(H−h)/L また、 W4  ΣF h  H−h F+ =t、iW+ =μ、 −■(7−に「) =2
576KgW4  ΣF h  H−h 1′=錨′=μ 4 + 2 (/  L ) =34
36xgI2576 π−πi=0・750 従って、本実施例の場合には奇数番軸位の誘導電動機の
給電経路に、偶数番軸位の誘導電動機の平均75チの電
動機トルクを発生するようなインピーダンス要素を挿入
することにより、従来の電気車の限界引張力To = 
10536Kgに対して、本発明による電気車の限界引
張力TN=12024Kgは’rN12024 To = 10536 = ”” となり、14チ増大させることができる。
The friction coefficients between wheels 11 to 14 and rail 4 are all equal.
If μ=0.25, the limit tensile force TN for one electric vehicle according to the present invention is TN, =2μWt + 2μW2 =2μ(Wt/4+ΔW1) + 2μ(Wt/4+Δ
W2) ΣFhH-h ΣFhH-h =μWt+2μ-ding(70-■-)+7(7--T-)
=μWt -2μΣF(H-h)/L Here, since TN""ΣF, μWt TN= = 12024Kg1+2
μ(H-h)/L Also, W4 ΣF h H-h F+ =t, iW+ =μ, -■(7-) =2
576KgW4 ΣF h H-h 1' = Anchor' = μ 4 + 2 (/L) = 34
36xgI2576 π-πi=0・750 Therefore, in the case of this embodiment, an impedance element that generates an average motor torque of 75 cm of the induction motor of even numbered shafts is provided in the power supply path of the induction motor of odd numbered shafts. By inserting, the limit tensile force To =
With respect to 10536Kg, the limit tensile force TN=12024Kg of the electric car according to the present invention becomes 'rN12024 To=10536='', which can be increased by 14 inches.

〔発明の効果〕 以上の説明および実施例における計算例に示すように、
本発明にかかる誘導電動機駆動電気車は、奇数番軸位の
誘導電動機群と、偶数番軸位の誘導電動機群それぞれの
給電経路に直列にインピーダンス要素を接続し、かつ該
インピーダンス要素を短絡する開閉器を備え電気車の進
行方向と加速。
[Effect of the invention] As shown in the above explanation and calculation examples in the examples,
The induction motor-driven electric vehicle according to the present invention connects impedance elements in series to the power supply paths of the odd-numbered induction motor groups and the even-numbered induction motor groups, and short-circuits the impedance elements. The direction and acceleration of the electric car.

減速に対応して開閉器を開閉することによりて、各軸の
軸重を有効に利用し、電気車の引張力および制動力を増
大することができ、電気車の加速特性および減速特性の
向上に資することができる。
By opening and closing switches in response to deceleration, the axle load of each axle can be used effectively and the pulling force and braking force of the electric vehicle can be increased, improving the acceleration and deceleration characteristics of the electric vehicle. It can contribute to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる誘導電動機駆動電気車の一実施
例の動力系統を示す側面図、第2図は従来の誘導電動機
駆動電気車の動力系統を示す側面図、第3図はこれらの
誘導電動機駆動電気車の機械的構成を示す側面図である
。 1 ・・・・車体、2,3 ・・台車枠、4・・・・・
レール、5.6・・・・連結器、7.8・・・インバー
タ、11〜14  ・動輪、21〜24・・−誘導電動
機、31〜36  ・インピータンス要素、37〜42
・・ ・開閉器。
FIG. 1 is a side view showing a power system of an embodiment of an induction motor driven electric vehicle according to the present invention, FIG. 2 is a side view showing a power system of a conventional induction motor driven electric vehicle, and FIG. 3 is a side view showing a power system of a conventional induction motor driven electric vehicle. FIG. 2 is a side view showing the mechanical configuration of an induction motor-driven electric vehicle. 1...car body, 2,3...bogie frame, 4...
Rail, 5.6...Coupler, 7.8...Inverter, 11-14 - Driving wheel, 21-24...-Induction motor, 31-36 - Impedance element, 37-42
・・Switch.

