JPS61117271A - Vapor deposition method with laser - Google Patents
Vapor deposition method with laserInfo
- Publication number
- JPS61117271A JPS61117271A JP23926284A JP23926284A JPS61117271A JP S61117271 A JPS61117271 A JP S61117271A JP 23926284 A JP23926284 A JP 23926284A JP 23926284 A JP23926284 A JP 23926284A JP S61117271 A JPS61117271 A JP S61117271A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- laser beam
- evaporation
- vapor deposition
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、レーザ蒸着法に関し、さらに詳しくは、レー
ザビームを用い空間において蒸着用微粒子試料を蒸発さ
せ、蒸着基板に蒸着させるもので、この蒸発ガスは、は
ぼ均一的に装置内空間に拡散しレーザビーム照射光路と
微粒子供給装置を除く全球状空間を利用して蒸着を行う
、レーザビームを用いた空間蒸発蒸着法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser evaporation method, and more specifically, a laser beam is used to evaporate a fine particle sample for evaporation in a space, and the evaporation gas is deposited on a deposition substrate. The present invention relates to a spatial evaporation deposition method using a laser beam, which is diffused into the internal space of the device and performs deposition using the entire spherical space excluding the laser beam irradiation optical path and the particle supply device.
従来の蒸発技術は、蒸発エネルギー源として抵抗加熱、
電子線加熱、材料陽極形電子加熱、誘導加熱、熱放射加
熱等がある0これ等の蒸着方法は、蒸着試料を蒸発エネ
ルギー供給体の上に乗せるか、蒸発エネルギー供給体の
中央るつぼ等に入れて置くか、あるいは、蒸着試料自身
に電子線等を加速して照射し蒸着するものであった。Conventional evaporation technology uses resistance heating as the evaporation energy source,
There are electron beam heating, material anode type electron heating, induction heating, thermal radiation heating, etc. These evaporation methods involve placing the evaporation sample on the evaporation energy supply body or placing it in the central crucible of the evaporation energy supply body. Alternatively, the deposition sample itself could be irradiated with an accelerated electron beam or the like for deposition.
従来の蒸着方式では、加熱温度が低く、セラ量るつばの
中あるいはエネルギーを照射する位置に配置する必要か
ら、蒸着試料の熱容量が非常に大きくなる欠点がある。Conventional vapor deposition methods have the disadvantage that the heat capacity of the vapor-deposited sample is extremely large because the heating temperature is low and the sample needs to be placed inside the crucible or at a position where energy is irradiated.
それのみにとどまらず、種々のエネルギー供給体を使用
するので、このエネルギー供給体からの不純ガスの発生
等による悪影響が生ずる等問題点が多かった。In addition to this, since various energy supply bodies are used, there are many problems such as the generation of impure gases from the energy supply bodies and other adverse effects.
本発明は、上記欠点を解決するためになされたもので、
きれいなレーザビームを用いた蒸発エネルギーの中を、
熱容量の非常に小さい微粒子試料を通過させることによ
シ空間で低温度蒸発試料から超高温度耐熱材料であるセ
ラミックに至るまで、不純カスの混入等がなく容易に蒸
着することができ、かつ、蒸着試料を利用する範囲が従
来技術に比べ非常に大きく、しかも、立体構造体の内面
等にも容易に蒸着することができるレーザ蒸着法を提供
することを目的とする。以下、本発vAKついて実施例
に基づき説明する。The present invention was made to solve the above drawbacks, and
Through evaporation energy using a clean laser beam,
By passing a microparticle sample with a very small heat capacity, it is possible to easily evaporate everything from low-temperature evaporation samples to ceramics, which are ultra-high temperature heat-resistant materials, without contaminating impurity scum, etc., in a vacuum space. It is an object of the present invention to provide a laser evaporation method in which the range of use of a evaporation sample is much larger than that of conventional techniques, and in addition, it is possible to easily evaporate even the inner surface of a three-dimensional structure. Hereinafter, the vAK of the present invention will be explained based on an example.
第1図は、本発明の一実施例を説明する丸めのものであ
る。なお、同図には、真空装置、レーザビーム吸収装置
、レーザビーム絞シ装置等杜本発明に直接関与しないの
で図示しない。図中、1は試料蒸発用レーザビーム、2
は微粒子試料供給装置、3は試料蒸発領域、4は未蒸発
試料回収装置、5社会球面状に配置が可能な蒸着基板で
ある。FIG. 1 is a rounded diagram illustrating one embodiment of the invention. It should be noted that a vacuum device, a laser beam absorption device, a laser beam focusing device, etc. are not shown in this figure because they are not directly related to the present invention. In the figure, 1 is a laser beam for sample evaporation, 2
3 is a particle sample supply device, 3 is a sample evaporation region, 4 is an unevaporated sample recovery device, and 5 is a vapor deposition substrate that can be arranged in a social sphere.