Claims (1)

【特許請求の範囲】[Claims] 1、可変電圧可変周波数インバータと、このインバータ
から給電される複数個の誘導電動機と、この誘導電動機
によって駆動される複数個の動輪軸を備えた2軸ボギー
台車にて車体を支持する各軸駆動の電気車において、前
記複数個の誘導電動機を電気車の奇数番軸位の動輪軸を
駆動する誘導電動機群と偶数番軸位の動輪軸を駆動する
誘導電動機群とに分割すると共に、前記可変電圧可変周
波数インバータと前記それぞれの誘導電動機群との間に
並列接続したインピーダンス要素および開閉器を介在せ
しめ、前記電気車の加速、減速時に誘導電動機電流が設
定値を越えた場合に加速、減速中に発生する軸重移動に
対応して前記開閉器を開閉するようにしたことを特徴と
する誘導電動機駆動電気車。
1. A variable voltage variable frequency inverter, a plurality of induction motors supplied with power from this inverter, and a two-shaft bogie truck equipped with a plurality of driving wheel axles driven by the induction motors, each axle drive supporting the vehicle body. In the electric vehicle, the plurality of induction motors are divided into an induction motor group that drives the odd-numbered driving wheel axles of the electric vehicle and an induction motor group that drives the even-numbered driving wheel axles, and the variable An impedance element and a switch connected in parallel are interposed between the voltage variable frequency inverter and each of the induction motor groups, and when the induction motor current exceeds a set value during acceleration or deceleration of the electric vehicle, an impedance element and a switch are provided. An induction motor-driven electric vehicle characterized in that the switch is opened and closed in response to an axle load shift that occurs in the vehicle.
JP59119651A 1984-06-11 1984-06-11 Induction motor driven electric railcar Pending JPS611202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119651A JPS611202A (en) 1984-06-11 1984-06-11 Induction motor driven electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119651A JPS611202A (en) 1984-06-11 1984-06-11 Induction motor driven electric railcar

Publications (1)

Publication Number Publication Date
JPS611202A true JPS611202A (en) 1986-01-07

Family

ID=14766714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119651A Pending JPS611202A (en) 1984-06-11 1984-06-11 Induction motor driven electric railcar

Country Status (1)

Country Link
JP (1) JPS611202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179058A1 (en) * 2017-03-27 2018-10-04 三菱電機株式会社 Electric rolling stock propulsion control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541515A (en) * 1977-06-06 1979-01-08 Hitachi Ltd Electric rolling stock controller
JPS54149115A (en) * 1978-05-12 1979-11-22 Hitachi Ltd Electric train controller
JPS55139004A (en) * 1979-04-17 1980-10-30 Mitsubishi Electric Corp Control system of electric locomotive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541515A (en) * 1977-06-06 1979-01-08 Hitachi Ltd Electric rolling stock controller
JPS54149115A (en) * 1978-05-12 1979-11-22 Hitachi Ltd Electric train controller
JPS55139004A (en) * 1979-04-17 1980-10-30 Mitsubishi Electric Corp Control system of electric locomotive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179058A1 (en) * 2017-03-27 2018-10-04 三菱電機株式会社 Electric rolling stock propulsion control system

Similar Documents

Publication Publication Date Title
US8272331B2 (en) Automated transport system
CN101536299B (en) Traction drive of a rail vehicle for driving and generative braking with load correction
JP5017163B2 (en) Railway vehicle drive system
CN108367692B (en) Control device for railway vehicle, train formation and main motor control method
EP4129744A1 (en) Drive system for a rail vehicle
US714196A (en) Regenerative system.
CN111216742B (en) Pneumatic propulsion system for high-volume transport of passengers and/or goods
JPS611202A (en) Induction motor driven electric railcar
US6622635B2 (en) Automated transportation system
JPS63268405A (en) Train driving system
Berriel et al. Mechanical braking strategy impact on energy consumption of a subway
JP3152785B2 (en) Method and apparatus for controlling motor for vehicle
JPS5915242B2 (en) Railway vehicle control device
JPS60245405A (en) Induction motor driven electric railcar
US1978080A (en) Articulated locomotive
JPS6126404A (en) Controller for electric railcar
CA3075075C (en) Increased tractive effort yard and road switch locomotives
WO2025041285A1 (en) Railway vehicle system
RU2016816C1 (en) Positioning mechanism drive
US3244116A (en) Vehicle axle
JPS61142903A (en) Controlling method of electric railcar
JPH0556507A (en) Controller for electric vehicle
US776303A (en) Electric-car truck.
JPH04121004A (en) Controller for electric motor vehicle
US870802A (en) Vehicle control system.