試料蒸発用レーザビーム1の中に微粒子試料供給装置2
から供給される微粒子試料3を通過させ、試料蒸着領域
4にて微粒子試料3を空間にて完全に蒸発させる。この
とき微粒子試料3の供給量は制御されている。蒸発した
試料は、球面上に配置された蒸着基板6の上に薄膜生成
する。必要に応じてマスクを使用してもよい。A particle sample supply device 2 is placed inside the laser beam 1 for sample evaporation.
The particulate sample 3 supplied from the sample deposition area 4 is completely evaporated in the space. At this time, the supply amount of the particulate sample 3 is controlled. The evaporated sample forms a thin film on the evaporation substrate 6 arranged on a spherical surface. A mask may be used if necessary.
蒸着基板6が蒸着物に対して加熱装置によシ最適に加熱
されていることは云うまでもない。試料蒸着領域4で完
全に蒸発しきれない試料は、未蒸発試料回収装置5によ
って完全く回収して、真空領域を常時清潔にしである。It goes without saying that the vapor deposition substrate 6 is optimally heated by the heating device relative to the vapor deposited material. The sample that has not been completely evaporated in the sample deposition region 4 is completely collected by the unevaporated sample collection device 5 to keep the vacuum region clean at all times.
多層膜を生成させるには、上記の操作を微粒子試料供給
装置2を取換えて行う。円筒状内部等の蒸着は、試料蒸
発用レーザビーム1の照射角度を変化すれば容品である
。To generate a multilayer film, the above operation is performed by replacing the particulate sample supply device 2. Vapor deposition inside a cylindrical shape can be achieved by changing the irradiation angle of the laser beam 1 for sample evaporation.
次K、作用について説明する。 Next, I will explain the effect.
本発明の主要表特徴は、熱容量の小さい微粒子を、空間
に位置するところで試料蒸発用レーザビーム1によって
蒸発させることにあるもので、蒸発速度が早く、その結
果低温融点材料から超高温度材料まで巾広く蒸着コーテ
ィング速度を早める。しかも、高純度の蒸着膜が生成さ
れる。The main feature of the present invention is that fine particles with a small heat capacity are evaporated by the sample evaporating laser beam 1 in a space, and the evaporation rate is fast, resulting in a wide range of materials from low melting point materials to ultra-high temperature materials. Widespread deposition coating speed. Moreover, a highly pure vapor deposited film is produced.
また、真空中に各種ガスの封入によシ雰囲気を変えて、
窒化物、酸化物等の蒸着膜の生成も行える。本発明のレ
ーザ蒸着法は、蒸着試料を7゛(
・空間で蒸着させるために、全球面状空間で蒸着法を変
化させれば、円筒状、その他、複雑な形状のものの内部
壁面への蒸着膜の生成をも実現した。Also, by changing the atmosphere by filling various gases in a vacuum,
Vapor deposited films of nitrides, oxides, etc. can also be produced. The laser evaporation method of the present invention is capable of depositing a evaporation sample on the inner wall surface of a cylindrical or other complex shape by changing the evaporation method in a spherical space in order to deposit the evaporation sample in a 7゜( space). They also succeeded in creating a film.
以上説明したように、本発明は蒸発エネルギー源として
きれいなレーザビームを用い、このレーザビームの中に
蒸着資料を通過させることによシ空間において蒸発試料
を蒸発させ蒸着基板に蒸着させるもので、低温度から超
高温度耐熱材料であるセラミックに至るまでの蒸発試料
を不純物の混入等がない高純度の蒸着膜の生成すること
ができ、かつ、蒸着コーティング速度を早めるという効
果を有する。As explained above, the present invention uses a clean laser beam as an evaporation energy source, and by passing the evaporation material through the laser beam, the evaporation sample is evaporated in the space and deposited on the evaporation substrate. It is possible to produce a high-purity vapor deposition film free of impurities from evaporation samples ranging from high temperature to ultra-high temperature heat-resistant materials such as ceramics, and has the effect of accelerating the vapor deposition coating speed.
さらに、全球面状空間を利用して蒸着を行うため立体構
造体の内面等にも容易に蒸着することができ、しかも、
蒸着試料を利用する範囲も従来技術に比べ非常に大きい
という利点がある。Furthermore, since the evaporation is performed using the entire spherical space, it is possible to easily evaporate onto the inner surface of a three-dimensional structure.
The method has the advantage that the range in which the deposited sample can be used is much larger than in the prior art.
本発明のレーザ蒸着法は、切削工具、磨擦面の磨耗防止
膜、各種センナの作成、各種積層膜の生成等多方面に亘
シ大きな技術的波及効果をもたらすものである。The laser vapor deposition method of the present invention brings about great technical ripple effects in many fields, such as the production of cutting tools, anti-wear films on friction surfaces, the production of various types of sensors, and the production of various types of laminated films.
第1図は本発明の一実施例を説明するための図である。
図中、1は試料蒸発用レーザビーム、2は微粒子試料供
給装置、3は試料蒸発領域、4は未蒸発試料回収装置、
5は蒸着基板である。FIG. 1 is a diagram for explaining one embodiment of the present invention. In the figure, 1 is a laser beam for sample evaporation, 2 is a particle sample supply device, 3 is a sample evaporation area, 4 is an unevaporated sample recovery device,
5 is a deposition substrate.
Claims (1)
であつて、真空中または希薄ガス中で蒸着試料蒸発用レ
ーザビームを照射し、前記蒸着試料蒸発用レーザビーム
の中に微粒子または超微粒子試料を通過させる過程にお
いて、この通過空間で前記微粒子または超粒子試料を蒸
発させ蒸着させることを特徴とするレーザ蒸着法。A deposition method in which a deposition sample is spatially evaporated using a laser beam, in which a laser beam for evaporating the deposition sample is irradiated in a vacuum or a diluted gas, and fine particles or ultrafine particles are placed in the laser beam for evaporating the deposition sample. A laser evaporation method characterized in that the fine particles or superparticles are evaporated and deposited in this passing space during the passing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23926284A JPS61117271A (en) | 1984-11-13 | 1984-11-13 | Vapor deposition method with laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23926284A JPS61117271A (en) | 1984-11-13 | 1984-11-13 | Vapor deposition method with laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61117271A true JPS61117271A (en) | 1986-06-04 |
JPS6245306B2 JPS6245306B2 (en) | 1987-09-25 |
Family
ID=17042145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23926284A Granted JPS61117271A (en) | 1984-11-13 | 1984-11-13 | Vapor deposition method with laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61117271A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0328202A2 (en) * | 1988-02-12 | 1989-08-16 | Philips Electronics Uk Limited | Method of forming a quantum dot structure |
JP2018502994A (en) * | 2014-12-23 | 2018-02-01 | ピコデオン リミティド オサケユイチア | Lighthouse scanner with rotating mirror and circular ring target |
-
1984
- 1984-11-13 JP JP23926284A patent/JPS61117271A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0328202A2 (en) * | 1988-02-12 | 1989-08-16 | Philips Electronics Uk Limited | Method of forming a quantum dot structure |
EP0328202A3 (en) * | 1988-02-12 | 1991-03-27 | Philips Electronics Uk Limited | Method of forming a quantum dot structure |
JP2018502994A (en) * | 2014-12-23 | 2018-02-01 | ピコデオン リミティド オサケユイチア | Lighthouse scanner with rotating mirror and circular ring target |
US10927447B2 (en) | 2014-12-23 | 2021-02-23 | Pulsedeon Oy | Lighthouse scanner with a rotating mirror and a circular ring target |
Also Published As
Publication number | Publication date |
---|---|
JPS6245306B2 (en) | 1987-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3475403B2 (en) | Evaporation apparatus and method | |
Rao | Pulsed laser deposition—Ablation mechanism and applications | |
US4480677A (en) | Method for processing and fabricating metals in space | |
EP0265886B1 (en) | Process for forming an ultrafine-particle film | |
JPS61117271A (en) | Vapor deposition method with laser | |
JPS60224706A (en) | Manufacturing method of ultrafine metal particles | |
JPH03174306A (en) | Production of oxide superconductor | |
US3603285A (en) | Vapor deposition apparatus | |
JP2001140059A (en) | Laser deposition method | |
JP2006525422A (en) | Finely divided organic semiconductor compound and vapor deposition method on support | |
JPH04120270A (en) | Method and device for generating cluster ion beam | |
JP2505376B2 (en) | Film forming method and apparatus | |
JP2505375B2 (en) | Method and apparatus for forming compound film | |
RU2643287C2 (en) | Method for obtaining nanopowder of compounds and mixture compositions and device for its implementation | |
KR100450741B1 (en) | Step-flow mode growth method of metal oxide films at low temperature and synthesis method of nano wires therewith | |
US20250083066A1 (en) | Heating and deposition for beneficiation of lunar regolith | |
JP2853164B2 (en) | Manufacturing method of oxide superconducting film | |
JPH04311561A (en) | Thin film forming method and device | |
Nickel et al. | Preparation of isotopically enriched targets and of thin metal foils with high melting temperature using an electron gun | |
JPH0641730A (en) | Vapor deposition method | |
JPH089770B2 (en) | Vacuum deposition equipment | |
JPH0663087B2 (en) | Method for forming titanium nitride film | |
JPH03199372A (en) | Target for laser vapor deposition, method and device for laser vapor deposition | |
JPS6148416A (en) | Electromagnetic fluid dynamic device and process for separating and depositing material | |
JPS6347362A (en) | Ion plating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |